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ABSTRACT
Communication theoretical understanding of healthy and diseased
connections in the spinal cord motor system is crucial for realizing
future information and communication technology (ICT) based
diagnosis and treatment techniques for spinal cord injuries (SCI).
A spinal cord motor nucleus associated with a particular muscle
constitutes an ideal candidate for studying to have an understand-
ing of SCI. Typical spinal cord motor nucleus system contains pool
of lower motor neurons (MNs) controlling a muscle by integrating
synaptic inputs from spinal interneurons (INs), upper motor neu-
rons (DNs) and sensory neurons (SNs). In this study, we consider
this system from ICT perspective. Our aim is to quantify the rate of
information flow across a spinal cord motor nucleus. To this end, we
model an equivalent single-hop multiterminal network, where mul-
tiple transmitting nodes representing heterogeneous population
of DNs, INs and SNs send information to multiple receiving nodes
corresponding to MNs. To identify the outputs at receiving nodes,
we define corresponding neurospike communication channel and
then find the bound on total rates across this network. Based on
the network model, we analyze achievable rates for a particular
motor nucleus system called Tibialis Anterior (TA) motor nucleus
in the spinal cord numerically and simulate several spinal cord
dysfunction scenarios. The numerical results reveal that decrease
in the maximum total rates with the lower motor neuron injury
causes weakness in the affected muscle.
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Figure 1: Spinal cord motor nucleus system
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1 INTRODUCTION
Advancements in nanotechnology have enabled the deployment
of nanonetworks comprising of nanomachines with biologically
inspired capabilities inside human body. In this respect, Internet of
Bio-Nano Things (IoBNT) framework was proposed [2, 3] as the
basis for future applications including ICT-based diagnosis tools
and treatment techniques for SCI. Deployment of replacement-
nanomachines as an ICT-based solution to SCI requires understand-
ing of healthy and interrupted neural connections from ICT per-
spective. To this end, extensive research effort has focused on the
modeling and analysis of neuro-spike communication [6, 17, 19, 28–
31] and other physical and conceptual communication models for
neural communication [1, 7, 9, 35, 37].

Specifically, brain and neurons of spinal cord have been modeled
as cloud and fog nodes based on the analogy between cloud and fog
networking architecture in [7]. In [35], to recover communication
failures through spinal cord sensory pathways, replacement neural
network using time division multiple access has been proposed.
However, a realistic communication network model for spinal cord
system taking physiological characteristics of neurons into account
is not considered in the literature to our knowledge.
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Spinal cord system comprises of complex networks including
motor circuits, which involve in execution of motor actions such
as locomotion and postural control by integrating inputs from pe-
riphery neurons and brain. Spinal motoneurons, MNs, are the final
common pathway where whole information is resolved. Spinal cord
motor system consists of several motor nuclei each of which having
group of MNs controlling a particular muscle group [10]. When
the communication fails through a particular motor nucleus, its ef-
fects can be monitored directly on the corresponding muscle. Main
synaptic inputs to a typical motor nucleus system are conveyed
from the periphery via SNs, from the brain via DNs as illustrated
in Fig. 1. Moreover, INs relay inputs from the spinal cord to MNs.

In this paper, our aim is to quantify the bound on the information
flow across a spinal cord motor nucleus system. To this aim, we
model equivalent neuro-spike communication network to a motor
nucleus system as a single-hopmulti terminal network consisting of
multiple transmitting and receiving nodes corresponding to presy-
naptic and postsynaptic neurons, respectively. The inputs to the
equivalent channel are spike trains transmitted by the transmitting
nodes and the outputs are spike trains generated at the receiving
nodes. Utilizing the neuro-spike communication model describing
vesicle release from presynaptic neuron, post-synaptic filtering and
postsynaptic spike generation, we find the output at each receiving
node. Using this, we derive a bound on the total achievable rate
across the network. Based on the neuron quantities in the spinal
cord TAmotor nucleus as shown in Table 1 and realistic biophysical
channel parameters for each class of neurons in the system, we
analyze effects of different class of presynaptic and postsynaptic
neurons on the total maximum achievable rates.

The main motivation behind this study is finding relationship
between the information theoretical metrics and several spinal cord
dysfunctions. Hence, we simulate several spinal cord diseases by
changing the number of receiving and transmitting nodes. Then, we
find relations between information theoretical metrics and spinal
cord dysfunctions. The results reveal that when part of MNs is
injured, decreasing total maximum rate results in weakness in the
muscle. These results may help in designing ICT-based diagnosis
and treatment techniques. To our knowledge, this is the first work
studying a spinal cord system from neuro-spike communication
perspective.

