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Abstract

As whole-genome sequencing technologies improve and accurate maps of the
entire genome are assembled, short open-reading frames (sORFs) are garner-
ing interest as functionally important regions that were previously overlooked.
However, there is a paucity of tools available to investigate variants in sORF
regions of the genome. Here we investigate the performance of commonly used
tools for variant calling and variant prioritisation in these regions, and present a
framework for optimising these processes. First, the performance of four widely
used germline variant calling algorithms is systematically compared. Haplo-
type Caller is found to perform best across the whole genome, but FreeBayes
is shown to produce the most accurate variant set in sORF regions. An accu-
rate set of variants is found by taking the intersection of called variants. The
potential deleteriousness of each variant is then predicted using a pathogenicity
scoring algorithm developed here, called sORF-c. This algorithm uses supervised
machine-learning to predict the pathogenicity of each variant, based on a holistic
range of functional, conservation-based and region-based scores defined for each
variant. By training on a dataset of over 130,000 variants, sORF-c outperforms
other comparable pathogenicity scoring algorithms on a test set of variants in
sORF regions of the human genome.
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List of Abbreviations

AUPRC Area under the precision-recall curve

BED Browser Extensible Data

CADD Combined annotation-dependent depletion

DANN Deleterious annotation of genetic variants using neural networks

EPO Enredo, Pecan, Ortheus pipeline

GATK Genome analysis toolkit

GIAB Genome in a bottle

HGMD Human gene mutation database

Indels Insertions and deletions

MS Mass spectrometry

ORF Open reading frame

RF Random Forests

ROC Receiver Operating Characteristics

SEP sORF encoded peptide

sklearn Scikit-learn package

SNVs Single nucleotide variants

sORF Short open-reading frame

TF Transcription factor

TSS Transcription start site

VCF Variant Call Format file
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Introduction

Comprehensive data on the cellular proteome is required to fully understand a cell’s state.
However, the human proteome differs significantly between cell types and even between cells
that possess identical genomes. A major contribution to this tissue and cell-type specific
variability comes from transcription and translation of regions of the genome previously
classified as ‘non-coding’. Most notably, a number of short open-reading frames (sORFs)
and protein-like products from the non-coding regions have recently been identified to be
translated in humans and other model organisms (Prabakaran et al , 2014). sORFs are short
lengths of in-frame codons bordered by a start and stop codon, typically between 2-100
codons in length. Although these sORFs are potentially translatable, they have been some-
what disregarded as non-functional gene regions. This view has been challenged in the last
decade however, first with the identification of sORFs that were transcribed and conserved
between species (Kastenmayer et al , 2006; Hanada et al , 2007), and then more recently
by identifying that many were translated into sORF-encoded peptides (SEPs) (Vanderperre
et al , 2013; Slavoff et al , 2013). Although the number of annotated SEPs remains fairly low,
SEPs have already been linked to a range of cellular functions: from metazoan morphogen-
esis (Hashimoto et al , 2008) to mammalian DNA end-joining (Slavoff et al , 2014), SEPs are
emerging as biologically relevant molecules that should be considered part of the proteome.

sORFs that encode translated peptides had previously evaded detection primarily due
to their small size. Ab initio gene predictors rely upon sequence specific features such as
the Kozak sequence or intrinsic hexamer bias to separate coding from non-coding regions
of the genome (Sleator, 2010), and sORFs are generally too small to be enriched in these
features. Furthermore, gene prediction algorithms are generally not trained on sORF regions,
and many automatically disregard candidate ORFs that are smaller than 100 codons: a
cut-off point shown to be arbitrary (Frith et al , 2006), but nonetheless widely used. Mass
spectrometry (MS) based methods have failed to detect SEPs because of their low abundance
as it is technically challenging to detect peptides of lower abundance and size.

However, as sORFS are becoming recognised as functionally important determinants of
cell state, these technical challenges are being overcome. This is exemplified by tools such as
sORF finder (Hanada et al , 2009), a freely available online tool that can predict the locations
of sORFs with high-coding potential. The advent of ribosome profiling (Ingolia et al , 2009)
represents an important advance, as it provides evidence of mRNA transcripts in complexes
with ribosomes in a translation initiation state. Although additional regulatory steps prevent
all mRNA-ribosome complexes being translated to functional peptides, it is at least a useful
indicator for translation. A comprehensive list of 58,137 non-overlapping sORFs identified
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by ribosome profiling of a human carcinoma cell line has been made freely available online
at sORFs.org (Olexiouk et al , 2016), and other similar data is emerging elsewhere.

