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9 Abstract

10 An assemblage of dinosaur footprints is reported from the Lower Cretaceous (Berriasian-

11 Valanginian) Ashdown Formation of East Sussex, southern England. The ichnofauna is 

12 concentrated around a 2 m thick stratigraphic marker, the Lee Ness Sandstone, where recent 

13 cliff retreat has revealed 85 recognisable footprints attributable to 13 morphotypes, many of 

14 which bear high-fidelity skin impressions. The newly identified morphotypes mean that this 

15 tracksite hosts one of the most diverse dinosaur ichnoassemblages in the well-documented 

16 Mesozoic record of Britain; recording the activity of theropod, ornithopod, thyreophoran and 

17 possibly sauropod tracemakers. Most of the footprints were emplaced on a single floodplain 

18 mudstone horizon beneath a fluvial crevasse splay sandstone, where preservation was favoured 

19 by cohesive sediment and a prolonged interval of sedimentary stasis, during which trackways 

20 could be imparted. The sedimentological context of the trackways reveals evidence of 

21 interactions between dinosaurs and the riverine landscape that they inhabited; including the 

22 development of microtopographies around footprints, which impacted invertebrate burrowing 

23 activity, and evidence for dinosaur wading below the bankfull level of small meandering 



24 channels and oxbow lakes. Modern analogue suggests that the large dinosaurs may have played 

25 a significant role as zoogeomorphic engineers within the ancient floodplain setting, but the 

26 imperfect translation of sedimentary environment to sedimentary rock means that geological 

27 evidence for such is ambiguous. 

28 1. Introduction

29  Ichnoassemblages of dinosaur footprints shed light on the diversity and community 

30 structure of their tracemakers (Lockley, 1989; Falkingham, 2014), but their form and 

31 abundance is often biased by the composition and sedimentary mechanics of the substrate onto 

32 which they were emplaced, as well as the outcrop of strata in which they are preserved (Milàn 

33 and Bromley, 2007; Falkingham et al., 2011; Gatesy and Falkingham, 2017).

34 In this paper we report a diverse ichnoassemblage of dinosaur footprints that have been 

35 revealed within an outcrop that is constantly evolving due to coastal erosion, and which is well-

36 suited to recognise the sedimentological, palaeoenvironmental and outcrop controls on the 

37 morphology and distribution of the hosted footprints. The outcrop forms part of the Lower 

38 Cretaceous Wealden Group (East Sussex, southern England), a late-stage rift succession of 

39 non-marine and marginal-marine strata within the Wessex Basin, which has been the focus of 

40 geological investigation for almost two centuries (Martin, 1828; Topley, 1875; Rawson et al., 

41 1978; Hopson et al., 2008; Radley and Allen, 2012). 

42 The Wealden Group has both historic and ongoing significance for dinosaur research: it 

43 yielded the first known Iguanodon (Mantell, 1825) and ankylosaur fossils (Mantell, 1833), and 

44 much more recently has seen the discovery of an exceptionally-preserved fossil iguanodontian 

45 brain (Brasier et al., 2017). Whilst diverse body fossils from 39 dinosaur species are described 

46 from the Wealden (Batten, 2011; Austen and Batten, 2018), its vertebrate ichnology is less well 

47 described. Sporadic reports of footprints have been made since 1846 (Tagart, 1846; Beckles, 



48 1851; Tylor, 1862; Ticehurst, 1928; Sarjeant, 1974; Delair, 1989; Woodhams and Hines, 1989; 

49 Parkes, 1993; Sarjeant et al., 1998), but no new major discoveries have been described for the 

50 last quarter of a century (Parkes, 1993). The previously described vertebrate ichnofauna is 

51 dominated by tracks reported as “Iguanodon footprints” (e.g. Tylor, 1862; Delair and Sergeant, 

52 1985) and two morphotypes of theropod track (Woodhams and Hines, 1989), although three 

53 putative sauropod footprints have also recently been reported (Jarzembowski et al., 2015; 

54 Austen and Batten, 2018).

55 Here, we describe new trackway material exposed by ongoing cliff collapse between 2014-

56 2018. Our findings greatly increase the number of footprint morphotypes from 4 to 13; these 

57 are attributable to theropod, ornithopod, thyreophoran and possibly sauropod dinosaur 

58 tracemakers, and some show exceptionally well-preserved skin impressions. The purpose of 

59 this paper is to (1) describe these newly-discovered trace fossils and discuss their implications 

60 for the dinosaur communities known from the Lower Cretaceous of the UK; (2) demonstrate 

61 that the sporadic discovery of footprints from the Wealden Group reflects the recent and 

62 ongoing geomorphic evolution of a cliff outcrop which contains a prominent dinosaur 

63 footprint-bearing horizon; (3) discuss why this particular tracksite yields so many high-fidelity 

64 traces; and (4) discuss the extent to which ancient dinosaur-landscape interactions can be 

65 understood using footprint and sedimentary records which are naturally incomplete.

66 2. Study Location – the Lee Ness Sandstone and Ashdown Formation

67 The footprints described here were discovered in the Ashdown Formation, in a near-

68 continuous 6 km-long coastal cliff section extending between Fairlight Cove (50° 52’ 35.66” 

69 N, 0° 40’ 16.13” E) and Hastings (50° 51’ 25.03” N, 0° 35’ 58.20” E). In this eastern part of 

70 the Wessex Basin (the Weald Sub-Basin), the Wealden Group has a thickness of c. 400 m 

71 (Gallois and Worssam, 1993) (Fig. 1). Historically the internal stratigraphy of the group has 



72 been inconsistently applied, but here we follow the most recent stratigraphic nomenclature of 

73 the British Geological Survey (Hopson et al., 2008) whereby the group comprises, in ascending 

74 order; the Ashdown Formation, the Wadhurst Clay Formation, the Tunbridge Wells Sand 

75 Formation, and the Weald Clay Formation. 

76 The Ashdown Formation is a 180-215 m thick coarsening-upwards succession of fine- to 

77 medium-grained sandstones and silty mudstones (Fig. 2A, B), of which only the upper 130 m 

78 is exposed, cropping out as a gentle anticline along the Hastings-Fairlight section (Lake and 

79 Shephard-Thorn, 1987). Footprint-bearing strata are most common within and beneath the Lee 

80 Ness Sandstone (hereafter, “LNS”), an informal stratigraphic marker consisting of a prominent 

81 2 m thick tabular body of grey-yellow, very fine- to fine-grained, lithic arenite (Fig. 2C, D), 

82 125 m beneath the top of the Ashdown Formation. The formation is Berriasian-Valanginian (c. 

83 145-134 Ma) in age (Horne, 1995), based on ostracod biostratigraphy (index fossils from the 

84 Cypridea propunctata and C. menevensis subzones are known from the Fairlight borehole; 

85 Allen, 1985). However, the precise age of the LNS within this interval is poorly constrained, 

86 as the stratigraphic levels of ostracod index fossils are unreported (Anderson, 1985; Horne, 

87 1995).

88 2.1 Depositional environment

89 The Ashdown Formation is dominated by overbank floodplain deposits of small meandering 

90 fluvial systems, which were active in southern Laurasia at a latitude of 30˚-35˚N, under 

91 subtropical-temperate climatic conditions (Allen, 1998). Mudstones are the dominant (c. 60%) 

92 lithology but are poorly exposed as they are commonly weathered deeply into the rock face. 

