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Abstract

This study proposes a new trust-region based sequential linear programming

algorithm to solve the AC optimal power flow (OPF) problem. The OPF prob-

lem is solved by linearizing the cost function, power balance and engineering

constraints of the system, followed by a trust-region to control the validity of

the linear model. To alleviate the problems associated with the infeasibilities

of a linear approximation, a feasibility restoration phase is introduced. This

phase uses the original nonlinear constraints to quickly locate a feasible point

when the linear approximation is infeasible. The algorithm follows convergence

criteria to satisfy the first order optimality conditions for the original OPF prob-

lem. Studies on standard IEEE systems and large-scale Polish systems show an

acceptable quality of convergence to a set of best-known solutions and a sub-

stantial improvement in computational time, with linear scaling proportional to

the network size.
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1. Introduction1

The OPF problem optimizes the total operating cost to support efficient2

operation of power systems while satisfying system constraints for a nominal3

state [1]. In practice one needs to solve a security-constrained OPF (SC-OPF)4

problem which takes into account the possibility of a sudden failure of a single5

component (generator, transmission line, transformer, etc) in the system. This6

is known as the N−1 security criterion [1, 2]. The OPF problem without se-7

curity constraints has been extensively investigated in the literature (see, for8

instance [2], and references therein). This paper addresses the OPF problem9

for simplicity, but the benefits of our approach extend to the context of the10

SC-OPF problem as well. It is well-known that the OPF problem is nonlinear11

and nonconvex in nature, potentially having multiple equilibrium points. Hence12

searching for a global solution is in principle NP-hard (cf.[2, 3, 4, 5]). Electricity13

market clearing strategies are mainly based on nodal prices, which are the dual14

variables of power balance constraints of the OPF problem. This highlights15

the importance of the convexity and scalability features for any algorithm to16

use in OPF calculations [1, 6]. In addition to this, real-world OPF problems17

involve very large numbers of decision variables. This makes them challenging18

for a solution technique, both in terms of memory and computational time re-19

quirements. Consequently there is a great need for computationally efficient20

techniques which can handle the nonconvex AC network constraints.21

In the context of OPF, solution approaches, such as linear programming22

(LP) [6, 7, 8], quadratic programming (QP) [9], Lagrangian relaxation [10],23

and interior-point (IP) methods [11] have been extensively investigated in the24

literature. It is worth noting that, among all these approaches, IP methods25

have emerged as a promising direct solution approach for OPF problems. IP26

methods have proven to be a viable computational alternative for the solution of27

large-scale OPF problems [12]. The primal-dual logarithmic barrier IP method28

and its predictor-corrector variant are known to be efficient for OPF solution29

algorithms due to their superior computational efficiency [13]. We refer to [14]30

2



and references therein for a detailed survey of other solution approaches for the31

OPF problem.32

Many convexification approaches for power flow constraints have been pro-33

posed to make the AC-OPF problem computationally tractable. One of the34

widely used techniques in the last decade is semidefinite relaxation (SDR) which35

can find the global optimal solution of the OPF problem for radial networks36

under mild operating conditions [15, 16, 17, 18, 19]. However, in the case of37

meshed networks, SDR possesses a relaxation gap and necessitates the use of38

virtual phase shifters to recover bus voltage angles [20]. This can be an ex-39

pensive task in practice. Furthermore, semidefinite programs do not scale well40

for large-size power systems [21]. To circumvent the scalability issue associated41

with SDR, recently a second-order cone relaxation (SOCR) has been introduced.42

The SOCR enhances the computational performance, enabling the application43

of the technique for OPF problems in large-scale power networks [22, 23]. Based44

on SOCR, two different power flow formulations are considered in the literature,45

namely the bus injection model [21] and the branch flow model [22, 23]. Re-46

cently, the work in [24] introduced additional linear cuts in the branch flow47

framework to guarantee the exactness of SOCR for active distribution power48

networks. Similarly, an improved quadratic convex relaxation is proposed in49

[21] as an extension of SDR, in which voltage magnitudes are coupled with volt-50

age angles using additional polyhedral constraints. This improves the relaxation51

gap in comparison to SOCR without sacrificing the computational performance.52

However, a significant relaxation gap still persists in many power system cases53

[21]. Solution approaches based on the global optimization philosophy, such as54

convex envelopes [25] and decomposition methods [26] have also been reported55

in the literature.56

In the aforementioned approaches, LP methods can be an attractive can-57

didate for OPF problems due to their inherent scalable nature. Recent works58

[6, 27] have used successive linear programming (SLP)1 principles to demon-59

1The words ‘successive’ or ‘sequential’ are used interchangeably in the context of linear
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strate this fact. Specifically, [6] has shown the scalability of LP tools against60

the well-known IP solver IPOPT [28] as well as the nonlinear optimization solver61