Just as technical innovations will likely reveal the prevalence of SEPs in the human
proteome, mutations in sORF regions of the human genome will emerge as important deter-
minants of disease. Indeed, there is already evidence that a set of mutations in the upstream
sORF of the hairless homolog gene (HR) cause translation of a SEP that is associated with
Marie Unna hereditary hypotrichosis (Wen et al , 2009). To identify potentially pathogenic
mutations in a high-throughput manner, two tools are required. First, a variant caller is
needed to identify all sites in the human genome at which mutations have occurred. How-
ever, it is estimated that variants occur for one in every thousand nucleotides in Homo
sapiens, and the vast majority of these mutations are benign. The second tool required to
link identified variants to disease is therefore a pathogenicity prediction tool, which prioritises
variants in terms of their likelihood of being pathogenic.

Variant calling is the process of separating signal from noise in sequencing experiments:
a 50x paired-end whole genome sequence produces roughly 1 billion reads, which contain on
average 3 million variants. This requires algorithms that can accurately and reliably distin-
guish true variants from experimental artifacts and mapping effects. Instrumental to this
process are various quality and context-dependent metrics, which are assigned to each base
during sequencing and subsequent processing. The variant caller must then evaluate the
likelihood that the observed variant represents the true genotype, based on the distribution
of these metrics, using ‘truth’ data such as dbSNP (Sherry et al , 2001) as a reference. Im-
portantly, these pattern recognition techniques must work on diverse regions of the genome,
where significantly different distributions of each metric are observed. For example, vari-
ants within repeat regions have proved particularly challenging to validate (Treangen and
Salzberg, 2011), and bases in these regions will have distinct base quality score distributions
to those in exons. Although germline variant callers are now highly accurate over most
genomic regions, more work is needed to improve their performance in non-coding regions,
which are enriched in repetitive elements. Furthermore, excluding exons there has been lit-
tle effort to systematically compare the performance of these algorithms on specific genomic
features. For example, sORF regions present a particular challenge to variant callers, as a
significant number lie within poorly annotated, highly repetitive regions of the genome.

Having called variants in sORF regions, their functional effect can be predicted. Numer-
ous tools to predict the pathogenicity of variants have already been devised. Historically,
these tools have focused on exonic regions, and have used exon-specific features such as the
folding of the predicted protein to predict pathogenicity (Choi and Chan, 2015). Due to
the lack of functional information, these tools perform particularly poorly on non-coding
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regions of the genome. More recently, some algorithms have been adapted for use on the
whole genome, including non-coding regions, and use more general variant annotations such
as inter-species conservation scores and local chromatin states. The best performing of these
use supervised machine-learning algorithms (Kircher et al , 2014; Quang et al , 2015), where
the classifier learns to make accurate predictions from training data. The performance of
these algorithms depends directly on the training set used, and so far pathogenicity predictors
have only been trained on exon-specific or whole genome data, which generally worsens their
feature-specific performance compared to specialist predictors. No pathogenicity predictors
have yet been optimised for variants in sORF regions.

Here we present the first steps to be taken towards improving the accuracy and reliability
of variant callers and variant prioritisation algorithms for sORFs. The performance of variant
calling pipelines in sORF regions was investigated, and an optimised set of variant calls
in these regions was collected by taking the intersection of variant sets from each caller.
Secondly, a classifier was built that can predict the pathogenicity of known variants in sORF
regions with high accuracy. The classifier uses Random Forests, a supervised machine-
learning algorithm that is well suited to predicting outcomes which lack reliable predictor
variables (Breiman, 2001). It is likely that a number of obscure factors interact to determine
the pathogenicity of a genomic mutation; when there are no obvious rules to predict an
outcome, Random Forests instead combines a large number of ‘weak’ rules, and achieves
accuracy by a strength-in-numbers approach. By training on a holistic range of sORF specific
features, and using a machine-learning algorithm that is known to perform well on datasets
with large feature sets, a pathogenicity classifier is produced that has better precision and
sensitivity than other whole-genome pathogenicity predicting tools.
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Results

Calling variants in the NA12878 whole genome

Before investigating pathogenicity scoring algorithms in sORF regions of the genome, an
accurate list of mutations in these regions is required. The performance of commonly used
germline variant calling pipelines was therefore evaluated, by comparing the resulting Variant
Call Format files (VCF) to a VCF file containing high-confidence variant calls. In 2014, the
Genome in a Bottle consortium (GIAB) published a set of high-confidence variant calls for
the NA12878 individual (Zook et al , 2014) which was obtained by integrating datasets from a
variety of read-mapping and variant calling algorithms, then manually arbitrating discordant
data. This VCF is widely used to benchmark variant calling pipelines, as it is currently the
only ‘gold-standard’ set of variant calls freely available.

The NA12878 genome reads were obtained in FastQ format, from an Illumina paired-end
sequencing experiment at 50x depth. Variant calling pipelines were first evaluated on the
whole genome, excluding the highly repetitive regions for which Zook et al (2014) could
not produce high-confidence calls (approximately 13.4% of the genome). Through aligning,
processing, then variant calling with four different variant callers, four VCFs were produced
which could be benchmarked against the high-confidence GIAB VCF. The sequence of steps
that were performed is illustrated in Figure 1.

