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Abstract—Communication among neurons, known as neuro-
spike communication, is the most promising technique for real-
ization of a bio-inspired nanoscale communication paradigm to
achieve biocompatible nanonetworks. In neuro-spike communica-
tion, the information, encoded into spike trains, is communicated
to various brain regions through neuronal network. An output
neuron needs to receive signal from multiple input neurons to
generate a spike. Hence, in this paper, we aim to quantify the
information transmitted through the multiple-input single-output
(MISO) neuro-spike communication channel by taking into ac-
count models for axonal propagation, synaptic transmission and
spike generation. Moreover, the spike generation and propagation
in each neuron requires opening and closing of numerous ionic
channels on the cell membrane, which consumes considerable
amount of ATP molecules called metabolic energy. Thus, we
evaluate how applying a constraint on available metabolic energy
affects the maximum achievable mutual information of this
system. To this aim, we derive a closed form equation for the
sum rate of the MISO neuro-spike communication channel and
analyze it under the metabolic cost constraints. Finally, we discuss
the impacts of changes in number of pre-synaptic neurons on the
achievable rate and quantify the trade-off between maximum
achievable sum rate and the consumed metabolic energy.

Index Terms—Nanoscale communication, Neuro-spike commu-
nication, MISO Synaptic Channel, Channel capacity, Metabolic
cost, Spike generation

I. INTRODUCTION

Realization of bio-inspired nanonetworks require bio-
compatible communication paradigm. Thus, molecular com-
munication [1], being the part of natural processes, is re-
garded as the most promising technique for this purpose.
To investigate molecular communication in natural processes,
we focus on communication among neurons, called neuro-
spike communication, building block of a highly evolved and
efficient molecular communication based nanonetwork [2].

Information theoretical analysis of neuro-spike communica-
tion is done in various studies [3]–[9] using different channel
models. In [3], Hodgkin-Huxley (HH) model is used to cal-
culate information capacity. In [4], the information transfer
rate for single-input single-output (SISO) system is calculated
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using a probabilistic model, which is extended in [5] to find
the information rate in a SISO model with multiple synaptic
terminals between two neurons. In [6], the upper bound of the
capacity for a SISO synaptic communication is derived using
Bernoulli distribution to model diffusion process.

Cortical neurons need to receive stimulation from several
input neurons to fire an action potential [10]. Moreover,
neurospike communication is a communication paradigm for
nanonetworks, where nanomachines can receive information
from several inputs. Hence, the information transfer rate for
MISO neuro-spike communication is derived in [7]. However,
all these studies ignore the impact of synaptic geometry, dif-
fusion of neurotransmitters, their clearance from the synaptic
cleft and the spike generation. Recently, realistic communi-
cation models are used in [8], [9] to study the capacity of
vesicle release process and synaptic transmission, respectively.
However, the performance of the overall neuro-spike commu-
nication channel is not considered in these studies.

The brain consumes dramatically lower power compared
to man-made computers [11]. Moreover, as shown in [12],
the properties of thalamic relay synapses are set to maximize
information transmitted per used ATP molecule instead of
information transmitted per second. The information capacity
of the H-H model and an empirical neuronal signaling model
is investigated under metabolic cost constraint in [13] and [14],
respectively. It is concluded that the capacity increases as the
upper bound on the consumed metabolic energy is relaxed.
Therefore, including metabolic constraints in the model is
inevitable to accurately evaluate the rate of information trans-
mission over neuro-spike communication channel.