The rest of the paper is organized as follows. Section 2 describes
the equivalent network model for spinal cord motor nucleus. In
Section 3, bound on the total rate across the network is formulated.
In Section 4, numerical results are discussed. Finally, conclusions
are stated in Section 5.

2 NEURO-SPIKE COMMUNICATION
NETWORK MODEL OF THE MOTOR
NUCLEUS SYSTEM

We consider a single-hop multi-terminal neuro-spike communica-
tion network whereM transmitting nodes want to send informa-
tion to K receiving nodes. Thus, transmitting nodes only transmit,
whereas receiving nodes only receive. Transmitting nodes represent
heterogeneous population of presynaptic SNs, INs, DNs. Receiving
nodes correspond to postsynaptic MNs.

Table 1: Types of Excitatory (Ex) and Inhibitory (Inh) Neu-
rons (TA motor nucleus) [10]

Class of Neuron Ex/Inh Quantity
SN (Ia afferent) Ex 280
IN (Ib interneuron) Inh 350
IN (Ia interneuron) Inh 350
MN (S, FF, FR ) - 350

Transmitted input spike train to the channel, Si , is associated
with transmitting node i , where i ∈ M = {1, 2, ..,M}. We assume
that inputs to the channel are independent. The spike train out-
put of the channel Yj is associated with receiving node j, where
j ∈ K = {1, 2, ..,K}. Transmitting node i sends information to re-
ceiving node j at rate Ri j . The channel is memoryless with the chan-
nel transition function P(YK |SM ) = P(Y1,Y2, ...,YK |S1, S2, ..., SM ).
The channel considered is illustrated in Fig. 2. Possible links in the
network are {SN→MN, IN→MN, DN→MN}. Each class of link is
under a connectivity probability. pSM,pIM and pDM denote connec-
tivity probabilities for {SN→MN, IN→MN, DN→MN}, respectively.
The connectivity matrix, X = [Xi , j ] contains connectivity state of
each class of links. Accordingly, Xi , j takes value of 1 if the synaptic
connection exists and takes 0 otherwise for each i ∈ M and j ∈ K .
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Figure 2: Considered one-hop multi-terminal network con-
sisting of transmitting (left) and receiving nodes (right)

In order to derive the outputs accessed by the receiving nodes,
we first need to define inputs to the channel given in Fig. 2 and then
describe the channel model. Inputs and outputs of the channel are
utilized in finding the bound on the total rate of information flow
across the network. For point-to-point links in the network, we use
existing neuro-spike channel blocks in the literature [6, 17, 19, 28–
31] that are applicable to the spinal cord synapses.

Neuro-spike communication channels comprise of cascade stages,
namely, axonal transmission, vesicle release, postsynaptic filtering
and spike generation at the post-synaptic neuron. Presynaptic ter-
minal refers to the part of presynaptic neuron where vesicles are
released. Vesicles contain chemical substances called neurotrans-
mitters, which diffuse through a specialized gap called synaptic
cleft. Reaching postsynaptic terminal, neurotransmitters bind to the
receptors located there, which generate potential at the postsynap-
tic membrane. When the membrane potential reaches the threshold
value, the output spike is generated at the postsynaptic neuron. In



the following parts, we describe the neuro-spike channel model
under consideration and derive the outputs at receiving nodes.

2.1 Presynaptic Inputs
Transmitting node or presynaptic neuron i generates Poisson spike
train, Si (t), with rate λi , where i ∈ M. For each neuron, λi is
constrained such that 0 ≤ λi ≤ λmax,i , where λmax,i is maximum
firing rate of the presynaptic neuron i . The limitation on the firing
rate arises from refractory period, which is the minimum time period
between any successive spikes [27]. Thus, time window can be
divided into small windows with the length of ∆t such that at most
one spike can occur in ∆t [30]. Therefore, probability of a spike
in the nth time window is P{Si [n] = 1} = 1 − exp(λi∆t). Spike
train then propagates to presynaptic terminal, where vesicle release
takes place, through the axon. Axonal transmission is considered
reliable [36].

2.2 Vesicle Release
Probability of vesicle release from a release site is governed by
available vesicles for release in the pool-based model [20]. Since
dynamic synapses are not in the scope of this paper, we assume
that size of readily releasable pool at a release site is constant. We
adopt the term functional contact to refer any vesicle release sites
associated with a presynaptic neuron as used in the [38]. From each
functional contact of a typical IN, SN and DN, at most one vesicle
is released when a spike arrives to a presynaptic terminal [4, 32].
Moreover, typical IN, SN and DN can make multiple functional
contacts with postsynaptic MN [24, 32].