Figure 1: The variant calling pipeline used to call variants in the NA12878
genome
The same aligned, base-recalibrated reads file was tested on all four variant calling
algorithms, to produce four distinct lists of variants in the NA12878 genome. The
individual steps taken are described in detail in Materials and Methods.
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The resulting VCFs from each variant caller were compared to the gold standard GIAB
VCF using Real Time Genomics’ vcfeval tool (Cleary et al , 2015). This tool provides a more
sophisticated way to compare the calls in two VCF files than previously existed. The naive
way of simply checking if the same variant type is present at the same genomic location in
each VCF does not account for the problem that there are multiple ways of representing
the same variant; one multinucleotide polymorphism in the first VCF may be called as
several single nucleotide polymorphisms in the second. Briefly, the vcfeval algorithm takes
the call from each VCF at a given genomic coordinate, and reconstructs the transition to
the reference genome. The reconstruction that maximises true positives and minimises false
positives and false negatives is the one chosen. This global optimisation is now accepted as
the optimal means of comparing variants, despite the disadvantage that indels and SNVs
cannot be considered separately.

The standard method of comparing called variants to a truth dataset is to generate Re-
ceiver Operating Characteristic (ROC) curves. However, on imbalanced datasets ROC curves
are less informative than precision-recall curves (Saito and Rehmsmeier, 2015). Precision-
recall curves show how precision varies with sensitivity (also known as recall), where precision
and sensitivity/recall are defined as:

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

where TP is the number of true positives, FP the number of false positives, and FN

the number of false negatives. The harmonic mean of precision and sensitivity, F1, gives a
useful measure of overall accuracy, and is defined as:

F1 = 2× Precision× Recall

Precision + Recall

The curves are obtained by iteratively increasing the threshold at which data is classified
into one of two bins, then calculating the precision and sensitivity at each step. To create
precision-recall curves for sets of variant calls, the threshold used was the Phred-scaled quality
score of each variant, which is generated for each call by the variant caller; this threshold was
iteratively increased over the entire range of values in the dataset, and at each iteration all
variants with a quality score above the threshold were called, while all those with a quality
score below were discarded.

The optimal means of evaluating variant calls in a VCF file is to plot these precision-recall
curves, and compare the area under the precision-recall curve (AUPRC) between variant
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callers, as suggested by Hwang et al (Hwang et al , 2015). The maximum F-measure (F1

score) can be interpreted as the maximum weighted average of precision and sensitivity, and
was therefore used here as an additional metric to assess classifier performance. Precision-
recall curves for each variant caller are presented in Figure 2, and the corresponding AUPRC
and the maximum F-measure are shown in Table 1.

Figure 2: Precision-recall curves facilitate comparison of each variant calling
algorithm over the complete range of precision and sensitivity values
The precision-recall curves for the resultant VCFs of each variant calling algorithm were
generated using vcfeval, which compared each to the GIAB gold standard VCF. To make
the differences in each variant caller’s precision and sensitivity values easily visible, their
values over only a small subset of the graph are shown. This was the only region of the
graph that differed between variant callers.

Table 1: The area under the precision-recall curve and the maximum F-measure
for each variant caller

Unified Genotyper Haplotype Caller Platypus FreeBayes

AUPRC 0.985 0.995 0.953 0.989

Max F1 0.991 0.996 0.976 0.991

These four variant callers demonstrate similarly high precision and sensitivity, and com-
parable AUPRC and F-measures. The small variations seen are relevant nonetheless; con-
sidering approximately four million variants are called in each VCF, the difference of one
percentage point could mean losing up to 40,000 variants. Haplotype Caller demonstrates the
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highest AUPRC and F-measure, and the two scores correlate well as performance metrics.

Calling variants in short open-reading frames

In order to investigate tool performance in sORF regions, a comprehensive list of human
sORFs was needed. The full set of sORFs identified by ribosome profiling of human carcinoma
cell line HCT116 was therefore downloaded from sORFs.org (Olexiouk et al , 2016). In
total, 58,137 non-overlapping sORFs were downloaded, and their relative distribution across
different regions of the genome can be seen in Figure 3.

Figure 3: The fraction of sORFs in each genomic region
Exonic regions are defined as regions between a transcription start and stop site which are
known to be translated. The UTR regions are counted together here, and are defined as
the untranslated gene regions upstream of the first exon or downstream of the last.
Intronic regions are the regions bounded by a transcription start and stop site that are
spliced out of the mRNA transcript. Intergenic regions consist of all DNA between known
coding genes. There are 58,137 non-overlapping sORFs in this dataset.

The performance of each variant caller was then compared within these sORF regions,
by specifying the regions of interest over which vcfeval should compare calls to the truth
dataset. Precision-recall curves were used again to compare variant caller performance in
these sORF regions (Figure 4).

