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Abstract— The aim of this paper is tracking Parkinson’s
disease (PD) progression based on its symptoms on vocal system
using Unified Parkinsons Disease Rating Scale (UPDRS). We
utilize a standard speech signal feature set, which contains
6373 static features as functionals of low-level descriptor
(LLD) contours, and select the most informative ones using
the maximal relevance and minimal redundancy based on
correlations (mRMRC ) criteria. Then, we evaluate perfor-
mance of Gaussian mixture regression (GMR) and support
vector regression (SVR) on estimating the third subscale of
UPDRS, i.e., UPDRS: motor subscale (UPDRS-III). Among
the most informative features, a list of features are selected
after redundancy reduction. The selected features depict that
LLDs providing information about spectrum flatness, spectral
distribution of energy, and hoarseness of voice are the most
important ones for estimating UPDRS-III. Moreover, the most
informative statistical functions are related to range, maximum,
minimum and standard deviation of LLDs, which is an evidence
of the muscle weakness due to the PD. Furthermore, GMR out-
performs SVR on compact feature sets while the performance
of SVR improves by increasing number of features.

I. INTRODUCTION

Parkinson’s disease (PD) is one of the most common neu-
rodegeneration disorders resulting from death of dopamine-
generating cells. Dopamine is information carrier for com-
munication among nerve cells responsible for relaying mes-
sages that control body movement [1]. Lower amount of
available dopamine for release decreases the achievable rate
of this communication [2]. Hence, this disease mainly affects
the motor system with reducing range of movements and its
symptoms include tremor, rigidity and loss of muscle control.
Along with movement disorders in other parts of the body,
PD also affects the muscles in the face, mouth and throat
that are used in vocal system. Main PD symptoms present
in speech contain weak, hoarse, nasal or monotonous voice,
imprecise articulation, slow or fast speech, difficulty starting
speech, impaired stress or rhythm, stuttering and tremor [3].
Hence, speech signal can be used for PD diagnosis and
tracking the progression of this disease.

Unified PD rating scale: motor subscale (UPDRS-III) is
a metric of PD progress, which reflects the presence and
severity of PD symptoms [4]. Finding a statistical mapping
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between speech properties and UPDRS-III is shown to be
feasible to some degree. Early studies on this problem used
sustained vowel recordings to extract a set of dysphonia
measurements [5], [6], where phonation and articulation
related features are mainly used. However, as it is shown
in [7], [8], a reading task is more discriminative for au-
tomatically assessing the severity of PD since it contains
prosody variations. Hence, the released dataset by [8], which
contains 42 speech tasks with different durations for each PD
patient, provides appropriate context for PD telemonitoring
task. This dataset is analyzed in different studies such as
[9], [10], where heuristic regression methods such as random
forest and deep neural network are applied for estimating
UPDRS-III. However, the most informative features and
discriminative statistical functions used to summarize them
in estimating severity of PD are not studied in the literature.

In this paper, we use the standard feature set provided
by recent INTERSPEECH Paralinguistic Challenges [11],
[12] and analyze the most informative features for estimating
UPDRS-III based on the linear correlation metric. Moreover,
we explore the relationship between these features and PD
symptoms. For these aims, the maximal relevance and mini-
mal redundancy based on correlations (mRMRC) is utilized
as the feature selection mechanism [13]. Then, support
vector regression (SVR) and Gaussian mixture regression
(GMR) methods are used for mapping the selected features
to the UPDRS-III. Based on experimental results, we attain
more accurate estimation of UPDRS-III with a less complex
system by using the proposed feature reduction mechanism.

The remainder of this paper is organized as follows. In
Section II, we present the database and standard feature set
used in this study. Then, we explain the feature selection
approach, regression mechanisms and the accuracy metric in
Section III. We explore the most informative features for PD
telemonitoring and report the performance of our method in
Section IV. Finally, we conclude the paper in Section V.