Considering the transmission from transmitting node i to receiv-
ing node j , the probability of a vesicle release at a single functional
contact upon the arrival of a spike during nth time window is
Prel,i , P{Vi , j [n] = 1|Si [n] = 1}. In case of multiple independent
functional contacts, probability of k vesicle releases from Ti func-
tional contacts follows Poisson binomial distribution [28, 31] as
described by the following equation.

P{Vi , j [n] = k |Si [n] = 1} =
1

Ti + 1

Ti∑
l=0

F−lk

Ti∏
m=1

(1 + (F l − 1)Pi ,m ),

(1)

where F = exp( 2
√
−1π

Ti+1 ) and Pi ,m is the probability of release from
mth functional contact of ith presynaptic neuron.

2.3 Postsynaptic Filtering
Neurotransmitter binding to postsynaptic receptors increases or de-
creases the membrane potential depending on the type of synapses.
Thus, excitatory postsynaptic potential (EPSP) and inhibitory post-
synaptic potential (IPSP) are generated at the postsynaptic neuron
in excitatory and inhibitory synapses, respectively. Inhibitory and
excitatory types of presynaptic neurons are shown in Table 1. More-
over, in {DN→MN} links, excitatory synapses occur.

Postsynaptic potential filtering at receiving node or postsynaptic
neuron j due to access from transmitting node i is described by

alpha function [19] as follows.

ej (t) = wi , jhp
t

tp
exp(1 −

t

tp
), t ≥ 0 (2)

where hp and tp are peak quantal amplitude and time to rise peak,
respectively.wi , j is the weighting variable representing synaptic
strength between transmitting node i and receiving node j. Values
of quantal amplitude and rising time depend on the type of synapse.
Thus, for the excitatory synapses, we define hp = hex and tp = tex,
whereas for the inhibitory synapses hp = hinh and tp = tinh.

Synaptic strengths are characterized by morphology of synapses
such as distribution of number of synapses and presynaptic terminal
sizes [8]. Combined effect manifests itself as lognormality, which
is reported for spinal cord motor circuits [23]. Thus, w , follows
lognormal distribution with probability density function

f (w |µ,σ ) =
1

wσ
√
2π

exp
(
−(logw − µ)2

2σ 2

)
;w > 0 (3)

where µ = log( m2
√
v+m2 ) is log mean and σ =

√
log( v

m2+1 ) is log
variance, givenm and v are mean and variance, respectively.wSM,
wIM andwDM are the lognormal random variables with correspond-
ing mean and variance pairs (mSM,vSM), (mIM,vIM), (mDM,vDM)

defined for each link in the set of synaptic links {SN→MN, IN→MN,
DN→MN}, respectively.

2.4 Spike Generation
Membrane potential, Ej (t), at receiving node j is spatiotemporal
summation of contributions from each synaptic access in terms of
EPSP and IPSP. Membrane potential is given by

Ej (t) = θ0 +
∑

l ∈{SN}

∑
tn ≤t

wSM,l , jXl , jVl , j [n]hp,ex(t − tn )

+
∑

i ∈{IN}

∑
tn ≤t

wIN,i , jXi , jVi , j [n]hp,inh(t − tn )

+
∑

m∈{DN}

∑
tn ≤t

wDN,m, jXm, jVm, j [n]hp,ex(t − tn ) + zj (t),

(4)

where tn is the beginning ofnth timewindow. {SN}, {IN} and {DN}
are the sets of SNs, INs and DNs in M, respectively. hp,ex(t) =
hex exp(1− t

tex ) and hp,inh(t) = hinh exp(1−
t
tinh ) are EPSP and IPSP

filters, respectively. θ0 is the resting membrane potential and zj (t)
is white Gaussian synaptic noise with variance σ 2

z . When Ej (t)
reaches the spiking threshold, θ j , the postsynaptic neuron fires a
spike, i.e., Yj [n] = 1.

3 BOUND ON THE ACHIEVABLE RATES
In this part, we derive the bound on total achievable rates across
the network using the cut-set bound.