Here, precision and sensitivity is compared over all sORF regions, some of which overlap
the repeat regions that were excluded in the previous genome wide comparison. An important
contributing factor to the low precision of all VCFs is therefore the poor coverage of repeat
regions in the GIAB gold-standard VCF. Indeed, 5.0% of sORF regions used here were not
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Figure 4: A comparison of each variant caller’s precision and sensitivity values
in sORF regions
All variant callers demonstrate greatly reduced precision in variants called, due to the
presence of many more false positives (variants that are present in the call set but not in
the GIAB truth VCF). Again, only the region of the graph where the variant caller’s
precision and recall values differ are shown.

Table 2: A comparison of AUPRC and F-measure for each set of variants in
sORF regions

Unified Genotyper Haplotype Caller Platypus FreeBayes

AUPRC 0.702 0.714 0.720 0.739

Max F1 0.817 0.828 0.836 0.837

in the GIAB high-confidence call regions. Because the truth dataset lacks full coverage in
these regions, many variants called as false positives here may in fact be true variants that
are not present in the GIAB ’truth’ variant set. This is a confounding factor when evaluating
the performance of variant callers in sORF regions.

It is notable nonetheless that Haplotype Caller performs worse than Platypus and Free-
Bayes variant callers here; this may be because Haplotype Caller deals less well with the
newly-introduced repeat regions. In an effort to improve this precision, the intersection of
the four sORF specific variant sets was taken. The resulting variant set contained 197,126
variants, compared to the average of 214,535 in the original variant sets. Removing the
17,409 variants (8.1%) that were only called by a subset of the variant calling algorithms
improved the precision of the call set, at the expense of slightly reduced sensitivity: the
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maximum F-measure increased to 0.842, but the AUPRC remained low at 0.718. By ex-
tensive processing and score recalibration pre- and post-variant calling, and then taking the
intersection of the variant sets and thus removing 8.1% of the more dubious variants, a set
of sORF-specific variants were obtained, whose accuracy is now only limited by the absence
of a high-confidence callset for the entire genome.

Variant prioritisation

Having collected an accurate list of variants, a classifier was developed to prioritise these vari-
ants by their predicted deleteriousness. To train the classifier, ‘truth’ datasets (where the
pathogenicity of a variant is known, or at least asserted to a sufficient confidence level) were
obtained from three distinct sources. Pathogenic mutations were obtained from the Human
Gene Mutation Database (HGMD) (Stenson et al , 2014), which contains a list of inherited
mutations that have been identified as pathogenic in peer-reviewed literature. Only the
25,013 variants from HGMD contained within the sORF regions (as identified previously)
were used. The ClinVar database aggregates variants submitted manually from research
groups globally, each with a phenotypic interpretation, and a manually curated clinical sig-
nificance score. The database was filtered to only include variants contained within sORF
regions and classified as ‘benign’ or ‘pathogenic’, resulting in 4,985 pathogenic variants, and
1,960 benign variants being taken from ClinVar.

A third dataset of exclusively benign variants was downloaded from (http://krishna.
gs.washington.edu/members/mkircher/download/CADD/v1.3/training_data) with the
kind permission from Dr. Martin Kircher. This dataset contains benign variants inferred by
identifying differences between the current human reference genome (hg19) and the inferred
human-chimp ancestral genome, as identified in the Ensembl EPO 6-way Primate alignment.
Variations in the current reference genome compared to our ancestral genome can be assumed
to be benign because they have not undergone negative selection since humans evolved from
the last human-chimp common ancestor. The subset of these variants that are present in
sORF regions was taken, from which 100,000 were randomly sampled for the truth dataset.

Each variant in these datasets of known pathogenic and benign mutations was then
annotated with a variety of scores using Annovar (Wang et al , 2010). This takes variant
annotations from online datasets, and applies them in a base-specific manner. These were
primarily conservation-based (such as PhastCons and PhyloP), functional-effect predictions
(such as GWAVA and GERP++) and region-based scores, such as chromatin modifications
or transcription factor binding. The full list of annotations, and the protocol followed within
Annovar can be found in Materials and Methods. Importantly, a ‘pathogenic’ mutation here
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is defined rather loosely as any variant that is causally linked to a disease. The presence of
that mutation alone may not be the sole cause of the associated disease, but the presence of
the pathogenic mutation will increase the likelihood of the disease occurring. This definition
reflects the classification criteria used to submit variants to the HGMD and ClinVar truth
datasets, so unfortunately a more precise definition cannot be used.

The Random Forests supervised learning algorithm was used to build a classifier that is
optimised for variants in sORF regions. This algorithm learns a set of rules with which to
predict a specified outcome variable, by training on a truth dataset for which the outcome
variable is known. High predictive accuracy is obtained by pooling the votes of multiple
decision trees formed on random subsamples of the data. Random Forests (RF) was used as
it is relatively robust to overfitting, and is well suited to ‘small n, large p’ problems, where
the number of parameters (p) is relatively high compared to the sample size (n).