In this paper, we consider the MISO neuro-spike commu-
nication among hippocampal pyramidal neurons. Thus, the
input of the communication channel is spike trains of all pre-
synaptic terminals and the output is the fired spikes in post-
synaptic neuron. We consider realistic communication models
for different processes involved in this communication such
as synaptic geometry, diffusion of neurotransmitters, and their
re-uptake by pre-synaptic terminal. Using this communication
model and considering all possible variations in biophysical
parameters of pre- and post-synaptic neurons, we analyze the
maximum achievable rate of information transmission over our
model subject to the metabolic cost constraints and derive a
general closed form equation for the sum rate of MISO neuro-
spike communication channel. Moreover, to get an insight
on the impact of the number of pre-synaptic neurons on the
performance of MISO channel while reducing the complexity
of the system, we consider the same biophysical parameters for
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Fig. 1. Block diagram of the communication channel between ith pre-synaptic neuron and the output neuron.

all pre-synaptic neurons and derive a closed form equation for
the sum rate of the channel, which is later used in simulations.
Finally, we study how the performance of MISO channel is
influenced by changes in the biophysical parameters of the
channel, which can happen as a result of different diseases.

The rest of the paper is organized as follows. In Section II,
we describe the MISO synaptic channel model. In Section III,
we formulate the sum rate of MISO neuro-spike communica-
tion channel under metabolic cost constraints. In Section VI,
we present and discuss simulation results. Finally, we conclude
the paper in Section V.

II. MODEL DESCRIPTION

In this section, we define processes included in the MISO
neuro-spike communication channel as shown in Fig. 1.

A. Axonal Transmission

Linear-Nonlinear-Poisson (LNP) model is one of the neural
coding models used to encode external stimulus into spiking
rate [7]. According to LNP model, the resulting spike train
follows Poisson random distribution. Thus, in this paper,
pre-synaptic neurons generate spike trains, Si(t), following
Poisson processes with rate λi [8], where i ∈ [1,M ] and
M is the number of pre-synaptic inputs. After firing a spike
in a pre-synaptic neuron, another spike cannot be generated
for a short time called refractory period [10]. Hence, we
can divide time into windows of equal duration ∆t, where
∆t is small enough to contain only one spike. Thus, a
discrete time random variable Si[n] is defined to indicate the
occurrence of a spike in nth time step with the probability
P{Si[n] = 1} = 1− exp(−λi∆t).

Each spike is then transmitted to pre-synaptic terminals
through axon. Although the spike shape may change during
axonal transmission [15], more experimental data is needed
to accurately model functionality of axon [16]. Hence, we
consider the axon as an ideal filer, which is a fairly accurate
model for hippocampal pyramidal neurons since their axonal
transmission is highly reliable due to the existence of myelin
sheaths and Node of Ranviers [17]. Thus, the output of axonal
transmission in ith pre-synaptic neuron is Si[n].

B. Vesicle Release Process

At least two pools of vesicles exist in each pre-synaptic
terminal depending on their distance from the membrane and
their mobility [10]. The pool of vesicles that are ready for
release on the arrival of spike is called readily releasable
pool (RRP) with size Ni, where i ∈ [1,M ]. Similar to
[7], instantaneous replenishment of RRP after each release is
considered in this paper, i.e., Ni remains constant over time.

The rate at which vesicles are fused with the membrane of
ith pre-synaptic terminal in nth window is αi = 0.06

√
Ni

[18]. Then, the probability of vesicle release during nth
window, i.e., Vi[n] = 1, given spike arrival is [7]

P{Vi[n] = 1|Si[n] = 1} = 1− exp(−Niαi) , Pi.

Since the spontaneous release probability is very low in
hippocampal neurons [19], we ignore it in this study, thus,
P{Vi[n] = 1|Si[n] = 0} = 0.

C. Diffusion Process

Once a vesicle is released, neurotransmitters diffuse through
the synaptic cleft to reach post-synaptic density (PSD) that
contains receptors. As defined in [20], we consider a rect-
angular synaptic cleft for ith synapse with height Hi and
a square shaped PSD with side length Li on post-synaptic
membrane. In [20], the pre- and post-synaptic membranes are
assumed to have infinite dimension. Then, the expected value
of concentration of neurotransmitters in the synaptic cleft from
ith pre-synaptic input at time t, Ci(x, y, z, t), is given as,