93 The deep weathering results in most of the strata at outcrop being obscured by sediment wash 

94 or slumped material arising from the mudstones. Where fresh mudstone surfaces can be 

95 observed they are seen to be pedogenic: variably purple, yellow, grey-brown or mottled, they 



96 contain abundant root traces, attesting to the development of gleysols and spodosols (Mack et 

97 al., 1993) on the alluvial floodplain. The dominant sandstone lithologies are either (1) tabular 

98 bodies 1-6 metres thick of fine- to medium-grained lithic arenites with planar-stratification and 

99 abundant bioturbation (such as comprise the LNS), or (2) unbioturbated medium-coarse-

100 grained lithic arenites with cross-stratification, and sometimes organised as <4 metre-thick 

101 heterolithic lateral accretion sets (Fig. 2E). Respectively, these two architectural styles record 

102 overbank crevasse splay deposition of coarser sediment and in-channel point bar development 

103 in meandering river channels. Carbonaceous strata, in the form of coalified plant debris beds, 

104 are common (Fig. 3) and, together with an infrequent macroflora, show that the floodplains 

105 were colonized by a floral assemblage of gymnosperms, ferns and minor lycopods (Watson 

106 and Alvin, 1996). Both the stratigraphic distribution of plant fossils and chemical weathering 

107 proxies, from clay minerals, suggest that the climate of deposition was warm to subtropical, 

108 and seasonally wet (Watson and Alvin, 1996; Allen et al., 1998; Akinlotan, 2017).

109 2.2. Discovery of new footprints in the Ashdown Formation

110 The footprints described here significantly expand the known dinosaur ichnofauna of the 

111 Wealden Group of the Weald sub-basin, as described over 160 years of prior research (Tagart, 

112 1846; Beckles, 1851; Tylor, 1862; Ticehurst, 1928; Sarjeant, 1974; Delair, 1989; Woodhams 

113 and Hines, 1989; Parkes, 1993; Sarjeant et al., 1998). The increased diversity does not arise 

114 from reclassification of older specimens, but the discovery of new material, made possible by 

115 the exhumation of new outcrop exposure through actively ongoing coastal erosion. Footprints 

116 were observed on five different occasions (November 2014, May 2015, February 2016, 

117 February 2017, and January 2018) at the study site, dominantly within fallen blocks that 

118 originated from the base of the LNS, where this unit this crops out near the modern beach level 

119 in the core of a local anticline between Lee Ness (50° 52' 06.1" N, 0° 39' 01.3" E) and Goldbury 

120 Point (50° 52′ 17.83″ N, 0° 39′ 58.82″ E). Multiple separate visits permitted the recognition of 



121 different material on each occasion: new material was revealed in freshly fallen blocks, while 

122 material seen on previous visits was often lost to coastal erosion. As a result, the majority of 

123 traces are individual footprints: trackway series are rarely observed extending for more than 

124 2-3 footprints (and never more than 5, Fig. 4). Other than two specimens preserved in cross-

125 section internally within the LNS, one oriented along the anteroposterior axis (Fig. 5A) and 

126 one along the mediolateral axis (Fig. 5B), tracks are preserved as positive hyporelief casts (Fig. 

127 6). The silty mudstone that lies beneath the LNS onto which the majority of tracks were 

128 emplaced is a recessive and friable lithology, which degrades during cliff collapse episodes. 

129 Thus, the actual substrate onto which the footprints were emplaced is not visible, and only its 

130 internal lithology can be seen, exposed as vertical profiles within the receding cliff face. In 

131 total, of the 85 footprints discovered in this study, 79 (including all known footprints with skin 

132 impressions) are known from the base of the LNS. A further two occurred internally within the 

133 2 m thick series of approximately 13 beds of bioturbated yellow-grey very fine-fine-grained 

134 sandstones that comprise the LNS, with only four scattered throughout the rest of the Ashdown 

135 Formation.

136 3. Dinosaur footprints

137 Where possible, traces have been placed within established, ichnotaxonomically valid 

138 ichnospecies. In cases where a suitable ichnospecies could not be found, footprints have been 

139 differentiated as morphotypes using equivalent ichnotaxobases, e.g. length, width, orientation 

140 and shape of digital impressions; and presence, shape and size of a heel pad impression. We 

141 have avoided establishing new ichnotaxa as it was not possible to collect holotypes from the 

142 large, transient fallen blocks. A total of 13 different footprint morphotypes are described, with 

143 likely tracemakers including theropod (4), ornithopod (4), thyreophoran (4), and sauropod (1) 

144 dinosaurs (Table 1).



145 3.1. Theropod footprints

146 Theropod footprints are identified as didactyl or tridactyl impressions with a larger digit III 

147 than digits II or IV, presence of claw marks with sharp edges, and occasional elongated 

148 posterior margin (due to tarsometatarsus) and/or hallux impressions (Moreno et al., 2012). 19 

149 examples of tracks fitting this description were observed, which can then be subdivided into 

150 four distinct morphotypes (Fig. 7).

151 Morphotype A, observed in 8 specimens, is a tridactyl footprint with narrow (length: width 

152 ratio greater than 2) digits including a long digit III. These digits taper sharply towards the 

153 anterior and converge onto a possible tarsometatarsus impression at the posterior (Fig. 7A). 

154 The size of the footprint casts ranges from 18-32 cm wide by 17-33 cm long. Morphotype B, 

155 observed in 7 specimens, is a tridactyl footprint similar in shape to morphotype A, 

156 distinguished from it by the lack of a heel pad impression (Fig. 7B). The digits maintain a 

157 consistent width for their entire length, and the size of the footprints ranges from 11-25 cm 

158 wide by 13-26 cm long. Morphotype C is a single small tridactyl pes cast, 2.1 cm in length by 

159 1.8 cm width (Fig. 7C). The size of this footprint cast is an informative character, as it is 

160 significantly smaller than any others observed in the section. All of the digits are narrow, and 

161 digit III appears markedly longer than digits II and IV.

162 Morphotype D, of which three examples were observed, differs from the other footprints 

163 observed in the section, as it appears to be didactyl (Fig. 7D). One specimen, from a fallen 

164 block containing many footprint casts, is comprised of weakly defined digits III and IV, and a 

165 pronounced hallux impression. The tip of this impression is perpendicular to the bed and 

166 penetrates to a lesser depth than that of digits III and IV. The footprint is 13 cm wide by 19 cm 

167 long excluding the hallux impression, which is 6 cm long, distally situated, and appears to be 

168 medially oriented. The remaining two examples, both larger (26 cm wide by 30 cm long and 



169 15 cm wide by 25 cm long), occur in association on another fallen block, oriented in opposite 

170 directions. It is unclear if any of these specimens are truly didactyl, or whether this is an artefact 

171 of weathering or erosional processes.

172 3.2. Ornithopod footprints

173 The ichnotaxonomy of large ornithopod footprints is robust, following a recent review by 

174 Diaz-Martinez et al. (2015). Large ornithopod footprints are differentiated from theropod and 

175 thyreophoran footprints as they are tridactyl impressions with similar dimensions in 

176 anteroposterior and mediolateral directions, and similar lengths of digits II, III and IV, all of 

177 which are wide with rounded ends (Moreno et al., 2012). Three large ornithopod ichnotaxa are 

178 described herein (Fig. 8), all belonging to the ichnofamily Iguanodontipodidae Vialov (1988), 

179 along with one gracile ornithopod morphotype. Iguanodontipodidae includes all large 

180 iguanodontian tracks, generally characterized by tridactyl, subsymmetrical pes tracks with one 

181 pad impression in the heel and another in each digit. Tracks are typically as wide, or wider, 

182 than long (Diaz-Martinez et al., 2015). 

183 In the original descriptions of footprints from the Hastings cliffs all traces were hypothesised 

184 to have been made by Iguanodon (Delair, 1989). However, the Berriasian-Valanginian 

185 footprints from the Fairlight-Hastings section pre-date any known specimens of Iguanodon 

186 from the Wealden (Barremian-lower Aptian age). Four species of large ornithopod dinosaur 

187 are potential tracemakers known from the Valanginian of the Wealden; Barilium dawsoni, 

188 Dryosauridae (genus and species unnamed), Hypselospinus fittoni, and Kukufeldia tilgatensis. 

189 One or more of these species could be responsible for the observed footprints, however intimate 

190 details of their pedal anatomy are presently unknown, so the footprints cannot be reliably 

191 assigned to particular taxa (Norman, 2011).