KNITRO [29]. In [5], rectangular form of complex quantities is used to formulate62

the power flow model, which disregards quasi-linear relationships of active power63

and bus voltage angles, and the reactive power and voltage magnitudes [5]. In64

addition, that formulation results in noncovex voltage limit constraints which65

need additional slack variables in order to be linearized.66

Note that SLP approaches can suffer from poor approximation of the original67

OPF problem due to lack of any globalization strategy. An SLP approach68

starting at an arbitrary point far from a solution to the original OPF may not69

converge to a feasible solution. In such circumstances, trust-region (TR) based70

methods have proven to be a viable alternative; see for instance TR-SE [30],71

TR-IP [31], [32] and TR-QP [33]. In TR methods, an approximation problem72

is solved within a small radius (called the trust-region). This enables a good73

approximation for the original OPF to be obtained at each solution step within74

the given trust-region.75

This paper proposes a synergistic approach based on a trust-region method76

and SLP for the OPF problem. Our approach is very much inspired by the77

recently proposed successive linearization scheme of [6] and the trust-region78

implementation [31]. However, our work differs in the following ways:79

• Unlike [6], we use the polar form of complex quantities. This assists in80

capturing the quasi-linear relationship between active power and bus volt-81

age angles, and the reactive power and voltage magnitudes for the original82

OPF problem.83

• In addition compared to [6], we propose a trust-region radius constraint84

to improve the validity of the linear approximations in subsequent SLP85

steps.86

programming approximation schemes. This work prefers to use the phrase ‘sequential linear

programming’.
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• Further, compared to [31], instead of a penalty reformulation, we pro-87

pose a simple feasibility restoration phase based on the original nonlinear88

constraints, in order to avoid infeasibilities of intermediate linerizations.89

In brief, this work uses first-order Talyor series to construct a local linear model90

for the original OPF problem. A trust-region constraint is designed to ensure91

the validity of the constructed linear model, that is, to ensure that the original92

nonlinear constraints are satisfied. This is then integrated in an iterative pro-93

cedure to optimize bus voltage magnitudes and angles, and active and reactive94

power generation. This trust-region sequential linear program (TR-SLP) termi-95

nates in a finite number of iterations, returning an OPF solution satisfying the96

convergence criteria (see Section 3.4). The performance of TR-SLP is tested on97

various benchmark IEEE and Polish systems against the SLP approach in [6],98

NLP solvers IPOPT [28] and KNITRO [29]. The results of TR-SLP demon-99

strate an acceptable quality of convergence to the best-known solution for the100

considered benchmark systems.101

The paper presents the OPF problem formulation in Section 2, followed by102

the algorithm of TR-SLP in Section 3. Section 4 presents the numerical results103

on various IEEE networks. Finally, the paper is concluded in Section 5.104

2. Mathematical Formulation105

In this section, we first present the network model for a general power sys-106

tem and formulate the AC-OPF problem. Then, a linear programming (LP)107

approximation of the AC-OPF problem is derived using first-order Taylor se-108

ries. This linear approximation is later embedded in an iterative procedure to109

form the TR-SLP algorithm (see Section 3).110

2.1. Network Model111

We define N and L as the set of buses and the set of transmission lines of the112

power system respectively, where |N | = N and |L| = L. Further, let G (|G| = G)113

be the set of generators which are connected to a subset of N . To formulate114
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the OPF problem, we use the polar form of the complex bus voltage v ∈ CN115

and its ith element vi = Vie
jδi , where Vi is the voltage magnitude and δi is the116

phase angle of the voltage phasor vi at bus i ∈ N . Complex power generation117

is denoted by sG ∈ CG such that sGg = PG
g + jQG

g for generator g ∈ G, where118

PG
g and QG

g are the active and reactive power generation respectively. These119

two vectors (v and sG) are the decision variables of the OPF problem. The120

parameters involved in the formulation are defined below.121

The standard π−model is applied for modeling transmission lines. For the122

transmission line l ∈ L, let Y ∈ CL be the branch admittance vector, having123

components Yl = gl(i,j) + jbl(i,j), where gl(i,j) and bl(i,j) are the series conduc-124

tance and susceptance respectively. Similarly, bshl(i,j) ∈ R is the line charging125

susceptance for tranmission line l. Complex power demand is characterized by126

sD ∈ CN such that sDi = PD
i + jQD

i , where PD
i and QD

i are the active and127

reactive power demand respectively at bus i.128

2.2. AC-OPF Problem Formulation129

The objective function of the OPF problem is generally formulated as the130

generation cost minimization. The constraints are formulated to satisfy the131

power balance at each bus, the generation capacity margins, and network con-132

straints, namely power flow limits and voltage bounds.133

The quadratic cost function for generator g in the system is represented134

below.135

Cg = c2,g
(
PG
g

)2
+ c1,gP

G
g + c0,g , ∀g ∈ G (1)

where c2,g, c1,g and c0,g denote the coefficients of quadratic, linear, and con-

stant terms of the cost function, respectively. Then the complete OPF can be

formulated as a NLP problem to optimize the total operating cost of the system:

min
δi, Vi,

PG
g , Q

G
g

∑
g∈G

Cg (2a)

s.t.
∑
g∈G(i)

PG
g − V 2

i

∑
j∈N (i)

gl(i,j)
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+ Vi
∑

j∈N (i)

Vj
[
gl(i,j)cos(δi,j)− bl(i,j)sin(δi,j)

]
= PD

i , ∀i ∈ N (2b)

∑
g∈G(i)

QG
g − V 2

i

∑
j∈N (i)

(bl(i,j) + bshl(i,j)/2)