Ci(x, y, z, t) =
T0

(
√

4πDct)3
e

(−x2−y2)
4Dct{ −1∑

k=−∞

(2− Pi,u)(1− Pi,u)−(k+1)e
−(z−(2k+1)Hi)

2

4Dct

+

∞∑
k=0

(2− Pi,u)(1− Pi,u)ke
−(z−(2k+1)Hi)

2

4Dct

}
,

(1)

where T0 is the number of neurotransmitters in a vesicle, Pi,u
is the uptake probability in ith synapse and its unit is uptake
per hit, Dc is diffusion coefficient, 0 ≤ t ≤ ∆t and (x, y, z) ∈
R2 × [0, Hi].

The neurotransmitters that reach post-synaptic terminal bind
to the receptors residing on the PSD. These receptors are
assumed to be uniformly distributed on the PSD and a small
effective volume, i.e., vi,r, is considered around rth receptor
located in ith synapse such that the neurotransmitters that are
inside this volume are likely to bind with the receptor [20].
The expected concentration of neurotransmitters inside vi,r,
i.e., Cvi,r (t), is calculated in [20] as

Cvi,r (t) ≈ Ti,r(t)

|vi,r|
where Ti,r(t) is the number of neurotransmitters found inside
vi,r at time t and |vi,r| is the size of the effective volume.
As shown in [20], Ti,r(t) can be modeled by a binomial
random variable, having expected value Ti,r(t) = Ti(t)Pi,r(t).
Here, Ti(t) ≤ T0 is the expected total number of unbound
neurotransmitters in the ith synaptic cleft at time t and Pi,r(t)
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Fig. 2. Kinetic scheme of AMPA receptors.

is the probability of finding a released neurotransmitter inside
vi,r at time t. This probability is calculated in [20] as

Pi,r(t) =

∫∫∫
vi,r

Ci(x, y, z, t)dxdydz,

where Ci is given by (1) with T0 = 1, i ∈ [1,M ], r ∈ [1, R0]
and R0 is the total number of receptors on a PSD.

D. Neurotransmitter-Receptor Binding

Binding of the released neurotransmitters to receptors lo-
cated on the post-synaptic terminal can either (i) decrease
the membrane potential of the output neuron, happening in
inhibitory synapses, or (ii) increase it, occurring in excitatory
synapses [10]. The focus of this study is on hippocampal
pyramidal neurons, where excitatory synapses are the most
abundant type [10] and the major receptors are AMPA and
NMDA. Since NMDA receptors contribute in synaptic plastic-
ity, which is not addressed in this paper, we only consider the
excitatory post-synaptic potential (EPSP) generated by AMPA
receptors. Moreover, we utilize the kinetic model demonstrated
in Fig. 2 for binding of neurotransmitters to AMPA receptors
since it provides a good approximation for the time course and
the dynamic behavior of synaptic currents [21].

In the Kinetic model shown in Fig. 2, κb and κd are binding
and dissociation rates for AMPA receptors, respectively. Each
receptor r, r ∈ [1, R0], located in the synaptic terminal
made by ith pre-synaptic neuron can have two states, (i)
close state, Ci,r, where the receptor is available to bind to a
neurotransmitter, and (ii) open state, Oi,r, where the receptor
is bound to a neurotransmitter and cannot bind to another
one before unbinding from the current one. The expected
concentration of neurotransmitters near receptor, i.e., Cvi,r (t),
controls the probability of these states as given below.

dCi,r(t)

dt
= −κbCi,r(t)Cvi,r (t) + κdOi,r(t),

Ci,r(t) +Oi,r(t) =1,

where (n−1)∆t ≤ t ≤ n∆t. Oi,r(t) and Ci,r(t) represent the
opening and closing probabilities of a receptor, respectively,
that depend on both time and the position of receptors.

E. Post-synaptic Potential at Each Synapse

The receptors allow the influx of ions to the post-synaptic
neuron after entering the open state. This changes the post-
synaptic membrane potential, which is modeled as

ei(t) =

{
hi

t
tp
exp(1− t

tp
), t ≥ 0

0, t < 0
(2)

where hi is the peak EPSP amplitude contributed by ith
synapse and tp is time to reach the peak [7].