192 3.2.1. Caririchnium magnificum Leonardi 1984



193 Thirty-one pes casts can be confidently assigned to Caririchnium magnificum, occurring 

194 both with and without an associated manus print (Fig. 8A and 8B respectively). Pes casts are 

195 large and tridactyl, with rounded heel impressions and similar width and length (25-38 cm wide 

196 by 26-42 cm long). The digits are wide and of approximately equivalent lengths. The manus 

197 impressions are approximately elliptical in shape, and much smaller than the pes (9-11 cm wide 

198 by 9-11 cm long). No examples contain more than a single manus and pes. Four examples 

199 exhibit skin impressions on the heel or digits. This ichnospecies is known from throughout the 

200 Lower Cretaceous, and the type specimen is thought to have been produced by an 

201 iguanodontian (Diaz-Martinez et al., 2015). 

202 3.2.2. Caririchnium isp.

203 Eighteen of the footprint cast specimens are tridactyl pes casts with approximately the same 

204 length as width, preserved in positive hyporelief (Fig. 8B). Digits are wide and of 

205 approximately equivalent lengths, occasionally preserved in high fidelity with skin and claw 

206 impressions. The heel pad cast is typically poorly preserved or obscured by striations, 

207 precluding identification at ichnospecific level. The traces range in width from 16-44.2 cm, 

208 and in length from 19-50.2 cm. 

209 3.2.3. Unnamed Iguanodontipodidae Vialov 1988

210 These tridactyl pes casts have widely splayed digits with large, rounded ends and no claw 

211 marks (Fig. 9). The heel cast is rounded and approximately the same width as the distal end of 

212 digit III. However, the primary ichnotaxobase differentiating these footprint casts from other 

213 described examples is a sub-round prod mark located medially to the rear of the heel 

214 impression. This is considered to be due to a hallux impacting the sediment. Impressions of 

215 digits II-IV have approximately the same dimensions as one another, whilst the hallux prod 

216 mark is narrower than other digits (diameter 3 – 4 cm). Two examples are observed, with 



217 lengths (excluding hallux prod mark) 19 cm and 22 cm, and widths 24 cm and 25 cm (Fig. 9). 

218 The morphology of these footprints places them within the established ichnofamily 

219 Iguanodontipodidae, but outside any current taxonomically valid ichnogenera (Diaz-Martinez 

220 et al., 2015).

221 The pes of the tracemaker appears to have been functionally tridactyl, with an accessory 

222 digit I attached to the medial-posterior region of metatarsal II, based upon the positioning of 

223 the prod marks in relation to other digital impressions. These pronounced hallux impressions 

224 suggest that the tracks could not have been produced by hadrosaurid iguanodontians, as they 

225 are known not to possess a hallux (Norman, 2015). Amongst the more basal iguanodontians, 

226 camptosaurs and dryosaurids are known to have possessed a small, non-functional digit I 

227 adhered to the medial surface of metatarsal II (Escaso et al., 2014; Norman, 2015), rendering 

228 these possible tracemakers. 

229 3.2.4. Gracile ornithopod

230 Five footprints ascribed to gracile ornithopods have been observed, occurring together in a 

231 series five impressions (Fig. 4). The footprints are all tridactyl pes casts preserved in positive 

232 hyporelief, differing from tracks made by gracile theropods as the digital impressions are wider 

233 and all of equivalent dimensions, with a pronounced heel pad and a width approximately equal 

234 to length. The footprint casts range in width from 28.8-36 cm and in length from 31.3-33.8 cm, 

235 but as they occur in a series they can confidently be considered to have been produced by the 

236 same animal.

237 3.3. Thyreophorans

238 Some footprint casts in the LNS have characters that suggest they were made by neither 

239 ornithopods or theropods. These occur in four morphotypes (Fig. 10), three of which are 



240 tetradactyl casts with rounded digits and claw impressions which differ in the positioning and 

241 length of the outer digits, the interdigital angles, and the shape of the heel impression. The final 

242 example is pentadactyl with a reduced heel impression, recording a manus impression. Both 

243 thyreophoran dinosaurs and crocodylomorphs are known from the Wealden (Barrett and 

244 Maidment, 2011; Salisbury and Naish, 2011), and both could create tetradactyl pes impressions 

245 and tetradactyl or pentadactyl manus impressions. All of the footprint casts discussed here are 

246 attributed to thyreophoran dinosaurs due to their morphology. Tracks which are assigned to 

247 Tetrapodosaurus are highly similar to those of ankylosaur footprint casts reported from the 

248 middle Cretaceous Dakota Group (Lockley and Gierlinski, 2014; Lockley et al., 2014), of the 

249 same ichnogenus. Crocodylomorph tracemakers are ruled out as Cretaceous forms are known 

250 to leave more elongate, sharp digital impressions (Lockley et al., 2010).

251 Thyreophoran fossil material is rare in the Wealden (Barrett & Maidment, 2011), with three 

252 known species of ankylosaur and one probable stegosaur. Of these species, pedal material is 

253 only known from partial specimens of Polacanthus foxii (Pereda-Suberbiola, 1993). As this 

254 precludes any comparative osteology amongst thyreophorans from the Wealden fauna, 

255 tracemakers are inferred from general ankylosaur and stegosaur manual and pedal anatomy 

256 (Thulborn, 1990; Whyte and Romano, 2001).

257 3.3.1. Tetrapodosaurus isp. morphotype A Sternberg 1932

258 Tetrapodosaurus is a tetradactyl footprint with elongate, elliptical digits and pronounced 

259 claw marks (Fig. 10A). Digits are forward facing, producing a near-symmetrical print 

260 preserved in positive hyporelief. The heel pad cast is short and rounded, but larger than all 

261 digital impressions, which are approximately equivalent in all dimensions. Two examples are 

262 observed, one of which is highly detailed with skin and claw impressions. This example has 



263 footprint width 26 cm, length 27 cm, digit width 5-7 cm, and digit length 6-10 cm. Figure 10A 

264 shows the detailed textures along with claw marks on proximal regions of the digit pads.

265 3.3.2. Tetrapodosaurus isp. morphotype B Sternberg 1932

266 Another tetradactyl cast in positive hyporelief, with elliptical digits and pronounced claw 

267 marks, (Fig. 10B) is also assigned to Tetrapodosaurus, but is sufficiently different to be 

268 considered a distinct morphotype. Digits II and III are forward facing, with digits I and IV more 

269 laterally positioned. A pronounced, angular heel pad cast larger than all digital impressions 

270 extends towards the posterior. Digits have approximately equal dimensions. One example is 

271 reported, with footprint width 33 cm, length 30 cm, digit width 4-6 cm, and digit length 5-8 

272 cm. 

273 3.3.3. Stegopodus manus Lockley and Hunt 1998

274 The third form considered to be a thyreophoran footprint is seen in a single example as a 

275 tetradactyl cast in positive hyporelief, with elongate rounded digits and a pronounced heel 

276 impression (Fig. 10C). Digits I, II and III are of equivalent length (11-13 cm) and positioned 

277 at the anterior of the foot, whereas digit IV is shorter (7 cm) and more medially situated. All 

278 digits are oriented approximately towards the anterior, with digit I slightly turned in. The distal 

279 end of the digit IV impression has a small centrally positioned mound, interpreted as a claw 

280 mark. The overall cast has maximum dimensions of length 34 cm and width 29 cm. 

281 This specimen closely resembles the original holotype of Stegopodus czerkazi, a manus cast 

282 from the Upper Jurassic Morrison Formation (Lockley and Hunt, 1998) which is thought to 

283 have a stegosaur tracemaker. Whilst the ichnogenus has subsequently been revised to introduce 

284 a pedal holotype (Gierlinski and Sabath, 2008), it is still considered of stegosaur origin.

285 3.3.4. Unnamed thyreophoran footprint



286 A pentadactyl right manus cast in positive hyporelief is seen in one instance (Fig. 10D). 

287 Digits are short and rounded without claw impressions, and no clear heel impression is present. 

288 Digits I and V are laterally oriented, and digits II, III and IV are oriented towards the anterior. 

289 The footprint cast has width 28 cm and length 18 cm. This specimen is attributed to an 

290 ankylosaur, as it closely resembles the expected morphology of an ankylosaur manus cast 

291 (Whyte and Romano, 2001).