We are given a cut (M,K). That is, nodes are already partitioned
into two disjoint sets, namely, the set of transmitting nodes M
consisting of SN, IN and DN nodes and the set of receiving nodes
K consisting of MN nodes. By the defined cut, the channel reduces
to multiple input multiple output (MIMO) channel so that total



information flow fromM toK is bounded by the rate MIMO chan-
nel can support [12]. Thus, cut-set bound on the information flow
from K transmitting nodes to M receiving nodes is given by the
following [11]. ∑

i ∈M, j ∈K

Ri j ≤ I (SM [n];YK [n]), (5)

where SM [n] = {S1[n], S2[n], ..., SM [n]} is the set of input spike
trains to the channel andYK [n] = {Y1[n],Y2[n], ...,YK [n]} is the set
of output spike trains at the nth time interval. {Ri j } are achievable
rates from transmitting node i to receiving node j and the bound
is maximized over joint input distribution p(SM [n]). On the other
hand, we know that the input spike trains, Si [n], are independent
and Poisson distributed with λi . Thus, the right hand side in (5) is
maximized over λi ’s.

Considering the channel model and the number of neurons,
simulation of network scenario is highly complex. Thus, we perform
numerical analysis of the network in the next section based on the
following assumptions:

• Same class of neurons have identical biophysical properties,
i.e., identical spiking rate, probability of release and number
of functional contacts.

• All functional contacts of a presynaptic neuron are identical,
i.e., Pi ,m = Prel,i ,∀m ∈ [1,Ti ]. Thus, vesicle release process
reduces to Binomial release B(Ti , Pr el ,i ).

Therefore, number of output spikes at the receiving nodes depends
only on the number of transmitted spikes by transmitting nodes.
By definition, mutual information is

I (SM [n];YK [n]) = H (YK [n]) − H (YK [n]|SM [n]), (6)

As a result of aforementioned assumptions, the conditional entropy
in (6) is derived as

H (YK [n]|SM [n]) = H (

K∑
i=1

Yi [n] = sm |

M∑
l=1

Sl [n] = ss ) (7)

where sm is number of output spikes at receiving nodes and ss
corresponds to number of input spikes transmitted by transmitting
nodes.

4 NUMERICAL ANALYSIS
In this section, we evaluate performance of the network numerically
with respect to maximum total achievable rate and mutual infor-
mation. Based on the numerical results obtained, we discuss the
spinal cord dysfunctions and the information theoretical metrics.

Probability of release is generally low (less than 0.3) at central
synapses [4], thus, we use pD = 0.3 for probability of release from
DN. Moreover, we adopt pDM = 0.9 based on the evidences that
MNs have common projections from the brain [16]. Remaining
parameters are given in Table 2.

Throughout the simulations, unless otherwise stated, we assume
that spiking activity occurs during a motor action, for which SNs
and INs are spiking at mean rates of λSN = 80 Hz [25] and λIN = 20
Hz [26], respectively. Number of different class of neurons that are
given in Table 1 are used in the simulations unless otherwise stated.
Number of SNs, INs, DNs and MNs recruited in the network are
denoted by NSN,NIN,NDN,NMN, respectively.

Table 2: Model and simulation parameters

Parameter Symbol Value
Spiking Threshold (MN) θ −46.02 mV [22]
Resting Potential (MN) θ0 −64.81 mV [22]
Noise standard deviation σz 0.1 mV [19]
Discretization time step ∆t 4 ms [30]
Spike width ∆ts 4 ms [30]
Functional contact (SN,IN) TS ,TI 8, 7 [15, 21]
Probability of release (IN) pI 0.5 [18]
Probability of release (SN) pS 0.5
Peak quantal EPSP hex 0.1 mV [14]
Peak quantal IPSP hinh −0.08 mV [18]
Time to peak of EPSP tex 0.2 ms [15]
Time to peak of IPSP tinh 0.2 ms [34]
Connectivity: IN to MN pIM 0.2 [16]
Connectivity: SN to MN pSM 0.8 [13]
Mean of w (SN, IN, DN) mSN,mIN,mDN 1 [16]
Variance of w (SN, IN, DN) vSN,vIN,vDN 1 [16]

In the following part, we first analyze effects of number of lower
motor neurons, MNs, on the maximum total achievable rate when
the mutual information is simulated for different spiking rates of
DNs, λDN. Secondly, we evaluate effects of number of DNs, upper
motor neurons, and number of functional contacts per DN, TD , on
the maximum total achievable rate.