II. DATABASE AND FEATURE SET

Recordings of the training and test sets are taken from
[8], which includes a total of 50 patients with Parkinsons
disease (25 female, 25 male), where 35 of the patients are
included in the training set, and the remaining 15 comprise
the test set. Each speaker performed a total of 42 speech
tasks including 24 isolated words, 10 sentences, one reading
text, one monologue, and the rapid repetition of the syllables
/pa-ta-ka/, /pa-ka-ta/, and /pe-ta-ka/. The neurological state of
the patients was evaluated by an expert neurologist according
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TABLE I
THE CATEGORIZATION OF LLDS.

Group Low-Level Descriptors

A

Loudness, modulated loudness, MFCC coefficients 1-14, RASTA
filtered auditory band levels (Rfilt) 1-26, Energy of frequency

bands 250-650 Hz and 1-4 kHz,root mean square (RMS)
energy, zero-crossing rate (ZCR), spectral skewness, spectral
variance, spectral sharpness, spectral harmonicity, spectral
entropy, spectral centroid, spectral flux, spectral kurtosis,

spectral slope, spectral roll-off point (ROP) 0.25, 0.5, 0.75, 0.9.

B Fundamental frequency (F0), voicing probability, Jitter, delta
Jitter, Shimmer, logarithmic harmonics to noise ratio (HNR)

C Ratio of nonzero values and segment length

to the UPDRS-III metric, whose values span over 5 to 92,
where larger values represent severe motor impairment.

To extract the most relevant features of speech to PD
symptoms, we use the provided feature set in the INTER-
SPEECH’15 Paralinguistic Challenge, which contains 6373
static features as functionals of low-level descriptor (LLD)
contours [12]. These features are derived from three groups
of LLDs as shown in Table I, where group A contains energy,
spectral, and cepstral LLDs, group B LLDs are related to the
source/excitation signal and LLDs in group C are defined
based on the voiced/unvoiced segments. In addition to these
LLDs, their first order delta regression coefficients are also
used to represent the dynamic LLDs. The 6373 static features
are defined as a variety of statistical functionals, which are
applied on the LLDs. Some examples of these functions
are mean, standard deviation, minimum, maximum, range,
skewness, kurtosis and the lower and upper quartiles [14].

III. METHODOLOGY

In this section, we first explain our feature selection
method, i.e., mRMRC . Then, we represent the regression
mechanisms used for mapping the selected features to the
UPDRS-III label. Finally, we describe metrics that we use
for evaluating the performance of our UPDRS-III estimator.

A. Feature Selection Method

Our objective is to select features with the highest rele-
vancy to UPDRS-III and minimal redundancy, where rele-
vancy can be characterized in terms of correlation or mutual
information. Estimation of the mutual information requires
the distribution of features and label, which in turn needs
large data. Hence, we utilize Pearson correlation to measure
the linear relevancy. Based on [13], we have two criteria, (i)
maximizing the correlation between feature, xi, and UPRS-
III label, y, and (ii) minimizing the average cross-correlation
between selected features. Thus, we select features one by
one to maximize following objective function,

mRMRC(i) = |corr(xi, y)| − 1

M − 1

∑
xj∈Sm

j 6=i

|corr(xi, xj)|,

where Sm denotes set of selected features and |corr(xi, y)|
is the absolute value of the Pearson correlation between xi

and y. This incremental search method leads to the optimal
feature set based on the aforementioned criteria [13]. We
define Sm,NF

as the final set of NF selected features.

B. Regression Methods

To estimate the UPDRS-III values based on the features
in Sm,NF

, we apply linear regression as ŷ = β̄T x̄+b, where
x̄ is the vector containing features in Sm,NF

, β̄ contains the
weight of each feature and b is the offset of regression. We
utilize two different regression methods, i.e., SVR and GMR,
which are described in the following.