+ Vi
∑

j∈N (i)

Vj
[
bl(i,j)cos(δi,j) + gl(i,j)sin(δi,j)

]
= QD

i , ∀i ∈ N (2c)

I2l(i,j) ≤ (Imax
l )2, i, j ∈ N , ∀l ∈ L (2d)

I2l(j,i) ≤ (Imax
l )2, i, j ∈ N , ∀l ∈ L (2e)

I2l(i,j) = IAl(i,j)V
2
i + IBl(i,j)V

2
j

− 2ViVj

[
ICl(i,j)cos(δi,j)− IDl(i,j)sin(δi,j)

]
(2f)

Vi ∈
[
V min
i , V max

i

]
, ∀i ∈ N (2g)

PG
g ∈

[
PG,min
g , PG,max

g

]
, ∀g ∈ G (2h)

QG
g ∈

[
QG,min
g , QG,max

g

]
, ∀g ∈ G (2i)

where δi,j = δi − δj ; constraints (2b) and (2c) represent the active and reactive

power balance at each bus; G(i) and N (i) are the set of generators connected at

bus i, and the set of buses connected to bus i by transmission lines, respectively;

and constraints (2d) and (2e) constrain the maximum current flow through each

transmission line. Here, (2f) models the apparent current flow from bus i to bus j

through transmission line l, where

IAl(i,j) = g2l(i,j) +
(
bl(i,j) + bshl(i,j)/2

)2
,

IBl(i,j) = g2l(i,j) + b2l(i,j),

ICl(i,j) = g2l(i,j) + bl(i,j)

(
bl(i,j) + bshl(i,j)/2

)
and

IDl(i,j) = bl(i,j)b
sh
l(i,j)/2 ;

The physical laws of power flow have been considered in modeling these con-136

straints. Constraint (2g) bounds the engineering limits of the voltage at each137

bus; and (2h) and (2i) bound the active and reactive power generation capabili-138

ties of each generator respectively; and (·)min and (·)max indicate the lower and139

upper bound of the decision variables, respectively. The optimization problem140
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consists of 2(N + G) number of variables to optimize subject to the variable141

bounds and 2(N + L) number of constraints.142

2.3. LP Formulation143

The nonlinearity in the aforementioned OPF problem comes from equations

(1), (2b), (2c) and (2f). In our proposed iterative procedure (TR-SLP), the

nonlinear terms in these equations are linearized by applying first-order Tay-

lor series approximations evaluated at the solution of the previous iteration.

Assume the decision variable vector pertaining to the NLP problem (2) as

x : =
[
δ1, . . . , δN , V1, . . . , VN , P

G
1 , . . . , P

G
G , Q

G
1 , . . . , Q

G
G

]T ∈ R2(N+G).

where (·)T is the transpose operator. Then, the partial derivatives of (1), (2b),144

(2c) and (2f) are used to compute the Jacobian matrices as follows.145

JC,k−1 =

[
0T
2N ,

∂C1

∂PG
1

, . . . ,
∂CG
∂PG

G

, 0T
G

]∣∣∣∣
xk−1

(3a)

PN
i = V 2

i

∑
j∈N (i)

gl(i,j)

− Vi
∑

j∈N (i)

Vj
[
gl(i,j)cos(δi,j)− bl(i,j)sin(δi,j)

]
, ∀i ∈ N (3b)

JP,k−1
i =

[
∂PN

i

∂δ1
, . . . ,

∂PN
i

∂δN
,
∂PN

i

∂V1
, . . . ,

∂PN
i

∂VN
, −eTG,i, 0T

G

]∣∣∣∣
xk−1

, ∀i ∈ N (3c)

QN
i = V 2

i

∑
j∈N (i)

(bl(i,j) + bshl(i,j)/2)

− Vi
∑

j∈N (i)

Vj
[
bl(i,j)cos(δi,j) + gl(i,j)sin(δi,j)

]
, ∀i ∈ N (3d)

JQ,k−1
i =

[
∂QN

i

∂δ1
, . . . ,

∂QN
i

∂δN
,
∂QN

i

∂V1
, . . . ,

∂QN
i

∂VN
, 0T

G, −eTG,i
]∣∣∣∣
xk−1

, ∀i ∈ N (3e)

J I,k−1
l(i,j) =

[
∂I2l(i,j)

∂δ1
, . . . ,

∂I2l(i,j)

∂δN
,
∂I2l(i,j)

∂V1
, . . . ,

∂I2l(i,j)

∂VN
, 0T

2G

]∣∣∣∣∣
xk−1

,

i, j ∈ N , ∀l ∈ L (3f)

where 0(·) = {0}(·) and eG,i ∈ {0, 1}G, in which the gth element is 1 if gen-146

erator g ∈ G(i), or is 0 otherwise. PN
i and QN

i denote the sum of active and147
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reactive power extractions from bus i respectively; (·)k−1 denote the value of the148

decision variable/vector (·) at the (k − 1)
th

iteration. Equations (3a), (3c), (3e)149

and (3f) represent the Jacobian matrices of (1), (2b), (2c) and (2f) respectively,150

which are originally nonlinear. At the kth iteration of TR-SLP, those Jacobian151

matrices in (3) are updated based on the solution of the previous (k − 1)th it-152

eration. Finally, the LP approximation of the OPF problem (2) to be solved at153

the kth iteration, obtained based on the solution of the (k − 1)th iteration, can154

be deduced as follows.155

LP
(
xk−1

)



min
x

JC,k−1(x− xk−1) +
∑
g∈G

Cg|xk−1

s.t. JP,k−1
i (x− xk−1) + PN

i

∣∣
xk−1 −

∑
g∈G(i)