292 3.4. Putative Sauropod Footprints

293 Jarzembowski et al. (2015) noted two large impressions, apparently occurring in a series, 

294 and suggested that they may be sauropod tracks (see Fig. 4, Fig. 11A), due to a possible 

295 crescentic manus, and the approximately ovoid morphology of the interpreted pes casts. No 

296 digital impressions are observed with these amorphous imprints, and the pes casts range in size 

297 from 58-61 cm long and 49-51 cm wide. Jarzembowski et al. (2015) also figured a third 

298 suspected sauropod footprint, discovered in an isolated block, and at least one further example 

299 with a similar morphology and dimensions was discovered at the base of the LNS in this study 

300 (Fig. 11B). It is plausible that these imprints may record sauropod tracks (Jarzembowski et al., 

301 2015; Austen and Batten, 2018), but until a more defined series of such impressions is 

302 discovered, this interpretation must remain tentative due to the amorphous nature of the 

303 imprints and the possibility that they may be poorly-preserved undertraces of other footprints. 

304 3.5 Surface traces and undertraces revealed by skin impressions

305 Many of the footprints on the base of the LNS exhibit well-preserved skin impressions. 

306 These present as small (2 – 5 mm), raised, sub-rounded polygons ranging in shape from 

307 approximately circular, to rounded trigonal, to elongate (Fig. 12), and are commonly associated 

308 with narrow furrowed striations (c. 2.5 mm across individually and 2-7 cm in length) that 

309 extend for the entire width of the heel or tarsometatarsus impression (recording slip-marks 



310 which developed as the footprint was emplaced (Fig. 13; Davies et al., 2016)). Footprints with 

311 skin impressions are preferentially seen at the base of the LNS, where they have been cast 

312 directly into the underlying mudstone, and are clear evidence of the complete preservation of 

313 true surface traces (see Section 4.2.1).

314 Conversely, many of those instances of footprints that lack skin impressions are likely 

315 undertraces – emplaced later at a higher stratigraphic level within the lower crevasse splay 

316 sandstones of the LNS (Fig. 6D). This is implied by the size range of footprints with and 

317 without skin impressions: for example, in specimens of C. magnificum, 4 had skin impressions 

318 and 27 lacked skin impressions. Those C. magnificum specimens with skin impressions occupy 

319 the lower end of the size range of all specimens of the ichnospecies, with a mean length 13.3 

320 cm smaller than the overall mean, and mean width 9.9 cm smaller (Fig. 14). As the size of 

321 footprints is greater in undertraces than surface traces (because deformation radiates out 

322 downwards from a surface footprint; Milàn et al., 2004) it is likely that larger casts lacking skin 

323 impressions arose from the translation of footprints down through the sediment, resulting in 

324 loss of fine detail (Milàn and Bromley, 2007).

325 3.6. Implications of the Dinosaur Ichnofauna

326 The reported dinosaur ichnofauna assemblage of theropod, ornithopod, thyreophoran, and 

327 possible sauropod footprints is one of the most diverse known from the Mesozoic of the UK 

328 (Fig. 15), rivalling those of the Jurassic Ravenscar Group of Yorkshire (Whyte et al., 2007) 

329 and the Cretaceous Wealden of the Isle of Wight (Lockwood et al., 2014). When considered 

330 alongside the body fossil record of dinosaurs from the Wealden Group, this assemblage 

331 provides insights into the constituent dinosaur community immediately before the deposition 

332 of the LNS. Ornithopod tracks from the LNS are assigned to three distinct tracemakers: 

333 styracosternans, basal iguanodontians and gracile ornithopods; theropods are dominated by 



334 gracile forms, with possible evidence for didactyl theropods; thyreophoran tracks are likely 

335 produced by ankylosaurians and stegosaurs; and there is putative evidence for sauropods.

336 A challenge of assessing population ecology with ichnology is the difficulty in assessing the 

337 proportion of traces that were produced by unique tracemakers, i.e. it is possible for a small 

338 number of individuals to produce a large number of footprints. In the LNS, ornithopod tracks 

339 were likely produced by a large number of unique tracemakers because footprint dimensions 

340 have a high scatter (Fig. 16A) and tracks are commonly solitary. Conversely, theropod tracks 

341 have clustered dimensions (Fig. 16B), and are often observed in series, suggesting fewer unique 

342 tracemakers. Estimates of the original dinosaur populations can be refined to some degree by 

343 looking only at surface traces with skin impressions. These show that the instantaneous 

344 population that traversed the pre-LNS substrate included at least styracosternans (eleven 

345 tracks), ankylosaurians (two tracks) and stegosaurs (one track).

346 Even with caveats of uncertainty (i.e., the number of unique trace-makers, the limited 

347 number of specimens seen with skin impressions, and syn-depositional and post-depositional 

348 limitations on footprint fidelity), the footprints of the LNS imply a community dominated by 

349 large herbivorous dinosaurs (dominantly styracosternans), with a smaller theropod component. 

350 This is in keeping with expected predator-prey population dynamics in modern ecosystems 

351 (Duffy, 2002).

352 4. Controls on the diversity, distribution and discovery of dinosaur footprints

353 4.1. Outcrop controls on footprint discovery

354 The LNS tracksite provides a case study in how the revisiting of non-conservated, dynamic 

355 outcrops may yield new insights into diversity: because, while local fossil diversity may be 

356 biased by rock availability and sampling (Smith and McGowan, 2007), an increase in rock 



357 availability at a previously sampled site can yield improved diversity estimates. In this instance, 

358 rock availability was enhanced by multiple cliff falls in the Hastings-Fairlight area (Fig. 17), 

359 uncovering the large amounts of fresh material discovered between 2014-2018. Each of the 

360 five visits saw the exposure of new material and the degradation or disappearance of previously 

361 observed tracks (Fig. 18).

362 As new discoveries of footprints are dependent on the collapse of new material, the 

363 historically sporadic nature of new reports (Tagart, 1846; Beckles, 1851; Tylor, 1862; 

364 Ticehurst, 1928; Sarjeant, 1974; Delair, 1989; Woodhams and Hines, 1989; Parkes, 1993) 

365 suggests that there are prolonged intervals where the actively-eroding tracts of the basal LNS 

366 lack dinosaur footprints. Intervals of discovery reflect periods when spatially-concentrated 

367 clusters of footprints (trackways) are coincident with the plane of the exposed cliff face, and 

368 thus more likely to erode out as fallen blocks (Fig. 19).

369 Cliff retreat in the Hastings-Fairlight section has been fairly consistent over long time scales 

370 (Thorburn, 1977; Cleeve and Williams, 1987), but is stochastic over short timescales because 

371 it primarily occurs as discrete cliff collapse events (between 1998-2004, 86.4 m of cliff retreat 

372 occurred, including 25.7 m in 2002-2003 alone; Rother District Council, 2012). This means 

373 that any estimates of trackway spacing have a large error bar, but they may be crudely 

374 calculated. The barren intervals between reported footprint finds in the period 1862-2018 are 

375 56 years, 63 years, 10 years, and 22 years respectively, so with the maximum average rate of 

376 cliff retreat during this period (77 cm per year; Cleeve and Williams, 1987), the minimum 

377 distance between previously exposed trackway-bearing tracts of the basal LNS would be 48.5 

378 m (Table 2).

379 Dinosaur behaviour is responsible for this uneven distribution of their footprints on the 

380 original substrate. The dominant large ornithopod tracemakers are thought to have exhibited 



381 herding behaviour (Lockley, 1989; Cotton et al., 1998; Lockley et al., 2012), the movement of 

382 which would lead to large numbers of tracks grouped together in the areas the herd traversed, 

383 and a much sparser distribution away from the main route.

384 4.2. Depositional controls on footprint distribution

385

386 The high concentration of trackways around the LNS reflects the distinct sedimentary 

387 character of the amalgamated sandy crevasse splay deposits that comprise the unit. 

388 Depositional controls on the footprints must be considered separately for those internally and 

389 at the base of the LNS because of the variable sediment type, palaeoenvironment and 

390 chronostratigraphic significance of the stratigraphic horizons involved. 