1) Support Vector Regression: The objective of SVR is
to have the linear regression as flat as possible. Hence, it
minimizes the norm value (β̄T β̄) while all residuals have a
value less than a given threshold, ε, i.e.,

min J(β̄) = 0.5β̄T β̄

s.t. |yn − β̄T x̄n − b| ≤ ε ∀n,

where x̄n and yn are the n-th observation of features and
label in training set, respectively. It is possible that no such
function ŷ exists to satisfy these constraints for all points,
hence, slack variables ξn and ξ∗n are defined for each point
and the objective function is changed to

min J(β̄) = 0.5β̄T β̄ + C

NF∑
n=1

(ξn + ξ∗n)

s.t. β̄T x̄n + b− yn ≤ ε+ ξ∗n ∀n,
yn − β̄T x̄n − b ≤ ε+ ξn ∀n,

ξn, ξ
∗
n ≥ 0 ∀n,

where the constant C is a positive parameter that controls
the tolerable penalty caused by observations that lie outside
the margin defined by ε [15].

2) Gaussian Mixture Regression: Gaussian mixture model
(GMM) is a classic parametric model used to represent mul-
tivariate probability distributions. It states that any general
distribution of X̄ can be approximated by sum of weighted
Gaussian distributions as P (X̄ ) =

∑L
l=1 wlN (X̄ ; µ̄l,Σl),

where L is the total number of Gaussian mixtures,
N (X̄ ;µl,Σl) represents the multivariate Gaussian distribu-
tion with mean µ̄l and covariance matrix Σl, and wl ≥ 0 is
the weight of l-th mixture, which satisfies

∑L
l=1 wl = 1.

GMR is a GMM-based probabilistic mapping approach,
used in our work to estimate the UPDRS-III label based on
selected features by mRMRC . In GMR, feature set and label
are assumed to be jointly Gaussian, then the mean square
estimation of label within an isolated Gaussian mixture is
defined as, ŷl = µy,l+Σyx̄,l(Σx̄x̄,l)

−1(x̄−µx̄,l), where Σyx̄,l

is the cross-covariance matrix between the features in Sm,NF

and UPDRS-III label for the l-th mixture. Then, the GMR
based estimation of the label over all Gaussian mixtures can
be achieved as,

ŷ =

L∑
l=1

P (γl|x̄)ŷl,

where γl is defined as the l-th Gaussian mixture and P (γl|x̄)
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Fig. 1. The correlation among features and UPDRS-III for training and
test sets, where features are sorted based on their correlation in training set.

is the probability of the l-th Gaussian mixture given the
observation x̄ and is derived as follows.

P (γl|x̄) =
N (x̄; µ̄x̄,l,Σx̄x̄,l)∑L
i=1N (x̄; µ̄x̄,i,Σx̄x̄,i)

.

C. Accuracy Metric

We define the correlation between estimated values and
UPDRS-III labels as the accuracy metric of the regression.
For this purpose, we use two different correlation metrics as,
• Pearson correlation, i.e., Corr(ŷ, y), and
• Spearman correlation, which is defined as the Pearson

correlation among rank of ŷn and yn, where the rank
of yn is its index after sorting all observations of label.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we investigate the importance of LLDs and
applied statistical functions for PD telemonitoring. Then, we
report the performance of the regression methods.

A. Feature Set Analysis

To investigate the most relevant features to PD, we study
the absolute value of the correlation among each feature and
level of PD depicted by UPDRS-III metric, where higher
correlations show stronger linear dependency. In Fig. 1,
all features are sorted based on their correlation with the
UPDRS-III in training set. Same pattern is seen for the
correlations of these sorted features in test set as depicted
in Fig. 1. Hence, the correlation metric is consistent for
training and test set. Moreover, the correlation decreases
dramatically among more informative features while after
knee point the reduction rate of correlation between label and
features decreases. We use the knee point, whose position is
743 in sorted features based on the training set, to divide
features to two categories as more and less informative.