PG,k−1
g = −PD

i , ∀i ∈ N

JQ,k−1
i

(
x− xk−1

)
+ QN

i

∣∣
xk−1 −

∑
g∈G(i)

QG,k−1
g = −QD

i ,∀i ∈ N

J I,k−1
l(i,j) (x− xk−1) + I2l(i,j)

∣∣∣
xk−1

≤ (Imax
l )2, i, j ∈ N , ∀l ∈ L

J I,k−1
l(j,i) (x− xk−1) + I2l(j,i)

∣∣∣
xk−1

≤ (Imax
l )2, i, j ∈ N , ∀l ∈ L

(2g)− (2i)

(4)

It should be noted that (4) is tightly-coupled to the original OPF problem (2)156

at the evaluated point xk−1.157

3. Trust-Region based Sequential Linear Programming Algorithm158

This section first introduces components such as trust-region LP formulation,159

feasibility restoration phase and step acceptance/rejection criterion. Then the160

pseudo-code of the main algorithm TR-SLP comprising all these components161

is presented. For ease of explanation, the AC-OPF problem (2) is represented162
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using a generic NLP form as follows:163

NLP



min
x

f(x)

s.t. h(x) = 0

c(x) ≤ 0

xmin ≤ x ≤ xmax

(5)

where f represents the objective function (2a); h represents the set of equality164

constraints which include (2b) and (2c); c represents the set of inequality con-165

straints which include (2d) and (2e); and xmin and xmax in (5) represent the166

variable bounds (2g)-(2i).167

3.1. Trust-Region Linear Program168

At the kth iteration, the LP
(
xk−1

)
approximates the original OPF prob-169

lem (2) at xk−1. However, it may be a very poor representation of (2) if170 ∥∥xk − xk−1∥∥ is not sufficiently small. To circumvent this issue, we consider171

bounding xk−1 variations within a small closed region called the trust-region172

∆k. Specifically, we add a trust-region radius constraint to the LP approxima-173

tion (4) and form the following optimization problem.174

TR-LP
(
xk−1,∆k

)


min
d

f(xk−1) +
[
∇f(xk−1)

]T
d

s.t. h(xk−1) +
[
∇h(xk−1)

]T
d = 0 : λkh

c(xk−1) +
[
∇c(xk−1)

]T
d ≤ 0 : λkc

max(xmin − xk−1,−∆k) ≤ d

d ≤ min(xmax − xk−1,∆k)

(6)

where the decision variable vector d := x− xk−1 and ∆k > 0 ∈ R2(N+G) is the

TR radius. Here, ∇f(xk−1), ∇h(xk−1) and ∇c(xk−1) represent the first-order

partial derivatives of f(x), h(x) and c(x) with respect to x, evaluated at xk−1

as in (4), respectively; λkh and λkc are the Lagrange multipliers of the equality

(h) and inequality (c) constraints, respectively, with λk =
[
(λkh)T (λkc )T

]T
. The

solution dk of the above optimization problem is used as a step to define the
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new solution approximation, i.e. xk = xk−1 + dk (see Section 3.3). The Karush-

Kuhn-Tucker (KKT) conditions for (6) are:

h(xk−1) +
[
∇h(xk−1)

]T
dk = 0 (7a)

c(xk−1) +
[
∇c(xk−1)

]T
dk ≤ 0 (7b)

∇f(xk−1) +∇c(xk−1)λkc +∇h(xk−1)λkh = 0 (7c)(
c(xk−1) +

[
∇c(xk−1)

]T
dk
)
λkc = 0 (7d)

λkc ≥ 0 (7e)

Equations (7) will be satisfied at every successful TR-LP computation.175

It should be noted that a smaller TR radius may cause constraint infeasibil-176

ities or may reduce the speed of convergence. Similarly, a larger TR radius will177

weaken the validity of linear models that represent nonlinear constraints in (2).178

Therefore ∆k is modified at each step of the algorithm (step 6 of Algorithm 1),179

the modification depending on the improvement in optimality.180

3.2. Feasibility Restoration181

In practice, TR-LP
(
xk−1,∆k

)
can be infeasible due to the following two182

reasons: i) The constraint gradients
[
∇h(xk−1)

]T
can become degenerate at183

the point xk−1, leading to infeasible linearized constraints. Then the system184 [
∇h(xk−1)

]T
d = −h(xk−1) simply has no solution. ii) If the trust-region is185

too small, the TR-LP may be infeasible. In such circumstances, the linear186

constraint, h(xk−1) +
[
∇h(xk−1)

]T
d = 0, cannot be satisfied within the trust-187

region radius ∆k of xk−1.188

Feasibility restoration (NLP-FR) searches for a feasible point by solving the189

following problem, so that the next TR-LP subproblem to be solved will be190
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feasible.191