391 4.2.1. Footprints at the base of the Lee Ness Sandstone

392 The lowermost crevasse splay sandstone of the LNS has cast dinosaur footprints that were 

393 emplaced onto a cohesive substrate and which now marks the top of the underlying grey silty 

394 mudstone, in conjunction with casts of ripple marks (Fig. 20A) and desiccation cracks (Fig. 

395 20B-C). The base of the LNS also contains a dense invertebrate ichnofauna of passively-filled 

396 burrows of Palaeophycus, with rare Ophiomorpha and Cochlichnus (Table 3, Fig. 21). These 

397 record infaunal communities on the stable but damp overbank floodplain substrate and are 

398 sometimes overprinted with actively-filled Taenidium (deeper tier traces from overlying 

399 crevasse splay sands).

400 Footprints with intricate detail of skin impressions are notable from the base of the LNS. 

401 The preservation of skin textures within demonstrable surface traces shows that this 

402 stratigraphic surface can be considered to be a true substrate (Davies et al., 2017; Davies and 

403 Shillito, 2018): a sedimentary bedding plane which existed at the sediment-water or sediment-

404 air interface at the time of deposition, and which was not degraded during the deposition of the 



405 overlying sands. The preservation of delicate footprint textures on a true substrate need not be 

406 unexpected, because the distal point source of the overlying crevasse splay sands means that 

407 their deposition at a specific footprint location was not necessarily coupled with erosion 

408 (Davies and Shillito, 2018). However, the initial imparting of skin impressions was favoured 

409 by antecedent sedimentary conditions: namely, a moist, cohesive substrate which would have 

410 behaved as a ductile media when impressed (Fig. 22; Laporte and Behrensmeyer, 1980; Milàn 

411 and Bromley, 2006).

412 The presence of multiple morphotypes of dinosaur footprint, and the pedogenesis of the 

413 Ashdown Formation mudstones, imply that the sub-LNS substrate remained in sedimentary 

414 stasis (i.e., experiencing neither deposition nor erosion: Tipper, 2015) for a prolonged interval 

415 at the time of deposition, and was able to be imparted with multiple generations of dinosaur 

416 trackway. Prolonged stasis is also revealed by evidence that the vertebrate and invertebrate 

417 ichnofauna were temporally offset in their emplacement onto the same horizon. Invertebrate 

418 burrows (particularly Palaeophycus) are near ubiquitous on the base of the lowest crevasse 

419 splay deposit, but never occur internally within dinosaur footprints. The implication of this is 

420 that invertebrate burrowing was an ongoing process on the substrate but that, once footprints 

421 had been emplaced, it was impeded: likely because the compaction of intra-footprint sediment 

422 rendered it inimical to excavation (Dorgan et al., 2006).

423 4.2.2. Footprints within the Lee Ness Sandstone

424 Internally within the LNS, dinosaur tracks that were emplaced onto crevasse splay top sandy 

425 substrates (i.e., between flooding events) are observed in cross-section, where bedding is 

426 truncated or downturned around footprints (Fig. 6). These are seen in association with a low-

427 density invertebrate ichnoassemblage of Arenicolites and Taenidium that records the infaunal 



428 colonization of crevasse splay deposits, immediately after their deposition during flood events 

429 (i.e., while they were still wet with standing water) (Table 3, Fig. 21).

430 The relative rarity of footprints internally within the LNS appears to be a sedimentological 

431 rather than palaeoecological artefact. The deposition of crevasse splay sands is sporadic, 

432 occurring only when a river channel breaches its levees during flood events (e.g., Smith et al., 

433 1989), so the horizons which separate the 13 constituent sandstone layers of the LNS can also 

434 be considered to be true substrates, which may be expected to have been imparted with 

435 footprints as frequently as the antecedent mudstone. However, the fact that footprints internal 

436 to the LNS are only evident in profile reflects the granular nature of the sandy crevasse splay 

437 substrates. These would have been unfavourable to preserving casts of footprints as wet sand 

438 would be too loose and prone to collapse to hold the form of a trace (Fig. 22; Laporte and 

439 Behrensmeyer, 1980). This is in contrast to the wet, plastic mud at the base of the LNS which, 

440 in addition to true surface traces, also hosts some undertraces transmitted down from the lower 

441 internal layers of the LNS.

442 4.3. Dinosaur controls on deposition?

443 Modern large vertebrates are effective zoogeomorphic agents (e.g. Haynes, 2012; Jones, 

444 2012; Statzner, 2012), modifying the spatial distribution of landforms and sedimentary 

445 processes within riverine environments, and it has long been suspected that dinosaurs may have 

446 played an analogous role in ancient environments (Butler, 1995; Jones and Gustason, 2006). 

447 The combination of footprints and alluvial architecture within the Ashdown Formation permit 

448 the opportunity to here briefly assess whether such activity leaves a diagnostic sedimentary 

449 signature, or whether the limitations resulting from the imperfect translation of geomorphology 

450 into the sedimentary record (e.g., McMahon and Davies, 2018) only permits the recognition of 

451 such life-landscape interaction through abductive modern analogue.



452 Large animals act as zoogeomorphic agents at a variety of scales. At one end of the spectrum 

453 individual footfalls distort the microtopography and internally-stratified anatomy of substrates, 

454 resulting in sediment dewatering and uneven substrate surfaces (Schanz et al., 2013). On a 

455 meso-scale, large groups of animals can trample a substrate, obliterating sedimentary textures 

456 (Laporte and Behrensmeyer, 1980; Scott et al., 2012) and changing its susceptibility to erosion 

457 (Trimble and Mendel, 1995). At the largest scale, trails produced by large herbivores have been 

458 commonly linked to the formation of new river channels, as flowing water preferentially 

459 accumulates and diverts along herding trails, the substrates of which are more compacted and 

460 less porous, and thus inhibit water infiltration (McCarthy et al., 1992; McCarthy et al., 1998; 

461 Jones et al., 2009).

462 In the Ashdown Formation, the strongest evidence for dinosaurs as geomorphic agents 

463 occurs at the smallest scale, often as three-dimensional evidence of ‘dinoturbation’ – the impact 

464 of dinosaur trampling on sediments (Dodson et al., 1980) (Fig. 23). Downturned bedding 

465 around certain footprints sometimes records a synoptic microtopography created by the weight 

466 of a passing dinosaur, with the inner parts of the trace infilled with homogenous unlaminated 

467 fine sediment (Fig. 23). Further evidence for original microtopography may be seen in 

468 instances where desiccation cracks are seen to divert around footprints (Fig. 20C), indicating 

469 that the depressions left by footprints remained waterlogged, likely having accumulating water 

470 as small puddles. Although a minor zoogeomorphic element, such features would have had 

471 defined effects on microhabitats due to differential compaction of the substrate. For example, 

472 this is seen by the mutual avoidance of footprints and invertebrate burrows (Section 4.2.1.), 

473 and, at other dinosaur tracksites, such moisture-retaining footprints can be seen to have acted 

474 as favourable loci for the development of small plant thickets (Fig. 24).

475 Through comparison with analogous modern environments that host large vertebrates it is 

476 likely that dinosaurs acted as geomorphic agents at a larger scale during the fluvial deposition 



477 of the Ashdown Formation. Large herbivores such as cows and hippopotamuses are known 

478 today to promote the formation of small fluvial channels and encourage channel avulsion due 

479 to breaching levees and forming accessory channels by trampling (McCarthy et al., 1992; 

480 Trimble and Mendel, 1995). If such features were to be translated into the sedimentary record, 

481 the only physical signatures would be indirect evidence for a propensity to avulse, such as 

482 stacked crevasse splay sandstones (Smith et al., 1989) as within the LNS, or the resultant 

483 abandoned channel elements. However, it is impossible to diagnose an organismal trigger for 

484 such architectural elements because they may have multiple alternative causes (Jones et al., 

485 2009) and because the direct evidence of the trigger (i.e., footprints organised within trackways 

486 on the channel floor) would have been obliterated by the physical processes of erosion which 

487 they induced. Thus, while modern analogue can tell us that dinosaurs (with similar behaviour 

488 and greater weight than extant fauna) must have promoted channel avulsion during the 

489 Mesozoic, the rock record is unlikely to ever provide a ‘smoking gun’ for specific instances of 

490 dinosaur-induced avulsion.