The truth dataset was randomly partitioned into training data (75%) and test data
(25%), and the classifier used the training data to learn a set of rules that could be used to
predict pathogenicity. These rules were then applied to the remaining 25% test data, and
each variant was classed as pathogenic or benign. After optimising the tuning parameters
(see Table 6 Materials and Methods), this algorithm correctly classified 99.47% of variants
held out in the test set.

An RF regression model was also tested, which used identical training data and param-
eter tunings; the only difference being the outcome was predicted as a continuous value
between zero and one, where a higher value represents increased likelihood of the variant be-
ing pathogenic. This facilitated the use of precision-recall curves to more accurately compare
this model to other pathogenicity scorers, as these other scorers also output continuous scores
that represent the likelihood of being pathogenic. The pathogenicity scoring tool developed
here (sORF-c) was compared to the pathogenicity predicting algorithms that currently per-
form best across the whole genome, including in non-coding regions: CADD (Kircher et al ,
2014), DANN (Quang et al , 2015) and FATHMM (Shihab et al , 2015). The precision-recall
curve, AUPRC and F-measure of sORF-c compared to the other scorers is shown in Figure
5 and Table 3.
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Figure 5: A precision-recall curve comparing the performance of the best
currently existing whole-genome pathogenicity scorers to sORF-c
On the test dataset, sORF-c achieves higher precision than other pathogenicity scorers, at
higher corresponding sensitivity values. Precision-recall curves were generated for each by
iterating through the range of pathogenicity scores output by the scorer, and using each
iteration as the threshold above which variants are classed as pathogenic. Precision and
sensitivity at each threshold value can thus be calculated.

Table 3: A comparison of AUPRC and F-measure for each pathogenicity scoring
algorithm

sORF-c DANN FATHMM CADD

AUPRC 0.995 0.952 0.944 0.962

Max F1 0.977 0.926 0.896 0.930
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As demonstrated here, sORF-c outperforms the other available options when calling
variants in sORF regions from the test set, demonstrating a higher AUPRC and F-measure.
This distinction between the scoring algorithms is clearer when comparing precision with a
fixed sensitivity. For example, to obtain a sensitivity of 98%, 98% of all pathogenic variants
must be identified. All classifiers can obtain this sensitivity (for example by simply calling
all variants pathogenic), but at variable reductions in precision, as more false negatives are
introduced. The precision of each classifier at a fixed sensitivity of 98% is compared in Figure
6. Evidently, sORF-c demonstrates greater precision with this constraint, meaning far fewer
false positives must be called in order to capture 98% of the true pathogenic variants.

Figure 6: The precision of each scoring algorithm when sensitivity is fixed at
exactly 98%
Precision values (as a fraction): DANN = 0.407; CADD = 0.478; FATHMM = 0.708;
sORF-c = 0.973

Given this truth dataset, it was also possible to calculate the optimal threshold score
above which variants should be classed as pathogenic. This was done for each pathogenicity
scoring algorithm, by identifying the threshold that results in the largest F-measure (Table
4).

Table 4: The threshold value that results in the highest F-measure for each
pathogenicity scoring algorithm compared here

Classifier sORF-c FATHMM CADD DANN

Threshold 0.565 0.892 14.972 0.925
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Validating the sORF classifier on new data

To investigate the general utility of sORF-c, its performance on new datasets was tested.
Unfortunately, this important step was limited by the paucity of manually curated databases
with proven pathogenicity classifications. Nevertheless, three further tests were performed.

Firstly, the benign and pathogenic variants from ClinVar were excluded from the training
set, and then the trained classifier was used to predict the pathogenicity of each of the
excluded variants. This resulted in an error rate of 24% (where error rate is defined as the sum
of false positives and false negatives, divided by the total number of calls), suggesting that
the ClinVar database provides crucial training data to the model. Secondly, the pathogenicity
of the 453 variants within ClinVar classified as ‘probably pathogenic’ and ‘probably benign’
was predicted with the classifier. These variants were classified with a modest error rate of
11%.

In an attempt to identify reasons for the contrasting performance of sORF-c on the
training data versus new probable variants in the ClinVar database, the distribution of
feature scores in the training datasets was compared. The score distribution of many of the
features differed substantially between the two distinct sources of benign variants, whereas
they were largely similar for the two pathogenic datasets (data not shown). These underlying
differences between benign variants inferred by aligning to the ancestral genome and those
reported clinically in ClinVar could be the cause of the sub-optimal predictive performance
of sORF-c, when tested on new data from ClinVar. However, it should be noted that these
variants were classified as ‘probably’ pathogenic or benign, so this extra degree of uncertainty
in their classification may be a confounding factor here.

Finally, the pathogenicity of the intersection of variants called in the NA12878 genome
were classified. The classifier predicted 195,090 benign variants, and 2036 pathogenic vari-
ants. Although there is no way of validating this prediction, it seems a reasonable estimate;
the vast majority of genomic variants are benign, and moreover the NA12878 female has
no known diseases. Of the called variants classified as pathogenic, 78 were already in the
HGMD database, and 17 were in the ClinVar database classified as pathogenic.