NLP-FR



min
x, sc,

s+h , s
−
h

sc + s+h + s−h

s.t. c(x)− sc ≤ 0

h(x)− s+h + s−h = 0

xmin ≤ x ≤ xmax

sc, s
+
h , s

−
h ≥ 0

(8)

where sc, s
+
h , s

−
h are slack variables used to relax the inequality and equality192

constraints respectively.193

If the NLP-FR cannot find a solution with zero objective value, then the194

OPF problem (2) is declared as infeasible. Otherwise, we have found a feasible195

point xk, which is used to compute the step-size dk := xk − xk−1.196

3.3. Step Acceptance/Rejection Criterion197

To accept or reject the new step-size dk and update the trust-region radius198

∆k for the next TR-SLP iteration, we compute the ratio ρk between predicted199

and actual reduction in the cost function (2a).200

Let dk be a solution of TR-LP
(
xk−1,∆k

)
. Then the predicted reduction in201

the objective is202

∆φkpre =
[
∇f(xk−1)

]T
dk. (9)

In order to take into account any constraint violations, as well as the actual203

value of the objective of the NLP (5), the following merit function is defined:204

φ(xk) = f(xk) + (νkh)
T|h(xk)|+ (νkc )T max{c(xk), 0}, (10)

where νkh ∈ Rnh
+ and νkc ∈ Rnc

+ are penalty factors for equality and inequality

constraints respectively. These are derived in each iteration k based on (11a)

and (11b) using dual variables λkh and λkc as follows.

νkh = max{νk−1h , λkh} (11a)

νkc = max{νk−1c , λkc} (11b)
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ν0h,m =
‖ ∇f(x0) ‖2
‖ ∇hm(x0) ‖2

, ∀m ∈ {1, . . . , nh} (11c)

ν0c,m =
‖ ∇f(x0) ‖2
‖ ∇cm(x0) ‖2

, ∀m ∈ {1, . . . , nc} (11d)

Further, (11c) and (11d) are used to calculate the penalty factors for the first205

iteration, where hm and cm are the mth equality and inequality constraints206

respectively; nh and nc are the number of equality and inequality constraints207

respectively. The actual reduction in the objective is208

∆φkact = φ(xk)− φ(xk−1). (12)

The ratio ρk is then defined as209

ρk =
∆φkact
∆φkpre

(13)

Then,210

∆k+1 =



α1∆k if ρk ≤ 0

α2∆k if 0 < ρk ≤ 0.25

∆k if 0.25 < ρk ≤ 0.75

min(2∆k,∆max) if 0.75 < ρk

(14)

where α1 ∈ (0, 1), α2 ∈ (0, 1) and ∆max are constants. This is a heuristic, and211

values for these parameters should be determined on a case-by-case basis in the212

context of the OPF problem (2).213

Remark 1: If ρk < 0, then the iteration is considered as a failure. In such a214

case, the new point xk is rejected, and the TR radius ∆k for the next iteration is215

reduced to α1 times its present value, and the TR-LP
(
xk−1,∆k

)
is solved again.216

If ρk ≥ 0, then the new point xk = xk−1 + dk is accepted and the algorithm217

proceeds to the next step with the updated TR radius ∆k+1.218

We now summarize the TR-SLP algorithm via the pseudo-code in Algo-219

rithm 1, utilizing the aforementioned trust-region linear program (TR-LP), fea-220

sibility restoration (NLP-FR), and step acceptance/rejection (StepQuality) in-221

gredients. It may be noted that the output
(
fk, xk

)
of the TR-SLP algorithm222

which satisfies the convergence conditions given in Section 3.4, is a local optimal223

solution of the OPF problem (2).224

13



Algorithm 1:

Trust-Region Sequential Linear Program (TR-SLP)

Input : f , h, c, x0, α1, α2, ∆1, ∆max, K

Output: fk, xk

1 while convergence not satisfied do

/* solve trust-region linear program */

2 (fk, dk, λk)← solve TR-LP
(
xk−1,∆k

)
3 if TR-LP

(
xk−1,∆k

)
is not feasible then

/* feasibility restoration phase */

4 dk ← solve NLP-FR

5 end

/* step quality determination phase */

6
(
∆k+1, ρk

)
← StepQuality

(
f,∇f, xk−1, dk, α1, α2,∆

max
)

7 if ρk < 0 then

/* reject step */

8 xk ← xk−1

9 else

/* accept step */

10 xk ← xk−1 + dk

11 k = k + 1

12 end

13 end
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3.4. Discussion on Convergence225

We first give the necessary Karush-Kuhn-Tucker (KKT) conditions adopted226

from [34] for TR-SLP described in Algorithm 1. The TR-SLP stops when the227

following conditions are satisfied.228

(a) ‖ dk ‖∞ ≤ εd229

(b) ‖ h(xk) ‖∞≤ ε, max{c(xk)} ≤ ε230

(c) max{‖ ∇f(xk)+∇c(xk)λkc+∇h(xk)λkh ‖∞, ‖ c(xk)λkc ‖∞} < ελ
(
1+ ‖ λk ‖2

)
231

(d) λkc ≥ 0232

where εd, ε, and ελ are tolerances chosen for the step change, constraint satis-233

faction and KKT condition satisfaction respectively. Condition (a) implies that234

the step-size has reached the user-specified accuracy εd. Condition (b) implies235

that within the trust-region radius, the original nonlinear constraints h and c236

in the NLP (5) are satisfied to a user-specified accuracy of ε. Conditions (c)237

and (d) provide a measure of the closeness of the computed solution to a point238

satisfying the first-order optimality conditions for the NLP problem (5).239

To establish the convergence of TR-SLP (Algorithm 1) consider the follow-240

ing. TR-SLP solves a trust-region linear approximation (i.e. TR-LP (6)) of the241

original NLP (5) at each iteration k. If TR-LP is feasible, it will compute dk242