491 There is evidence for other interaction between the Ashdown Formation dinosaurs and the 

492 rivers that formed landscape components of their habitats. In one stratigraphic horizon below 

493 the LNS, lateral accretion sets are seen to occur in opposite directions, indicating the cross-

494 sectional anatomy of a meander neck cut-off (Fig. 2E). Individual sets containing abundant 

495 fossil woody debris and recording iterations of point bar growth can be seen to be deformed in 

496 discrete packages (Fig. 2E, Fig. 3), suggestive of highly localized sources of soft-sediment 

497 deformation (e.g., by foot-falls). While no high-fidelity footprints are preserved, these 

498 deformation horizons occur on the slopes of inclined strata below the inclined heterolithic 

499 topsets, indicating that they were emplaced below the bankfull level of the river. With no other 

500 trigger that could induce such localized soft-sediment deformation, the only explanation is that 

501 these indicate the wading activity of dinosaurs in the shallow water inner bends of vegetated 



502 river channels. Such instances provide high-resolution snapshots of direct dinosaur interactions 

503 with the ancient Ashdown Formation landscapes, even when our understanding of how 

504 dinosaurs may have actively engineered those landscapes is accessible only through modern 

505 analogue.

506 5. Conclusions

507 • The Lee Ness Sandstone contains a dinosaur ichnofauna with a previously 

508 underestimated diversity.

509 • The ichnofauna reveals a community of ornithopod, theropod, thyreophoran, and 

510 sauropod dinosaurs (styracosternans, basal iguanodontians, gracile ornithopods, 

511 ankylosaurians, stegosaurs, gracile theropods, possible didactyl theropods and possible 

512 sauropods), some of which have limited body fossil evidence within the Cretaceous 

513 Wealden Group. 

514 • The latest discoveries have occurred during an interval of cliff retreat in which the 

515 actively eroding cliff face has recessed beyond a trackway with a concentration of 

516 footprints. 

517 • Some of the footprints contain high fidelity skin impressions, and the varying level of 

518 fine detail observed in the footprint casts attests to the variable consistency of the 

519 substrate, both spatially and temporally.

520 • The stratigraphic restriction of the most abundant and high-fidelity of footprints to the 

521 base of the Lee Ness Sandstone is controlled by favourable factors at the time of 

522 deposition, namely (1) a cohesive sediment substrate that could be imparted with fine 

523 detail; (2) a prolonged interval of sedimentary stasis during which multiple generations 

524 of surface trace footprint could be imparted; and (3) the palimpsesting of further 

525 generations of undertrace footprints after the substrate was interred by the first crevasse 

526 splay sands of the Less Ness Sandstone.



527 • Evidence for dinosaur controls on the sedimentary environment are dominantly small 

528 scale, but larger scale influences (e.g., the promotion of avulsion) are likely from 

529 abductive analogue and fit with the general facies and architectural evidence from the 

530 Ashdown Formation.
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767 Figure Captions

768 Figure 1 – A) A map of south-east England showing the Lower Cretaceous Wealden geology. 

769 The inset map shows the area between Hastings and Fairlight, where the dinosaur ichnofauna 

770 was discovered, in greater detail. The section of coastline in red marks the extent of sea 

771 defences. The section in blue illustrates where the dinosaur footprint casts described in this 

772 study were found. B) A schematic stratigraphic column, illustrating the position of the 

773 Ashdown Formation and Lee Ness Sandstone (red line) within the Lower Cretaceous Wealden 

774 of the Weald sub-basin (after Radley and Allen, 2012). 

775 Figure 2 – A representative overview of the geology of the cliffs near Lee Ness. A) An 

776 annotated photograph highlighting different lithologies and key horizons observed in the cliffs 

777 (2017). B) A sketch stratigraphic log of a 14 m cliff section including the Lee Ness Sandstone. 

778 Grain size scale ranges from mud (m) to coarse sand (c), although the coarsest material in the 

779 logged section is fine sandstone. C) A close up view of the Lee Ness Sandstone (LNS) with 

780 distinguishable yellow and grey layers (2014). A significant overhang has formed beneath it 

781 due to preferential weathering of the underlying mudstone (scale bar 1 m). D) Inset showing a 

782 close up of the base of the Lee Ness Sandstone, where part of a dinosaur footprint cast is 

783 observed in cross section (scale bar 20 cm). E) Cross bedded sandstones recording a neck cut-

784 off event (2017). Major surfaces are picked out by thicker lines. At the base of the section is a 

785 green gleysol (GS), topped by cross-bedded sandstone foresets dipping to the NW (yellow). 

786 This is truncated by overlying cross bedded sandstones dipping to the SE (blue). Above this, 

787 fine, planar laminated sandstones (red) transition upwards into grey mudstone followed by a 



788 red, rooted, spodosol horizon (SS). Several dinosaur footprints are observed in cross section at 

789 different horizons (FP). Flow directions are recorded after Davies et al. (2018). Person for scale 

790 is 1.8 m tall.

791 Figure 3 - Plant fossil material in the Ashdown Formation. A) Coalified bands marking plant 

792 debris beds (2018). B) Large fossilised gymnosperm trunk, indicating the presence of trees on 

793 the alluvial plain (2018). C) Dense root traces in a palaeosol horizon, with major traces labelled 

794 (r.) (2017). The overlying crevasse splay deposit contains Taenidium barretti burrows (Ta.). 

795 D) A carbonaceous plant fossil (arrowed) in association with dinosaur footprints on the base 

796 of the Lee Ness Sandstone (2014). Scale bars 10 cm.

797 Figure 4 – A) A reconstructed series of 5 successive footprints, assigned to a gracile ornithopod 

798 (2017). Note the wide digital impressions and the equivalent length and width of the footprint 

799 casts. This series is associated with putative sauropod footprints (1 manus, 2 pes) in a trackway. 

800 B) a line drawing showing the relative locations of the footprints, with the heel of the prints 

801 highlighted (red). Putative sauropod footprints are labelled Sa. C) A reconstruction of the stride 

802 length of the dinosaur, and separation between the path of the left and right legs. Mean stride 

803 length is 1.86 m. Scale bar 1 m.

804 Figure 5 – A) A dinosaur track viewed in anteroposterior cross section (2017). The impression 

805 cuts through bedding to either side, causing some down-turning (arrows). Bedding underneath 

806 is distorted, curving beneath the footprint. A claw mark at the front of the impression (c.) shows 

807 where the angle of the foot in the sediment has changed during the course of the step. B) A 

808 putative didactyl theropod track viewed in mediolateral cross section (2017). As in A, bedding 

809 is truncated at the sides of the impression and distorted and down-turned beneath (arrows). The 

810 footprint is identified as produced by a didactyl theropod as two clear digit impressions (III-

811 IV) cut deeply into the sediment, with a third, raised impression (II) indicating the elevated 



812 digit II. An example of Taenidium barretti is observed in the sediment next to the footprint 

813 (Ta.). Scale bars 20 cm.

814 Figure 6 – Schematic cartoon showing the variety of substrates that dinosaur footprints could 

815 be emplaced upon, and the different sedimentary expressions of those footprints, as recorded 

816 in the Lee Ness Sandstone. A-C show simplified hypothetical maps of the Ashdown Formation 

817 depositional environment at three successive time intervals of deposition (above), and a vertical 

818 profile through footprint-hosting sediments at the location starred (below). A) Interval 

819 immediately preceding the deposition of the Lee Ness Sandstone: footprint (F1) imparted onto 

820 moist overbank floodplain mud (the pre-Lee Ness substrate). B) Interval subsequent to the 

821 deposition of the first layer of Lee Ness Sandstone, deposited as a crevasse splay of sand 

822 breaches marginal channel levees. During the flood event, footprints on the underlying 

823 substrate are cast (C1) and, following the event, new footprints (F2) compress and extend 

824 downwards as undertraces into the underlying muds (U2). C) An interval after a second flood 

825 event has exploited the same breach point as the first: again, casting (C2) underlying footprints 

826 and establishing as a quiescent substrate after the flood event such that new footprints (F3) and 

827 undertraces (U3) are generated. Note that, although only 2 beds are illustrated, the Lee Ness 

828 Sandstone comprises 13 internal beds in total, suggesting that this process repeated multiple 

829 times until the breach point in the main river channel was healed/abandoned. D) Present day 

830 expression of the record of events in A-C. Amalgamated crevasse splay deposits have lithified 

831 as sandstone and present as a fallen block. The block does not split along internal planes so F2, 

832 F3 and U3 are observable only in vertical profile. Casts and undertraces (C1 and U2) are 

833 observable as distinct footprints on the base on the bed, but indented footprints on the top of 

834 the underlying mudrock have been destroyed due to the fissility and erodibility of that 

835 lithology.