Considering the vesicle release in nth time step, the contri-
bution of ith synapse in the post-synaptic membrane potential
can be written as ei(t − tn) = Bi,max[n]hp(t − tn), where
hp(t) = hp

t
tp
exp(1− t

tp
), hp is the maximum membrane

potential contributed by each receptor, Bi,max[n] is the max-
imum number of bound receptors, and tn is the beginning of
nth time step. After binding to a neurotransmitter, receptors
stay in open state until EPSP reaches its maximum value [20].
Hence, the maximum of Oi,r(t) for (n−1)∆t ≤ t < n∆t and
all receptors in ith synapse can be used to derive Bi,max[n].
Consider Oi,r[n] = max(n−1)∆t≤t<n∆t

(
Oi,r(t)

)
and define

the variable xi,r[n] as follows.

xi,r[n] =

{
0, 1−Oi,r[n]

1, Oi,r[n]

Then,
R0∑
r=1

xi,r[n] shows the maximum number of open recep-

tors during nth time step. Hence, the probability of having
j open receptors upon vesicle release can be derived as

P{Bi,max[n] = j|Vi[n] = 1} = P{
R0∑
r=1

xi,r[n] = j}.
Thus, this probability can be modeled by Poisson Binomial

distribution with mean, µi[n] =
R0∑
r=1

Oi,r[n], and variance,

σi[n]2 =
R0∑
r=1

Oi,r[n](1−Oi,r[n]) [22].

F. Spike Generation

The EPSP generated by each synapse is integrated at soma
to derive the membrane potential of post-synaptic neuron as

E(t) = e0 +

M∑
i=1

∑
tn≤t,∀n

Vi[n]ei(t− tn) + g(t), (3)

where e0 is the resting membrane potential, tn is the beginning
of nth time slot and g(t) is the noise in post-synaptic mem-
brane voltage. Different noise sources such as thermal noise,
leakage from ionic channels and synaptic noise can corrupt
the membrane voltage of the output neuron. Synaptic noise is
due to the multiple access to the synapse, which results in the
reception of residual neurotransmitters released at thousands of
other synapses in previous time steps. Since signal of different
neurons has the same random structure and due to the central
limit theorem, the probability density function of the post-
synaptic noise converges to a Gaussian process, whose mean
and variance are considered as zero and σ2

n, respectively [7].
A spike occurs in the post-synaptic neuron when the

changes in the post-synaptic membrane potential is strong
enough. To model this process, we consider a fixed spiking
threshold, θ0. When E(t) ≥ θ0 a spike is fired by post-synaptic
neuron, i.e., Y [n] = 1, and the post-synaptic membrane
potential is set to the resting membrane potential, i.e., e0.
While the spike generation threshold can change according
to previous stimulations of the post-synaptic neuron [23],
considering a fix spiking threshold provides the chance to
analyze the impact of spike generation on the performance of
neuro-spike communication for the first time in the literature.
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III. SUM RATE ANALYSIS WITH METABOLIC ENERGY
CONSTRAINT ON NEURONAL SIGNALING

For analyzing the achievable rate of information transmis-
sion over our model, we use basic definitions from information
theory. The input and output of our model are the spike train,
Si[n] and the generated spikes at output, Y [n], respectively.
Thus, the mutual information of the channel is derived as

I(SM [n];Y [n]) = H(Y [n])−H(Y [n]|SM [n]), (4)

where SM [n] = {S1[n], S2[n], ..., SM [n]}. While within each
time step the generated EPSP at output neuron, i.e., E(t),
changes with time, the channel model shown in Fig. 1 does
not vary from one time step to another time step. Moreover, the
probability distribution of spike generation at inputs does not
change with time. Furthermore, we study the situation where
the width of ei(t) given in (2) is smaller than discretization
time step, ∆t. Hence, the channel transmission probability, i.e.,
P{Y [n]|SM [n]}, and the probability of spike generation at the
output neuron, i.e., P{Y [n] = 1}, thus, the mutual information
among input and output of the channel, i.e., I(SM [n];Y [n]),
does not depend on the time step.