(step 2). Subsequently, based on the previous iterates xk−1 and dk, the actual-243

to-predicted cost ratio ρk and the new trust-region radius ∆k+1 are determined244

(step 6). Then, based on ρk, as the TR-SLP progresses, ∆k+1 shrinks, ensuring245

the tightness of the linear approximation TR-LP (cf. Figure 4). This leads the246

successive iterates xk to converge to a local solution of NLP (5), satisfying the247

conditions (a)–(d).248

4. Numerical Experiments and Discussion249

In this section, we report numerical results with the proposed TR-SLP al-250

gorithm for OPF problem (2). The TR-SLP is analyzed on a benchmark test251
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suite consisting of IEEE (14, 30, 57, 118 and 300) systems, and Polish 2383wp,252

2746wop and 3012wp systems (the number refers to the number of buses in the253

respective test case) available in [35]. We note that [6] is a recent computational254

study on the AC-OPF problem for the aforementioned systems. It reports the255

OPF (2) results using general purpose optimization solvers like IPOPT [28] and256

KNITRO [29], and a penalty reformulations based successive linear program-257

ming (SLP) method. In [6], two types of OPF problems are solved for each258

system, viz. without line flow limits (baseline case), and with line flow lim-259

its (thermally constrained case). We obtain the line flow limits data for this260

work from [6, Table II] . Further, [6, Tables IV, V] report the results obtained261

using their proposed SLP, NLP solvers IPOPT and KNITRO for the various262

benchmark IEEE and Polish systems. These results have been obtained with263

constraint satisfaction up to 0.001 tolerance. We shall use these results in our264

study to compare the performance of our TR-SLP in terms of optimality and265

computational time.266

Convergence and optimality of the solution of SLP algorithms depend on the267

selected initial point (cf. [6]). In this study, we consider two different initializa-268

tion strategies for TR-SLP, viz, flat start and DC warm start, to demonstrate269

the variation of performance with respect to the starting point. In the flat270

start, we assume unit voltage phasors and half-max outputs for all generation.271

The DC warm start is constructed with the solution obtained from the DC-272

OPF problem combined with unit voltage magnitudes and half-max reactive273

power generation. We conduct three case studies to showcase the performance274

of the TR-SLP. Firstly, the computational time of the TR-SLP with the afore-275

mentioned test cases is compared against that of KNITRO, IPOPT and SLP.276

Secondly, we study the optimality of the solution obtained using the TR-SLP277

for the same test cases against the KNITRO solver run in a multi-start mode278

(henceforth referred as KNITRO-MS). We note that KNITRO run in a multi-279

start mode results in improved local optimal solutions [29]. Finally, we tighten280

the tolerances (i.e. εd, ε, ελ in TR-SLP) and study the relative improvement281

in the optimality of the solution obtained using the TR-SLP for the same test282

16



cases, and note the trade-off against computation time.283

The TR-SLP algorithm is implemented in MATLAB and the optimization284

problems are formulated based on the MATPOWER library [35]. The LP sub-285

problems are solved using CPLEX 12.6 [36] and feasibility restoration subprob-286

lems using the MATLAB fmincon solver based on the interior-point method.287

All experiments are carried out on a desktop PC with an IntelrCore i7-5500U288

4 core CPU processor running at 2.40GHz with 8GB RAM. Based on our ex-289

perience with the numerical experiments reported in this work, the parameters290

of TR-SLP are chosen as follows: α1 = 0.1, α2 = 0.25, ∆(0) = 0.4, ∆max = 2,291

K = 30, εd = 0.1, ε = ελ = 0.01. Note that, in all our numerical studies, the292

original nonlinear constraints (2b)−(2e) are satisfied up to the same accuracy293

employed by [6] (i.e. 0.001 or lesser). This is specifically demonstrated for two294

large Polish (2746, 3012) systems in columns A and B of Table 4.295

4.1. Case Study 1: Computational Time Comparison296

In this study, TR-SLP is executed with a flat start strategy for OPF problem297

(2) and is compared in Table 1 with different solution approaches for several298

test cases. It should be noted that in [6], four different initialization strategies,299

viz. flat start, DC warm start, AC warm start and uniform cold start are used300

and the best solver time recorded for each test case is reported (see Table 1;301

KNITRO, IPOPT, and SLP).302

It can be observed that for all IEEE systems, the CPU times of KNITRO303

and IPOPT are almost the same. Comparatively in Polish systems, KNITRO304

is noted to be slower. SLP is found to be the slowest for all IEEE systems.305

However, its performance is observed to improve for Polish systems with re-306

spect to KNITRO and IPOPT. We observed TR-SLP to be fastest among all307

solution approaches in many test cases (except IEEE 300 and Polish 2383 ther-308

mally constrained cases, where KNITRO and IPOPT are slightly faster). The309

TR-SLP reports comparatively the best CPU time for the largest Polish 3012310

system, approximately 6, 2 and 3 times faster than KNITRO, IPOPT, and SLP,311

respectively, for the baseline case and approximately 5, 1.5 and 2 times faster312
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than KNITRO, IPOPT, and SLP, respectively, for the thermally constrained313

case.