836 Figure 7 – A) Theropod footprint morphotype A – tridactyl footprint cast attributed to a 

837 coelurosaur, with elongate digit III and a faint heel impression (2017). Digits narrow distally 

838 and have sharp ends, but no clear claw marks. B) Theropod footprint morphotype B – tridactyl 

839 footprint cast attributed to a coelurosaur (2014). Digits are narrow and elongate, maintaining a 

840 consistent width for the whole length of the digit. Cast has no heel pad impression, and a long 

841 digit III. C) Theropod footprint morphotype C – small tridactyl footprint cast attributed to a 

842 maniraptoran (2014). Digit III is significantly longer than digits II and IV. D) Theropod 

843 footprint morphotype D – footprint cast showing two clear narrow, elongate digit impressions, 

844 and a medially situated hallux prod mark (2014). The outline of the footprint cast is highlighted 

845 in white, and digits I, III and IV are identified. This cast has been attributed to a didactyl 

846 theropod. Scale bars 5 cm.

847 Figure 8 – A) Caririchnium magnificum – right pes cast preserved in positive hyporelief, with 

848 associated manus cast (man.) (2014). B) C. isp - wide pes cast with large heel pad, associated 

849 with desiccation cracks (2015). Scale bars 10 cm.

850 Figure 9 – The 2 examples of the unnamed Iguanodontipodidae trace observed in the Lee Ness 

851 Sandstone (2018). A and B show photographs of the footprint casts, with large heel pad and 

852 splayed, rounded digit impressions, and clear hallux prod marks. C and D show the 

853 corresponding line drawings. Scale bars 10 cm.

854 Figure 10 – A) Tetrapodosaurus isp. morphotype A – tetradactyl pes cast, with claw marks and 

855 interdigital skin impressions (2018). Footprint has elongate, rounded digits and a rounded heel 

856 impression. B) T. isp. morphotype B – tetradactyl pes cast with claw marks and an elongated, 

857 angular heel impression (2014). C) Stegopodus manus – right manus cast with elongate, 

858 rounded digits I-III and a medially positioned short digit IV with claw impression (2014). Digit 



859 I is turned slightly turned in. D) Thyreophoran Footprint – pentadactyl right manus cast with 

860 short, rounded digits and no heel impression (2015). Digits numbered I-V. Scale bars 10 cm.

861 Figure 11 – A) Possible sauropod manus (man.) and pes footprint casts associated with a gracile 

862 ornithopod footprint cast, as reported in Jarzembowski et al. (2015). Casts are highly indistinct 

863 with few distinguishing features (2017). B) A similar large amorphous cast preserved in 

864 positive hyporelief. Whilst it is possible that this records a sauropod footprint, it is also possible 

865 it is an indistinct undertrace of another footprint morphotype (2016). Scale bars 10 cm.

866 Figure 12 – Dinosaur skin textures on footprint casts from the base of the Lee Ness Sandstone 

867 (2016). A, B) Polygonal skin texture on a theropod footprint cast. A) The full extent of the 

868 texture on the toe of the footprint cast. Black box shows the extent of B. B) A close up of the 

869 skin texture in A. It is comprised of small, raised sub-rounded polygons. Polygons are fairly 

870 uniform with small differences in eccentricity. C, D) Skin texture on an ornithopod footprint 

871 cast. C) Extent of the skin texture on the side of the footprint cast. Black box shows the extent 

872 of D. D) A close up of the skin texture in C. Polygons are more pronounced than those in B, 

873 with a greater microtopography but similar size and shapes. Scale bars 1 cm.

874 Figure 13 – Striations on the heels of footprint casts from the base of the Lee Ness Sandstone. 

875 A) Caririchnium isp. with striations extending for 7 cm at the back of the heel (2014). B) A 

876 close up of the striations in A. Striations are continuous along their full length, and 

877 approximately evenly spaced. C) A theropod footprint cast with striations at the back of the 

878 heel, associated with skin textures (2016). D) A close up of the striations and associated skin 

879 textures. Striations have approximately the same width as scale impressions towards the back 

880 of the heel. Scale bars 10 cm.

881 Figure 14 – A graphic representation of the size of footprint casts with and without skin 

882 impressions, from all examples of C. magnificum. The four examples in which skin impressions 



883 were observed occur at the bottom end of the observed size range, and the average footprint 

884 dimensions are significantly smaller than the overall average.

885 Figure 15 – An illustrated record of known dinosaur footprint diversity in the UK. The Lee 

886 Ness Sandstone (Wealden Gp - Sussex) records the greatest diversity in the Cretaceous, and 

887 the greatest diversity of thyreophoran footprints. (Delair and Sarjeant, 1985; Ensom, 2002; 

888 Clark et al., 2004; Day et al., 2004; Clark et al., 2005; Marshall, 2005; Whyte et al., 2007; 

889 Lockwood et al., 2014)

890 Figure 16 – A graphic representation of footprint dimensions of A) ornithopod and B) theropod 

891 footprint casts reported herein. Note the wide scatter of dimensions observed in ornithopod 

892 footprint dimensions, suggesting a large number of unique tracemakers. The smaller scatter 

893 and clumping of data points observed in theropod footprint casts suggests a smaller proportion 

894 of unique tracemakers.

895 Figure 17 – A section of cliff exposure viewed in 2014 and again in 2018. Over the course of 

896 4 years a large amount of material has collapsed from the rock face. Dinosaur footprints are 

897 observed in cross section on several horizons (FP). Underlying gleysol (GS) and overlying 

898 spodosol (SS) are highlighted. Two horizons are highlighted to aid in comparison of the 

899 photographs, red at the base of the spodosol, and yellow within the heterolithic lateral accretion 

900 sets. This panel is illustrated in greater detail in figure 4. Person for scale is 1.8 m tall.

901 Figure 18 – A record of the alterations to dinosaur footprint casts exposed to one year of 

902 weathering. Feb 2016) Caririchnium isp. first seen in February 2016 when they had freshly 

903 fallen from the cliff. Feb 2017) The same footprint casts observed a year later. Note the absence 

904 of detailed textures and the minor change in shape.



905 Figure 19 – A diagrammatic summary of the exhumation of trackways from the base of the Lee 

906 Ness Sandstone showing how, over decadal timescales, episodic cliff retreat alternately yields 

907 footprint-bearing and footprint-barren fallen blocks because of the concentration of high-

908 fidelity footprints into particular tracts of the underlying substrate.

909 Figure 20 – A) A dinosaur footprint cast occurring on a rippled surface (2017). B) 

910 Discontinuous desiccation cracks in positive hyporelief (DC), in association with a theropod 

911 footprint cast (2015). C) Desiccation cracks (DC) between digits II and III, and digit II and heel 

912 pad impressions of an ornithopod track (2017). This suggests the desiccation occurred after the 

913 formation of the tracks, and the morphology of the cracks was influenced by the footprint 

914 impressions. D) A muddy injectite between digit impressions II and III of a theropod footprint 

915 cast (2015). This illustrates dewatering of the soft underlying substrate associated with the 

916 dinosaur tracks. Scale bars 10 cm.

917 Figure 21 – A) Taenidium barretti – unlined meniscate burrows occurring on the base of a 

918 bedding surface (2017). B) Palaeophycus striatus – simple horizontal burrows showing 

919 occasional striations along the length (arrow) (2017). C) P. striatus – A densely burrowed 

920 surface illustrating abundant false branching due to overprinting of successive burrows (2017). 