The summation of the correlation between UPDRS-III
and all features defined based on an individual LLD depicts
the importance of that LLD in estimating UPDR-III. This
summation is calculated over the more informative features
defined based on knee point, i.e., 743 features, and shown in
Fig. 2(a). The most relevant LLDs to PD can be listed as:
• RASTA filtered auditory band levels 5-11 and 13-18,
• MFCC coefficients 2, 4 and 12, and
• Loudness and modulated loudness.

The auditory bands depict the energy perception in human
auditory system for each frequency band. After applying

RASTA filter to these auditory bands, near stationary and
high frequency noises are attenuated [14], hence, the im-
pacts of PD symptoms on low and high auditory bands are
filtered. Moreover, loudness and modulated loudness LLDs
are affected by PD, since patient’s voice volume reduces as
a result of decreased muscle-movements range.

However the LLDs defined in Group C, i.e., ratio of
nonzero values and segment length, can be used as a measure
of speed of the speaker, which is affected by PD. These
features cannot be used on our dataset to extract meaningful
information for estimating level of PD since the duration of
majority of recordings is short ( 82% less than 4 sec), where
the patients are asked to repeat a given word or syllabus.

We also analyze the importance of features defined by
applying statistical functions on the delta regression of
LLDs. The summation of correlations for features defined
by directly applying statistical functions on LLDs is 91.7
while this summation for features defined based on the delta
regression of LLDs is 40.8. Hence, the temporal variation of
LLDs is less correlated to PD symptoms compared to LLDs.

To extract the most important statistical functions of LLDs
for estimating level of PD, we calculate sum of correlations
for 743 features that have highest correlation with UPDRS-
III for different statistical functions. As shown in Fig. 2(b),
the most informative statistical functions are related to the
range, maximum, minimum and standard deviation of the
LLDs since PD makes the muscles weak by reducing their
range of movement. On the other hand, the least rele-
vant statistical functions to PD are position of the maxi-
mum/minimum value relative to the input length, linear and
quadratic regression coefficients, temporal centroid, kurtosis,
LP analysis gain and coefficients, range of valley and peak
amplitude relative to the arithmetic mean, ratio of nonzero
values, and all functions applied on segment length LLD.

Since cross-correlation exists among features, selecting
ones that have highest correlation with the UPDRS-III does
not lead to the best feature selection mechanism. Cross
correlation of 10 features that have highest correlation with
UPDRS-III metric for training set is shown in Fig. 3. As it
is depicted in Fig. 3, first and second features are highly
correlated since they are representing same statistic, i.e.,
flatness, on same type of LLD, i.e., RASTA filtered auditory
band levels, for two adjacent bands that are not uncorrelated,
hence, the improvement achieved in estimating UPDRS-III
by selecting both of them is not significant compared to
selecting one of them. This redundancy between selected
features is minimized by using mRMRC feature selection
technique. In Fig. 4, the mRMRC values achieved by
incremental search for feature selection are shown, where
the features are sorted based on their mRMRC value at
training set. As it is depicted in Fig. 4, the mRMRC values
achieved by incremental search over both training and test
set follows same pattern as the results for training set. Hence,
utilizing selected features based on the training set will lead
to proper feature set for estimating UPDRS-III in test set.

Finally, we study the structure of selected features by
mRMRC . For this objective, we compare the selected
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Fig. 2. Summation of correlation between UPDRS-III metric and features in Sm,743 defined by applying (a) different statistical functions on an individual
LLD and (b) a statistical function on different LLDs.
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Fig. 3. The cross-correlation among 10 features with highest correlation
with UPDRS-III.

features based on mRMRC by features that have highest
correlation with label. The first 50 features selected by this
method are defined based on the following LLDs:
• MFCC coefficients 1-4,7, and 12-14,
• RASTA filtered auditory band levels 5,8,9,10,14,
• Spectral ROP 0.25, 0.5 and 0.75,
• Spectral slope, variance and sharpness, and
• Jitter.
Comparing these LLDs and ones that have maximum

correlation with UPDRS-III shown in Fig. 2(a), loudness
and modulated loudness are not selected here. The main
reason is that they are defined based on MFCC coefficients
and RASTA filtered auditory spectrum [14], hence they
are highly correlated with other selected LLDs. On the
other hand, the spectral ROP 0.25, 0.5, 0.75 are selected
since the volume of voice decreases as a result of PD.