4.1 Maximum Total Rate versus Number of
MNs

Fig. 3a shows mutual information versus λDN for different number
of MNs. Around λDN = 120 Hz, mutual information is at the maxi-
mum. This value is comparable to the reported maximum spiking
rate of DNs, that is λDN,max ∼ 106 Hz (corticospinal pyramidal
cells) [22]. Moreover, maximum total rate increases with the num-
ber of MNs, NMN, as shown in Fig. 3b. With NMN = 350, which is
the quantity referring to the TA nucleus as given in Table 1, bound
on the total rate is ∼ 1.3 bits per network use.

General design considerations with regard to synaptic nanonet-
works include that multiterminal network capacity can be increased
with number of receiving nodes deployed in the network, consider-
ing the result depicted in Fig. 3b.

4.2 Maximum Total Rate versus Number of
DNs

In this part, we analyze the effect of number of upper motor neu-
rons, DNs, on maximum total achievable rate across the network
so that we can quantify changes on total achievable rates with the
upper motor neuron loss. We lack of data regarding average number
of functional contacts, TD , in {DN → MN} links and number of
DNs projecting to TA nucleus. Thus, maximum total rate is simu-
lated for different TD and NDN values. Maximum total rates are
obtained with respect to different spiking rates of DN, λDN’s, with
the maximum of 500 Hz.

Fig. 4a shows the maximum total rate of flow of information
across the network in the allowable spiking range. As depicted



(a) NDN = 100,TD = 8

(b) NDN = 100,TD = 8

Figure 3: (a) Mutual information and (b) maximum total
achievable rates for different number of MNs.

in Fig. 4a, maximum total information rate across the network in-
creases with the number of upper motor neurons, NDN, up to a
point and then show saturation trend. Moreover, as the number of
functional contacts per DN, TD , increases, maximum total rate that
can be attained increases in low NDN range (∼ 0 to 40 DNs). This
is expected because maximum of the mutual information is not
reached in the low NDN range (∼ 0 to 40 DNs) in case of lowTD ’s (1
to 2 TD ’s). The result also reveals that in the low TD range, the net-
work is more prone to capacity decrease when part of upper motor
neurons is lost as a result of SCI. Moreover, with relatively lower
TD ’s, higher maximum total rate can be obtained when high num-
ber of DNs such as 200 DNs are recruited in the network. This result
is not observable for the cases TD = 1, 2 because higher number of
DNs is needed to reach maximum of the mutual information.

Optimal λDN values achieving maximum total rate are shown in
Fig. 4b. When maximum firing rate constraint, i.e., λDN ≤ λDN,max,
is applied, maximum total rates are not achievable in low TD range
in any case due to the physical limitations on the firing rate.

(a) NMN = 10

(b) NMN = 10

Figure 4: (a) Maximum achievable total rate for different
number of functional contacts per DN and (b) optimal spik-
ing rates

4.3 Information Theoretical Metrics and Spinal
Cord Dysfunctions

In this part, we deduce the relation between the results obtained
via numerical simulations and several reported symptoms of spinal
cord dysfunctions. The relation between observed symptoms of
several spinal cord diseases and information theoretic metrics, such
as maximum total rate and mutual information, can provide an
insight regarding communication failures through the spinal cord
due to injuries or diseases. Aforementioned metrics may be used in
ICT-based diagnosis tools and treatment techniques for SCI.

Loss of lower motor neurons, i.e., MNs, can arise from neurode-
generetive diseases such as amyotrophic lateral sclerosis (ALS) or
damage to the cells because of SCI. One of the most profound
symptoms of MN loss is weakness in the associated muscle [27].
As illustrated in Fig. 3b, decrease in total maximum rate with de-
creasing number of MNs is resulting in the weakness in the muscle
affected from the injury.

As shown in Fig. 4a, maximum total rate of information flow is
not affected significantly from partly loss of DNs up to a critical



number of neuron loss, when DNs have relatively high number of
functional contacts. This result is compatible with intrinsic mecha-
nisms of the nervous system evolved to cope with communication
failures, in a way that nervous system can compensate the loss
of neurons with the exception of cell loss in significant extent by
increasing redundancy in the form of functional contact [33] via
plasticity. After critical number of cell loss, however, motor actions
cannot be performed normally [5].

5 CONCLUSION
In this study, we analyze rate of information flow across a spinal
cord motor nucleus system from information theoretical perspec-
tive. To this end, we first develop an equivalent single-hop neuro-
spike communication multi-terminal network and then formulate
bound on the total achievable rates across the network. Finally, we
simulate maximum achievable rates numerically with regard to a
particular spinal cord motor nucleus system. The results indicate a
correlation between decreasing maximum total rates and weakness
in the muscle as a result of lower motor injury.
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