The capacity region of the multiple-access channel is
the maximum mutual information, maximized over all input
distribution, p(SM [n]). Since in real scenario, spike trains
from different inputs are independently generated by Si[n] ∼
Poiss(λi), the mutual information can be maximized over λi
for ∀i to study the maximum achievable rate of information
transmission over this channel. Defining Ri as the achievable
rate for ith pre-synaptic neuron, the upper bound on the
achievable sum rate of the MISO channel is derived as

M∑
i=1

Ri ≤ max
∀i, λi

I(SM [n];Y [n]) , C.

Note that C is the maximum rate at which we can send
information with a vanishingly low probability of error over
this channel using the Poisson distribution for spike generation
at input neurons. However, in physical systems, this sum rate
is limited by some physical, chemical or biological factors. In
neuronal networks, one of the significant limiting factors is
the energy being consumed for neural activities, w, in terms
of number of ATP molecules, called metabolic energy. For
the MISO channel with M pre-synaptic and one post-synaptic
neuron, the metabolic energy associated with each input-output
pair in nth time window is calculated as [24],

w(SM [n], Y [n]) = (M + 1)β∆t+ κ(Y [n] +

M∑
i=1

Si[n]),

where β = 0.342×109 ATP molecules per second is required
to maintain resting potential and κ = 0.71 × 109 ATP
molecules is required to generate a single spike [13]. Thus,
the average metabolic energy consumed in nth time step is

wp[n] =
∑
SM ,Y

w(SM [n], Y [n])p(SM [n], Y [n]). (5)

Considering that average consumed metabolic energy in nth
time step must be bound to W ATP molecules , the maximum

achievable transmission rate of the MISO channel under the
metabolic cost constraints is given below.

C(W ) = max
∀i, λi:wp[n]≤W

I(SM [n];Y [n]). (6)

To derive the mutual information between input, SM [n],
and output, Y [n], of the MISO neuro-spike communication
channel, we calculate p{Y [n]} and p{Y [n]|SM [n]} in this
section. The membrane potential of the post-synaptic neuron
before spike generation is given by (3). Since, the time is
discretized, we consider that the spikes occur at the beginning
of each time slot. Thus, by selecting the ∆t greater than
or equal to the duration of Action Potential, there is no
overlap among the EPSP in consecutive time-steps. Hence,
P{Y [n] = 1} can be derived as,

P{Y [n] = 1} = P{E(t) > θ0}

= P{e0 +

M∑
i=1

Vi[n]Bi,max[n]hp(t− tn) + g(t) > θ0}.

By conditioning over VM [n] = {V1[n], V2[n], ..., VM [n]}
and BM [n] = {B1,max[n], B2,max[n], ..., BM,max[n]}, the
P{Y [n] = 1} can be derived as

P{Y [n] = 1} =
∑
v,b

P{BM = b, VM = v}

P
{
g(t) > θ0 − e0 −

M∑
i=1

vibihp(t− tn)|BM = b, VM = v
}
,

where v and b are 1×M arrays with ith element vi ∈ {0, 1}
and bi ∈ [0, R0], respectively. The Gaussian noise is indepen-
dent from vesicle release process and the neurotransmitter-
receptor binding, thus, we get

P{Y [n] = 1} =
∑
v,b

P{BM = b, VM = v}

P
{
g(t) > θ0 − e0 −

M∑
i=1

vibihp(t− tn)
}
.