Moreover, MFCC coefficients are dominant in Sm,50, while
the RASTA filtered auditory bands have higher correlation
with UPDRS-III metric as shown in Fig. 2(a). The main
reason is existence of lower cross-correlation among MFCC
coefficients compared to RASTA filtered auditory bands [16].

Low and high MFCC coefficients selected in Sm,50 depict
the flatness in spectrum and amount of variation, respectively.
Hence, the reason of their importance is spectrum frequency
changes that occurs to the speech under PD, i.e., symptoms
such as hoarse, nasal or monotonous voice, imprecise artic-
ulation, impaired stress or rhythm and stuttering.

Although Jitter, spectral slope, variance and sharpness are
not among LLDs that have highest correlation with UPDRS-
III, they are selected by mRMRC , hence, they have lower
correlation with other LLDs in Sm,50. Another aspect of
Jitter is that it can be considered as an indicator of voice
hoarseness [17], hence it can be used for PD telemonitoring.

Only 4 LLDs defined based on delta regression coefficients
are in Sm,50. Hence, the information provided by delta
regression coefficients of LLDs for estimating UPDRS-III is
highly correlated with the information achieved by directly
applying statistical function on LLDs.

B. UPDRS-III Estimation
We apply GMR and SVR for mapping Sm,NF

to UPDRS-
III. We select the parameters of regression methods by max-
imizing the correlation metric over 4-fold cross validation
(CV) of training set and adjust them for test set. We choose
L ∈ {1, 2, ..., 8}, C ∈ {10−5, 10−4, 10−3, 10−2} and fixed
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TABLE II
CORRELATION OF ESTIMATED UPDRS-III WITH ITS TRUE VALUE.

Train CV Train / TestMethod NF Pearson Spearman Pearson Spearman

mRMRc+GMR 18 0.5117 0.5192 0.4883 0.4418
mRMRc+SVR 50 0.5189 0.5748 0.4793 0.4269
mRMRc+SVR 1000 0.4514 0.5239 0.2719 0.52
Baseline 6373 0.3291 0.4342 0.3407 0.4936

ε = 1. Moreover, we normalize the features to reach zero
mean and unit variance variables.

The correlation between estimated UPDRS-III and its true
value using GMR or SVR is tabulated in Table II. We are
not able to apply GMR on large feature sets because of small
sample size problem in covariance estimation. Hence, first,
we search over 50 best features based on the mRMRC

criteria and find the number of features and regression
parameters that give best estimation results in training set.
For GMR, 18 features are selected while for SV R the
performance improves consistently by increasing number of
selected features, i.e., NF , until 50. Thus, we conclude that
GMR leads to higher performances based on both Pearson
and Spearman correlations with lower number of features in
Sm,NF

.
In [12], SVR is applied over the set of all features, which is

considered as baseline method in Table II. However, adding
another feature to Sm,NF

will not improve mRMRC for
number of selected features greater than 1000 as depicted in
Fig. 4. By comparing results of baseline and applying SVR
over Sm,1000, we observe that performance of estimation
based on the Spearman correlation metric drops by increasing
NF . Moreover, increasing NF from 50 to 1000 improves the
performance based on the Spearman correlation while the
Pearson correlation decreases. By looking at the estimated
values, we observe very large rare numbers, which can be
considered as outliers and Pearson correlation is sensitive to
outliers, however, the Spearman correlation is robust.