Variable importance in the Random Forests regression model

In order to understand the contribution that each feature makes in the RF decision model,
variable importances were calculated (Figure 7). The Python SciKit-learn package used here
(see Materials and Methods) calculates feature importance using the Gini importance score,
which is formally defined in (Louppe et al , 2013), but can be interpreted as the relative
(standardised) importance of each feature in the model.
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Figure 7: The relative importance of features in the RF regression model
The nine features with the highest importance scores are shown here. All values are
standardised by expressing as a ratio of the total Gini importance. Table 5 in Materials
and Methods contains more details on each feature.

The gradual decrease in importance of each feature shown in Figure 7 continues with the
same trend for the rest of the features in the dataset, demonstrating that no single feature
dominates the decision making process. Instead, a holistic range of functional, region-based
and conservation-based features are taken into account in this model.
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Discussion

Our ability to collect genomic data has now exceeded our ability to interpret this data. As
whole genome sequencing becomes quick and cheap enough to be adopted for use in non-
specialist research laboratories worldwide, there is a need to develop tools that can provide
useful insights from the unprecedented data that will be generated. Even while this work was
being completed, the coordinates of a great many more potentially translated sORFs were
made available on sORFS.org, following the completion of ribosome profiling experiments
on various other human cell lines. This project demonstrates a workflow that could be
implemented to quickly gain useful information on variants in sORF regions, or other non-
coding regions of interest. It also highlights some of the limitations of currently available
tools.

The performance of commonly used variant callers is highly dependent upon the genomic
region, as demonstrated by the comparison presented here. Haplotype Caller calls variants
most accurately across the whole genome, which agrees well with a previous systematic com-
parison of variant callers in exon-specific regions (Hwang et al , 2015). However, FreeBayes
outperforms Haplotype Caller when deployed on sORFs. This may be because FreeBayes
calls variants more accurately in the intergenic regions, which contain a higher density of
problematic repeats. The large decrease in precision for each set of variants called in sORF
regions is also partially due to the poor coverage of the truth VCF in repeat regions. Prob-
lematically, the GIAB VCF is the primary truth dataset used by the genomics community
as a reference. This highlights the need for new consensus data with improved coverage in
non-coding regions, which could be used to optimise new variant callers for these unexplored
genomic regions.

By taking the intersection of variants identified by these variant callers, mutations that
were not present in the truth VCF were likely identified, while false positives were minimised.
Taking the intersection of variant calls represents a potentially useful step for future studies
that require a high-precision list of variant calls, because variant calling algorithms cannot
yet provide this within all non-coding regions. As regions of the human genome previously
dismissed as non-coding continue to emerge as functionally important elements, these find-
ings also demonstrate the importance of extending the coverage of high-performing variant
calling algorithms to the non-coding regions.

Despite the high precision and sensitivity of the pathogenicity predicting algorithm
demonstrated here, sORF-c requires significant improvements before it is useful to the ge-
nomics community. First and foremost, the classifier is likely overfitting the dataset, despite
parameter optimisations to minimise this. sORF-c is highly accurate when predicting the
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pathogenicity of variants with the same distribution of metrics as the training data, but could
likely perform less significantly on new clinical data obtained. Indeed, the demonstrated er-
ror rate of 11% on variants classified as ‘probably’ benign or pathogenic corroborates this;
although this error rate may also have been affected by the misclassification of some variants
with these classifications.

Obtaining a dataset of variants with sufficient depth to train a machine-learning algorithm
proved challenging; the large list of benign variants taken from aligning the current reference
genome to the inferred ancestral genome represented the best available dataset. Nonetheless,
using this as the source of the majority of benign variants has likely biased the rules the
classifier has learnt to differentiate pathogenic variants from benign. This ascertainment
bias is most likely the cause of the reduced accuracy of sORF-c on variants obtained by
more conventional means, such as manually curated databases like ClinVar. This hypothesis
is supported by the substantially different distribution of feature scores observed between
the two datasets of benign variants. Clinically evaluated databases of benign variants will
instead be sought for future improvements to sORF-c.

Additionally, whilst the classifier presented here is termed a pathogenicity predictor,
variants classified as pathogenic should not be construed as certainly causing the associated
disease if present. Instead, the classifier should be interpreted as a variant prioritisation
algorithm, whereby all identified variants are scored, and those with a higher score should
be prioritised for investigation, as they are more likely to be causally linked to disease. An
important next step for this project is therefore to calibrate the classifier with a larger number
of known disease-causing variants, in order to identify precise thresholds in the scoring system
that can more accurately describe the degree of prioritisation required. Nonetheless, by
demonstrating that it is possible to train a classifier to detect sORF specific features, and
that these features provide useful information for differentiating between pathogenic and
benign variants, this project acts as a proof of concept for future progress in decoding the
non-coding regions of the human genome.
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Materials and Methods

All databases and analyses performed used the GRCh37/hg19 assembly of the reference
genome, which was completed in 2009.