(7)

In the spike generation process, Y [n] = 1 if g(t) > θ0 −

e0 −
M∑
i=1

vibihp(t − tn) at any instant of time within tn <

t < tn + ∆t. Moreover, g(t) is Gaussian, thus, P{g(t) >
g0} increases as g0 decreases. Therefore, by achieving the

minimum of θ0 − e0 −
M∑
i=1

vibihp(t − tn) that happens when

hp(t− tn) is maximum, (7) can be simplified to,

P{Y [n] = 1} =
∑
v,b

P{BM = b, VM = v}

P
{
g(tn + tp) > θ0 − e0 −

M∑
i=1

vibihp

}
,

where

P{BM = b, VM = v} = P{BM = b|VM = v}P{VM = v}

=

(
M∏
i=1

P{Bi,max[n] = bi|Vi[n] = vi}

)
P{VM = v}.
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Here, P{Bi,max[n] = 0|Vi[n] = 0} = 1 and P{Bi,max[n] =
bi|Vi[n] = 1} is given by Poisson Binomial distribution.
Moreover,

P{VM =v} =
∑
s

P{VM = v|SM = s}P{SM = s}

=
∑
s

(
M∏
i=1

P{Vi[n] = vi|Si[n] = si}

)
P{SM = s}

where s is a 1 ×M array with ith element si ∈ {0, 1} and
P{SM = s} depends on the correlation among the spike
trains of different inputs. Whereas, P{Vi[n] = vi|Si[n] = si}
is defined in Section II-B. According to the low of total
probability P{Y [n] = 1} can be written as

P{Y [n] = 1} =
∑
s

P{Y [n] = 1|SM [n] = s}P{SM = s}

and the conditional probability P{Y [n]|SM [n]} is derived as

P{Y [n] = 1|SM [n] = s} =∑
b,v

(
P
{
g(tn + tp) > θ0 − e0 −

M∑
i=1

vibihp

}
M∏
i=1

P{Bi,max[n] = bi|Vi[n] = vi}

M∏
i=1

P{Vi[n] = vi|Si[n] = si}

)
.

In this section, we derived the closed form equation for sum
rate of MISO neuro-spike communication channel considering
a detailed channel model. To simulate derived equations for
P{Y [n] = 1} and P{Y [n] = 1|SM [n] = s}, all possible
combinations of b, v and s must be considered. Since bi ∈
[0, R0] and vi, si ∈ [0, 1], the number of these combinations
is RM0 × 2M × 2M . Hence, while derived formulas can be
used to study the performance of neuro-spike communication
for small values of M , the complexity of simulating this
model grows exponentially with the number of pre-synaptic
neurons, i.e., M , as a result of complexity of neuro-spike
communication. Hence, to provide a framework for analyzing
impacts of increasing number of pre-synaptic terminals and
variations in biophysical parameters of the channel when M
is high, we consider a simplified scenario in next section. We
assume that all pre-synaptic neurons have the same biophysical
parameters and derive another closed form equation for mutual
information among input and output of the channel under
this situation. The following analysis also gives insights on
the performance of artificial nanonetworks, where identical
nanomachines communicate with each other using the com-
munication paradigm inspired from synaptic transmission.

A. Pre-synaptic Neurons with Same Synaptic Structure

Here, we assume that biophysical parameters of all input
neurons and their synapse to the output neuron are the same,
i.e., for ∀i1, i2 ∈ [1,M ] and ∀r following equations hold.

Ni1 = Ni2 Pi1 = Pi2 Hi1 = Hi2

Li1 = Li2 Pi1,u = Pi2,u vi1,r = vi2,r

Hence, the number of spikes arrive at input determines number
of released vesicles. Consequently, the number of bound
neurotransmitters to the receptors and the generated post-
synaptic potential only depend on the number of arrived spikes
at input. In other words, knowing which pre-synaptic neuron
is transmitting a spike does not affect the output. Hence, (4)
can be written as follows.