V. CONCLUSION

In this paper, we studied the impacts of PD symptoms on
features extracted from speech signal and utilized regression
techniques to estimate level of severity of disease, which is
measured by UPDRS-III. For this aim, we used the standard
set of features provided in the literature, which contains 6373
static features as functionals of LLDs, and applied mRMRC

feature reduction technique to select ones that have highest

correlation by UPDRS-III and lowest cross-correlation. Then,
we utilized GMR and SVR for estimating UPDRS-III based
on the selected features. Our feature analysis depicted that
LLDs providing information about spectrum flatness, spectral
distribution of energy, and hoarseness of voice are the most
important ones for estimating UPDRS-III. Moreover, the
most informative statistical functions are related to the range,
maximum, minimum and standard deviation of LLDs since
PD makes the muscles weak by reducing their range of
movement. Furthermore, based on the experimental results,
we concluded that (i) GMR outperforms SVR for lower
number of selected features, and (ii) increasing number
of selected features to 1000 and applying SVR improves
the performance of estimating UPDRS-III based on the
Spearman correlation metric while further increase in number
of selected features decreases the accuracy.

REFERENCES

[1] O. Hornykiewicz, “Biochemical aspects of parkinson’s disease,” Neu-
rology, vol. 51, no. 2 Suppl 2, pp. S2–S9, 1998.

[2] H. Ramezani and O. B. Akan, “Rate region analysis of multi-terminal
neuronal nanoscale communication channel,” in 17th IEEE NANO
Conf. IEEE, 2017.

[3] L. O. Ramig et al., “Speech treatment for parkinsons disease,” Expert
Review of Neurotherapeutics, vol. 8, no. 2, pp. 297–309, 2008.

[4] G. T. Stebbins and C. G. Goetz, “Factor structure of the unified
parkinson’s disease rating scale: motor examination section,” Move-
ment Disorders, vol. 13, no. 4, pp. 633–636, 1998.

[5] A. Tsanas et al., “Enhanced classical dysphonia measures and sparse
regression for telemonitoring of parkinson’s disease progression.” in
ICASSP, 2010, pp. 594–597.

[6] ——, “Accurate telemonitoring of parkinson’s disease progression by
noninvasive speech tests,” IEEE Tran. on Biomedical Engineering,
vol. 57, no. 4, pp. 884–893, 2010.

[7] A. Bayestehtashk et al., “Fully automated assessment of the severity
of parkinson’s disease from speech,” Computer speech & language,
vol. 29, pp. 172–185, 2015.

[8] J. R. Orozco-Arroyave et al., “New spanish speech corpus database for
the analysis of people suffering from parkinson’s disease.” in LREC,
2014, pp. 342–347.

[9] A. Zlotnik et al., “Random forest-based prediction of parkinson’s
disease progression using acoustic, asr and intelligibility features,” in
INTERSPEECH, 2015.

[10] S. Hahm and J. Wang, “Parkinson’s condition estimation using speech
acoustic and inversely mapped articulatory data,” in INTERSPEECH,
2015.

[11] B. Schuller et al., “The interspeech 2016 computational paralinguis-
tics challenge: Deception, sincerity & native language,” in INTER-
SPEECH, 2016.

[12] ——, “The interspeech 2015 computational paralinguistics challenge:
Nativeness, parkinsons & eating condition,” in INTERSPEECH, 2015.

[13] H. Peng et al., “Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy,” IEEE Tran.
on pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226–
1238, 2005.

[14] F. Eyben, Real-time speech and music classification by large audio
feature space extraction. Springer, 2016.

[15] A. Smola and V. Vapnik, “Support vector regression machines,”
Advances in neural info. processing systems, vol. 9, pp. 155–161, 1997.

[16] K. K. Paliwal, “Decorrelated and liftered filter-bank energies for robust
speech recognition.” in Eurospeech, vol. 99, 1999, pp. 85–88.

[17] T. Jones et al., “Objective assessment of hoarseness by measuring
jitter,” Clinical Otolaryngology & Allied Sciences, vol. 26, no. 1, pp.
29–32, 2001.