Data processing in the variant calling pipeline

Reads for the NA12878 genome were obtained from the Precision FDA website (https://
precision.fda.gov/challenges/truth), and were produced by 50x paired-end sequencing
on an Illumina HiSeq 2500 sequencer. The read length is approximately 148bp, and the insert
size is approximately 550bp. The set of gold-standard variant calls, along with the BED file
containing the coordinates of high-confidence regions, was downloaded from the Precision
FDA website, but is also freely available elsewhere online (see (Zook et al , 2016)).

All variant calling tools were run on the Seven Bridges Genomics platform (https://
www.sbgenomics.com/). Although some GATK tools were already present on this platform,
the majority had to be created using a Docker image. The scripts for these were created
locally, then uploaded on to the platform for use; they are now freely available to all platform
users. The bash scripts that create Docker images of these tools can be found on GitHub
account (www.github.com/fojackson8).

Raw sequence reads were first aligned to the reference genome (hg19) using the Burrows-
Wheeler alignment algorithm (Li and Durbin, 2009). Because all popular read mapping
algorithms operate on each read independently, it is impossible to globally minimise mis-
matches across all reads on the first pass. The indel realigner performs local realignment on
small, potentially misaligned regions that occur as a result of an undetected indel.

The variant calling algorithms all assess the probability of a particular read signal being
a true variant based on various base quality and context-specific metrics. However, these
metrics are affected by artifacts from the sequencing experiment. For example, the PCR
amplification step of the sequencing experiment results in allele amplification; if undetected,
this can be mistakenly interpreted as multiple alleles with the same genotype, thus validating
that genotype. It is therefore necessary to mark these duplicates, so they are not mistaken
during subsequent variant calling. Variant calling al gorithms also rely on individual base
quality scores, which are assigned during sequencing, and convey the likelihood of each call
being correct. However, these quality scores co-vary significantly with sequencing method,
and even between cycles of the same sequencing experiment, so must be recalibrated with
the GATK Base Recalibration tool. This algorithm analyses the covariation between base
quality scores and base context of known variants, and will recalibrate base quality scores
based on this covariance.
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The processing tools used were all taken from Picard tools or the Genome Analysis
ToolKit (GATK), which were developed at the Broad Institute; tool documentation and
guidelines can be found online at (https://software.broadinstitute.org/gatk/) and in the
following paper (DePristo et al , 2011).

Calling variants

Four variant calling algorithms were then tested on the same realigned, recalibrated BAM
file. Haplotype caller and Unified Genotyper are both part of the Broad’s GATK, but use
different read parsing and decision-making algorithms. Unified Genotyper is a naive Bayesian
genotyper, which evaluates the posterior probability of the genotype at each locus based on
the pileup of bases at that position and their associated quality scores. The likelihood, L, of
a particular genotype, G, is calculated as follows:

L(G|D) = P (G)× P (D|G)

where G is the genotype corresponding to that variant and D is the data observed, which
in this case is a set of base-specific quality metrics.

By contrast, Haplotype Caller performs local de novo assembly of haplotypes in variant-
containing regions. This algorithm first identifies regions within aligned reads likely to
contain variants, then reassembles these regions using a De Bruijn-like graph. Each haplotype
is then realigned to the reference genome, and the likelihood of each genotype is calculated
using Bayes’ rule as above. This local reassembly step improves Haplotype Caller’s accuracy
of calling indels, and generally it is reported to be a more accurate variant caller. Both were
included to verify this finding on this dataset. Both Unified Genotyper and Haplotype Caller
are fairly aggressive callers, causing the resulting VCF to be enriched in false positives. This
is because the best-practices pipeline involves a post-call variant quality score recalibration
step, in which the majority of these false positives are removed using a Gaussian-mixture
model trained on truth data such as HapMap, with pre-calculated quality metrics.

Platypus and FreeBayes do not require similar post-call variant recalibration. FreeBayes
applies a similar Bayesian, haplotype approach to calling variants, but with adjustments
to facilitate consideration of non-uniform copy numbers and multiallelism at each locus
(Garrison and Marth, 2012). A single hard filter was applied to FreeBayes calls to reduce
the number of false positive calls: all variants with a Phred-scaled quality score of less
than five were filtered out. Platypus is a more recent variant calling algorithm designed to
achieve similar performance to other variant callers with a less computationally demanding
and therefore quicker method. Platypus does not map individual haplotypes to the reference
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genome, but instead performs reference-free sequence assembly, building de Bruijn graphs
and searching them for polymorphisms (Rimmer et al , 2014).

The intersection of called variant sets was taken by first converting all variants into their
primitive representation, using vcfallelicprimitives from the vcflib package. The intersection
was then taken using vcfintersect, again from vcflib (https://github.com/vcflib/vcflib).