118 300 2383 2746 3012
(a) Test Case (Baseline)

0
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T
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SLP

TR-SLP

118 300 2383 2746 3012

(b) Test Case (Thermally Constrained)
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Figure 1: The computational scalability comparison among all solvers/algorithms for various

IEEE (118, 300) and Polish (2383, 2746, 3012) systems. TR-SLP is simulated under the flat

start strategy.

314

Figure 1 reports the computational time growth among all solution ap-315

proaches for both the baseline and thermally constrained cases. It can be seen316

that both SLP and TR-SLP give almost linear increase in time against the317

test case size. This demonstrates to the better scalability of these LP based318

approaches in case of large-size optimization problems.319

4.2. Case Study 2: Relative Optimality Comparison320

In this study, TR-SLP is executed with the flat start strategy as well as321

with the DC warm start strategy for the OPF problem (2). As pointed out in322

[6, Section V], multi-start mode increases the probability of finding better local323

solutions for KNITRO-MS. Hence, we assume KNITRO-MS solutions as one324

of the best known solution sets for our benchmarking. Therefore in terms of325
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optimality, we compare the quality of the solution obtained by TR-SLP against326

the KNITRO-MS solution. For Table 2 and Table 3, we define the following327

performance metric:328

η =
KNITRO-MS− TR-SLP

KNITRO-MS
× 100% (15)

where η indicates the relative improvement (if η is positive) or deterioration (if329

η is negative) in optimality of the solution obtained by TR-SLP with respect to330

the best known KNITRO-MS solution.331

Table 2 reports the optimal solution obtained using KNITRO-MS and TR-332

SLP (with the flat start strategy) for the baseline and thermally constrained333

cases. In both cases, it can be observed that for half of the IEEE and Polish334

systems, TR-SLP results in slightly improved optimality with respect to the335

KNITRO-MS (ranging 0.03 % to 0.17 %). Performance of TR-SLP for the336

Polish 2746 system is observed to be slightly suboptimal for both the baseline337

and thermally constrained cases. However, KNITRO-MS is computationally338

slower than TR-SLP due to the multi-start feature, and represents a trade-off339

for using multi-start in practical OPF applications.340

Table 3 reports the optimal solution obtained using KNITRO-MS and TR-341

SLP with DC warm start strategy for the baseline and thermally constrained342

cases. The convergence and optimality of the solution of TR-SLP depends upon343

the initial point. As such we noted TR-SLP with the DC warm start strategy344

locates slightly different optimal values compared to those of TR-SLP with the345

flat start strategy. Hence, in order to compare the relative effectiveness between346

the flat start and DC warm start strategies, we analyze the number of iterations347

taken under each strategy to converge to the final solution. Figure 2 depicts348

the TR-SLP iterations of the IEEE (118, 300) and Polish (2383, 2746, 3012)349

systems for both the baseline and thermally constrained cases. We observe that350

the DC warm start strategy speeds up the convergence compared to the flat start351

strategy, except for the Polish 2383 system. However, both strategies converge352

within the maximum number of iterations set for TR-SLP, i.e. K = 30.353
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(b) Test Case (Thermally Constrained)
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Figure 2: The relative comparison in iterations for the convergence of TR-SLP under flat

start and DC warm start strategies for various IEEE (118, 300) and Polish (2383, 2746, 3012)

systems.

4.3. Case Study 3: Discussion on Trust-Region Activation354

In this study, we discuss the two main components in TR-SLP, viz the trust-355

region linear program (TR-LP) and feasibility restoration (NLP-FR). Specifi-356

cally, we report the findings about the exact number of occurrences of TR-LP357

and NLP-FR in the execution of TR-SLP. We also study the effects of activation358

of a trust-region band on the execution of TR-SLP. The obtained results are359

reported for both the baseline and thermally constrained cases under the flat360

start strategy.361

It can be seen in Figure 3 that NLP-FR is activated at least once in all362

the test cases, irrespective of the baseline or thermally constrained case. The363

NLP-FR was activated only once in all the test cases, except for the IEEE 118-364

bus system in the thermally constrained case, in which it was activated twice.365

Therefore, in all these cases the TR-SLP convergence is mainly governed by366

the TR-LP component. Furthermore, the relative propagation of the maximum367
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Figure 3: The relative comparison of NLP-FR and TR-LP executions for (a) baseline case

and (b) thermally constrained case under flat start strategy for various IEEE (118, 300) and

Polish (2383, 2746, 3012) systems.

step-size (dk) along with a trust-region band
(
[−∆k,∆k]