921 D) Arenicolites isp. – paired burrows on the base of a bedding surface (Ar.), in association with 

922 T. barretti (2017). (Ta.) E) Ophiomorpha nodosa – sub-horizontal pellet lined burrow (Op.) on 

923 the base of the Lee Ness Sandstone (2018). F) Cochlichnus anguineus – A short length of 

924 smooth, non-branching sinusoidal burrow, on the base of the Lee Ness Sandstone (2017). Scale 

925 bars 2 cm.

926 Figure 22 – The record of dinosaur footprints in different mediums. A) Footprints on a mixed 

927 sand-mud substrate (2014). Sandstone (S) bedding is downturned and truncated, whereas 

928 mudstone (M) deforms into lenses. B) Footprints on a sand substrate (2014). Where the sand 



929 contains enough moisture to retain the shape of a footprint bedding is sharply downturned 

930 (DTB) and truncated at the edges of the trace, and the centre is infilled with homogenous 

931 sediment. C-E) Footprints on a mud substrate, with increasing softness from C-E. C) On a 

932 relatively firm substrate, fine detail of the foot is recorded such as skin impressions (Sk.) and 

933 claw marks (Cl.) (2016) D) On a softer mud substrate the sediment behaves in a more fluid 

934 manner (2015). In the photographed example mud is squeezed between two of the digits (Mud 

935 esc.), although the sediment has enough integrity to accurately record the footprint. E) On a 

936 very soft mud substrate the act of walking on the substrate churns the sediment, homogenizing 

937 bedding but leaving no clearly defined individual footprints (2014).

938 Figure 23 – A) A dinosaur footprint cast observed in cross section. The bedding around the 

939 edges of the footprint is sharply downturned (arrows) (2017). An example of T. barretti is seen 

940 in association (Ta.). B) A line drawing highlighting the footprint. Towards the centre the infill 

941 is totally structureless (SI), with downturned bedding surrounding the print (DTB). The 

942 footprint widens with depth, suggesting that close to the surface the sediment contracted when 

943 the foot was removed. Scale bar 20 cm.

944 Figure 24 – A) A dinosaur footprint from the Scalby Formation observed in cross section, 

945 creating a topographic low in which a thicket of small plants has grown (2016). Black box 

946 shows the area in B. B) A close up of the footprint with small plant stems preserved in the 

947 overlying bedding. Beds above dip towards the centre of the footprint, creating a low point in 

948 the original topography. C) A line drawing highlighting the features of the footprint and plant 

949 thicket. Red line shows the outline of the footprint, infilled with homogenous fine sediment. 

950 Black lines show the downturned and truncated bedding to either side of the footprint (DTB), 

951 where the substrate was penetrated. Blue lines show the overlying bedding, dipping towards 

952 the centre of the footprint creating a topographic low. Green lines show small plant stems which 

953 grew in the hollow that formed above the footprint. Scale bars 20 cm.



954 Table 1 – Dinosaur footprint diversity

955 Table 2 – Rates of cliff retreat

956 Table 3 – Invertebrate ichnology



















































Morphotype Abundance

Abundance of 

skin 

impressions

Length/ cm Width/ cm

Ornithopod 56 11
18.3 – 61

average 34.7

16 – 51

average 33.8

Caririchnium 

magnificum
31 4

18.3 – 61

average 36

20.1 – 51

average 35.7

Caririchnium isp. 18 7
19 – 50.2

average 35.1

16 – 44.2

average 32.4

Iguanodontipodidae 2 0
19 – 22

average 20.5

24 – 25

average 24.5

Gracile ornithopod 5 0
31.3 – 33.8

average 32.8

28.8 – 36

average 32.7

Theropod 19 0
2.1 – 33.1

average 21.7

1.8 – 30.2

average 18.8

Theropod morphotype A 8 0
17 – 33.1

average 24.1

18.2 – 30.2

average 23

Theropod morphotype B 7 0
13 – 26.2

average 20.6

11.2 – 24.6

average 16.8

Theropod morphotype C 1 0 2.1 1.8

Theropod morphotype D 3 0
19 – 30

average 24.5

13 – 25.6

average 17.9

Thyreophoran 5 3
25 – 34

average 29

26 – 33

average 29.2

Tetrapodosaurus isp. 

(A)
2 2

25 – 27

average 26

26 – 28.8

average 27.4

Tetrapodosaurus isp. 

(B)
1 0 30 33

Stegopodus manus 1 1 34 29

Unnamed thyreophoran 1 0 18 28

Sauropod 3 0
58-61

average 59.5

49-51

average 50

A record of the dimensions of all new dinosaur footprint casts observed in the Ashdown Formation. 

Footprints are divided by ichnospecies and ordered by abundance within their tracemaker clade.



Period of cliff 

retreat between 

footprint finds

Minimum 

retreat (m)

Maximum 

retreat (m)

Average retreat 

(m)

Maximum 

short-term 

retreat (m)

1862-1918 (56 yrs) 8.40 43.12 25.76 -

1918-1981 (63 yrs) 9.45 48.51 28.98 -

1981-1991 (10 yrs) 1.50 7.70 4.60 123.40

1992-2014 (22 yrs) 3.30 16.94 10.12 271.48

Potential distance between dinosaur trackway sites in the Lee Ness Sandstone, based on different rates 

of cliff retreat. Maximum rate of retreat is 77 cm/year, minimum rate of retreat is 15 cm/year, average 

rate of retreat is 46 cm/year, from Cleeve and Williams (1987). The maximum short-term retreat is 

taken from the 1996-2002 cliff retreat (1,234 cm/year) from Rother District Council (2012), considering 

only periods of retreat under 25 years.



Ichnoassemblage Ichnotaxa Known 

Examples

Description Likely tracemaker Figure

Arenicolites 

isp.

Rare within 

fallen blocks of 

the LNS

Paired burrow shafts (8-12 mm in diameter) separated by 21-44 

mm and viewed on bed surfaces. No discernible internal 

structure or spreite. Infill similar to the host sediment.

Vermiform organism 

(Häntzschel, 1975)

18D

A
Taenidium 

barretti

Common 

throughout 

Ashdown Fm

 Sub-vertical to sub-horizontal, unlined, sub-cylindrical, 

backfilled burrow. Burrow lengths range from 30-75 mm and 

burrow widths from 9-11 mm. 

Small arthropods or 

vermiform organisms 

(Shillito & Davies, 2017).

18A, D

Cochlichnus 

cochi

Single example 

on base of LNS

40 mm-long smooth, non-branching, sinusoidal burrow of 

uniform 5 mm width.

Annelids (cf. Hasiotis, 

2002) or insect larvae 

(cf. Metz, 1987).

18F

Ophiomorpha 

nodosa 

Three examples 

on base of LNS

Sub-cylindrical, sub-horizontal, unbranched pellet lined burrows 

(diameter 12-15 mm and length 50-80 mm).

Crustaceans (Frey et al., 

1978)

18E

Palaeophycus 

striatus 

Common 

throughout 

Ashdown Fm 

and abundant 

on base of LNS

Unbranching horizontal burrows with striated ornamentation, 

preserved in positive hyporelief. Burrows are approximately 

cylindrical, with width 1-3 mm wide and length 6-28 mm long 

and consist of a structureless infill of the same lithology as the 

host rock. False branching is common, due to the overprinting 

of multiple burrows in dense assemblages. 

Vermiform organism 

(Pemberton and Frey, 

1982).

18B, C

B

T. barretti Common 

throughout 

Ashdown Fm

 Sub-vertical to sub-horizontal, unlined, sub-cylindrical, 

backfilled burrow. Burrow lengths range from 30-75 mm and 

burrow widths from 9-11 mm. 

Small arthropods or 

vermiform organisms 

(Shillito & Davies, 2017).

18A, D

A description of all invertebrate trace fossils observed in the Ashdown Formation. A total of five different ichnospecies were observed split across two 

commonly observed ichnoassemblages.