Collecting and annotating known variants

Benign variants identified by aligning to the EPO 6-way primate alignment were downloaded
with permission from Martin Kircher; for full details of how this dataset was constructed
see Supplementary Material of (Kircher et al , 2014). The full HGMD database was kindly
shared by Dr. David Cooper’s team at the Cardiff University; and the complete ClinVar
database (clinvar_20170130) was downloaded from the publicly available ftp site. Figure 8
shows how the variants in each database were distributed across the genome. The subset of
variants in sORF regions were found using tabix on bash, and each dataset was individually
partitioned into training and test data (before combining), to ensure a similar proportion of
pathogenic variants was present in both training and test sets.

Figure 8: The distribution across the genome of variants from each dataset
Variants from the different benign and pathogenic databases differed significantly in their
distribution across the genome. Each region is defined as in Figure 3.
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All variants were then annotated using the annotate_variants.pl script within the An-
novar tool (https://github.com/WGLab/doc-ANNOVAR/), which was installed on the Cam-
bridge University Darwin Cluster. Annotations were downloaded using the Annovar down-
load database command, and more information on each annotation used can be found
at (http://annovar.openbioinformatics.org/en/latest/user-guide/download). Ad-
ditional annotations were also taken from the CADD online scoring tool, which can be found
at (http://cadd.gs.washington.edu/score). A complete list of annotations used is pre-
sented in Table 5.

Table 5: The list of annotations that were used as features within sORF-c

Conservation-
based

annotations

PhastCons 46-way score; PhastCons 100-way score; PhastCons
primates; PhastCons mammals; PhyloP vertebrates; PhyloP primates;
PhyloP mammals; GERP++ neutral evolution score; GERP++
rejected substitution score; GERP++ rejected substitution p-value;
GERP element p-value; bStatistic; Conserved TF binding sites; SiPhy
29-way log odds

Functional
annotations

GWAVA region score; GWAVA TSS score; Is transversion; Amino acid
change; Fitness Consequence score; SIFT score and category; Polyphen
score and category; Grantham score; Segway; MutationTaster score;
LRT score; PROVEAN score; MutationAssessor score; MetaLR score;
MetaSVM score

Region-
based

annotations

Max H3K27 acetylation level; Max H3K27 methylation level; Max
H3K27 trimethylation level; Max expression value; Peak signal and
p-value of Dnase evidence for open chromatin; Peak signal and p-value
of Faire evidence for open chromatin; Peak signal and p-value of Pol II
evidence for open chromatin; Peak signal and p-value of CTCF
evidence for open chromatin; Peak signal and p-value of Myc evidence
for open chromatin; Max nucleosome track score; Number of TF
binding sites; Distance to TSS; Distance to nearest exon; Relative
position in transcript; Open chromatin code; Percent GC in 150bp
region; Distance to splice site; Nature of splice site
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Handling missing values

Numerous variants in the training and test datasets had missing values for a subset of all
feature scores. These missing values were all set to zero, because removing every variant
that had a single missing annotation would have resulted in a severely depleted training set.
Moreover, many of the annotations should only be present on a subset of the variants: for
example, SIFT and Polyphen scorers both predict the effect of a variant on the resulting
protein structure; the many variants outside of exonic regions should therefore have no score
here. Assigning these missing values to zero represents an easily reproducible step that still
allows useful information to be extracted at these positions.

Parameter tuning for the Random Forests classifier

The RF model was implemented in Python 3, using the SciKit-learn (sklearn) package
(http://scikit-learn.org/stable/). Although the RF classifier requires relatively little pa-
rameter tuning compared to other supervised machine-learning algorithms, parameters still
need to be optimised to find the best compromise that maximises accuracy and minimises
overfitting. A grid search over parameter space with cross-validation was performed using
sklearn’s GridSearchCV. The grid search algorithm performed an exhaustive search within a
stipulated range for each parameter listed in Table 6, using k-fold cross validation to evaluate
performance at each step. The number of decision trees used in this forest was not optimised
using a grid search; the value of this parameter largely depends on the desired trade-off be-
tween accuracy and computation time. Instead, the number of trees was increased until error
rate stabilised (at which point further increases did not improve classification accuracy). 200
decision trees proved sufficient.
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Table 6: The Random Forests tuning parameters that were optimised using
Scikit learn’s GridSearchCV algorithm

Parameter Range
evaluated

Explanation Optimal
value

Max features 2-15 The maximum number of features to
consider for each decision tree

10

Min samples
per split

2-10 The minimum number of samples that
each split of a node should possess

2

Min samples
per leaf

1-20 The minimum number of samples
required at each leaf. The smaller the
number, the more prone each decision

tree is to pick up noise.

3

Bootstrap True or False Whether to use bootstrap sampling of
data when building decision trees

False

Evaluation
criterion

Gini Impurity
or Entropy

The function used to measure the
quality of a split

Gini Impurity

Max depth 3-None The maximum depth of the tree. If
none then each node will be expanded
until all leaves contain less than min

samples per split

None
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