)
is illustrated in Figure368

4 for the Polish 2746 and 3012-bus systems. We note that NLP-FR has been first369

executed in the four simulations. Then, the trust-region initially expands due370

to insufficient closeness of the TR-LP to the original NLP. However, as the TR-371

SLP progresses the trust-region becomes smaller, converging to the maximum372

step-size solution within the specified solution tolerance band (εd). Overall,373

from Figure 4 it can be concluded that the trust-region assists convergence of374

the linear approximation neatly to the final solution.375

4.4. Case Study 4: Relative Efficiency with Tightening the Tolerances376

In this study, we further tighten the tolerances in TR-SLP and evaluate its377

impact on the quality of the OPF solution. For brevity, we restrict ourselves to378

the large test cases (Polish 2746, 3012) and TR-SLP is executed under the DC379

24



5 10 15
−2

−1

0

1

Number of Iterations
5 10 15

−2

−1

0

1

Number of Iterations

5 10 15
−2

−1

0

1

2

3

Number of Iterations
5 10 15

−2

−1

0

1

2

3

Number of Iterations

(b) Polish 3012 system

(a) Polish 2746 system

Baseline case

Thermally constrained
case

Thermally constrained
case

Baseline case

Figure 4: The relative propagation for the maximum step-size ‖ dk ‖∞ (solid line), trust-

region band [−∆k,∆k] (dotted ◦ line), and solution tolerance band [−εd, εd] (dotted line)

under flat start strategy for Polish (2746, 3012) systems.

warm start strategy. Initially, the tolerances are set to εd = 0.1, ε = ελ = 0.01380

(column A in Table 4), and are then tightened to εd = 0.01, ε = ελ = 0.001381

(column B in Table 4). The maximum number of iterations K is set to 100 in382

this case study. The results of the two experiments are showcased in Table 4. In383

comparison, the constraints are satisfied more accurately in the second experi-384

ment (as shown in column B) which is expected due to the tolerance tightening.385

However, we observed that this does not benefit the TR-SLP algorithm in a386

significant manner. For instance, the optimality improves only by very small387

amount relative to that of the first experiment (shown in column A); which is388
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less than 0.001% for Polish 2746 and approximately 0.0018% for Polish 3012 test389

systems. On the other hand, the total TR-SLP iterations and the corresponding390

computational time required to reach the desired optimality are increased by391

approximately 2 to 7 times. Therefore, this experiment shows that the original392

tolerances used in TR-SLP are good enough to reach the optimal solution while393

satisfying constraints for the test cases considered in the study.

Table 4: Computational Results with Tightening the Tolerances (εd, ε, ελ) in TR-SLP under

the DC Warm Start Strategy.

Test Performance metrics Tolerance settings

case for TR-SLP A B

Optimality ($/h) 1,208,281 1,208,279

Iterations 13 89

Polish 2746 Computational time (s) 12.85 85.45

Constraint Max 2.07× 10−4 7.46× 10−7

satisfaction∗ Mean 1.99× 10−7 1.09× 10−9

Optimality ($/h) 2,583,008 2,582,962

Iterations 15 35

Polish 3012 Computational time (s) 20.07 51.29

Constraint Max 7.59× 10−5 7.86× 10−7

satisfaction∗ Mean 6.79× 10−8 5.45× 10−10

∗indicates the accuracy up to which constraints (2b)−(2e) are satisfied.

394

In addition, let xA be the solution of the experiment A and xB be the395

solution of the experiment B. Figure 5 depicts the difference (xA − xB) in the396

final solutions of the two test systems in the two experiments. It can be observed397

that active power dispatch, which is related to the objective function, varies less398

than reactive power. Further, the voltage angle variation is also small. This399

may be due to the quasi-linear relationship of active power and voltage angles.400

However, the reactive power dispatch and voltage magnitudes are not included401

in the cost function, but only play a role in constraint satisfaction. Therefore,402
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we can observe slightly more variation in these two variables.
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Figure 5: The difference between the bus voltages, voltage angles, active and reactive power

values of the Polish 2746 system in (a) and Polish 3012 system in (b) under different toler-

ance settings (experiments A and B in Table 4). The vertical axis represents the magnitude

difference (xA − xB) in p.u.

403

5. Conclusions404

We reported the classical AC-OPF formulation and proposed the SLP-based405

approach to solve it. The linear models formulated in the SLP approach are406

valid only at the vicinity of the linearization point. Therefore, a trust-region407

that bounds variations in the decision variables was introduced to tighten the408

SLP approximation. This ensures the convergence of SLP approximation for the409
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OPF problem (referred to as TR-SLP in this work). In addition, we also pro-410

posed the feasibility restoration phase based on the original nonlinear constraints411

to quickly locate a feasible point when the SLP approximation is infeasible. Re-412

sults show that our TR-SLP approach outperforms KNITRO, IPOPT and a413

recently reported SLP method based on penalty reformulations [6] in terms of414

computational time.415

We also used two generic starting point strategies (flat and DC warm start)416

and the OPF results on IEEE and Polish systems demonstrated the capability417

of TR-SLP to locate good local optimal solutions. It was observed, with these418

two starting strategies, in some cases, TR-SLP converges to a better solution419

than KNITRO-MS. It would be interesting to develop and study good starting420

point strategies for TR-SLP in future.421
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