I(SM [n];Y [n]) = H(Y [n])−H(Y [n]|
M∑
i=1

Si[n] = st). (8)

In the following, we derive P{Y [n] = 1} and P{Y [n] =
1|
∑M
i=1 Si[n] = st}. By conditioning over number of bound

neurotransmitter, P{Y [n] = 1} can be written as

P{Y [n] = 1} =
∑
bt

P
{ M∑
i=1

Vi[n]Bi,max[n] = bt

}
P
{
g(t) > θ0 − e0 − bthp

}
,

where bt ∈ [0,MR0] shows total number of bound receptors
in all synapses to the post-synaptic terminal. Since all pre-
synaptic neurons and their synapse to the post-synaptic neuron
are identical, number of released vesicles is the important pa-
rameter in finding bt and the place of release is not important.
Hence, without loss of generality, we assume that in case of j
release, the vesicle release is occurred from 1st to jth synapse.
Thus, P

{∑M
i=1 Vi[n]Bi,max[n] = bt

}
can be written as

P
{ M∑

i=1

Vi[n]Bi,max[n] = bt
}
=

M∑
j=1

P
{ j∑

i=1

Bi,max = bt|
M∑
i=1

Vi[n] = j
}
P
{ M∑

i=1

Vi[n] = j
}

+ P
{ M∑

i=1

Vi[n]Bi,max[n] = bt|
M∑
i=1

Vi[n] = 0
}
P
{ M∑

i=1

Vi[n] = 0
}

where P{
∑M
i=1 Vi[n]Bi,max[n] = 0|

∑M
i=1 Vi[n] = 0} = 1.

Considering j ≥ 1 released vesicles, the total number of bound
receptors, bt, cannot be greater than jR0. Hence, for bt > jR0,

P
{ j∑
i=1

Bi,max = bt|
M∑
i=1

vi = j
}

= 0

and for bt ≤ jR0,

P
{ j∑
i=1

Bi,max = bt|
M∑
i=1

vi = j
}

= P
{ j∑
i=1

R0∑
r=1

xi,r[n] = bt

}
,

which can be modeled by Poisson Binomial distribution with
mean, µt[n], and variance, σt[n]2, as shown in [22],

µt[n] =

j∑
i=1

R0∑
r=1

Oi,r[n], (9)

σt[n]2 =

j∑
i=1

R0∑
r=1

Oi,r[n](1−Oi,r[n]). (10)
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Next step is deriving P{
∑M
i=1 Vi[n] = j}. The number of

released vesicles depends on the total number of spikes arrived
in different pre-synaptic terminals in nth time window. Thus,

P
{ M∑
i=1

Vi[n] = j
}

=
∑
st

P
{ M∑
i=1

Vi[n] = j|
M∑
i=1

Si[n] = st

}
P
{ M∑
i=1

Si[n] = st

}
.

Since we ignore the probability of spontaneous release in
this study, number of released vesicles to all synapses, i.e., j,
cannot be greater than total number of arrived spikes to all
pre-synaptic terminals, i.e., st. Hence, for j > st,

P
{ M∑
i=1

Vi[n] = j|
M∑
i=1

Si[n] = st

}
= 0

and for j ≤ st,

P
{ M∑
i=1

Vi[n] = j|
M∑
i=1

Si[n] = st

}
=

(
st
j

)
P ji (1− Pi)st−j .

According to the low of total probability P{Y [n] = 1} can
be written as

P{Y [n] = 1} =

M∑
st=0

(
P
{
Y [n] = 1|

M∑
i=1

Si[n] = st

}
P
{ M∑
i=1

Si[n] = st

})
and the conditional probability p{Y [n]|

∑M
i=1 Si[n] = st} is

derived as

P
{
Y [n] = 1|

M∑
i=1

Si[n] = st

}
=

st∑
j=1

jR0∑
bt=0

P
{
g(t) > θ0 − e0 − bthp

}

P{
j∑
i=1

R0∑
r=1

xi,r[n] = bt}
(
st
j

)
P ji (1− Pi)st−j

+ P
{
g(t) > θ0 − e0

}
(1− Pi)st .

Note that the second term of this equation is derived for j = 0
and consequently bt = 0.

Considering spike arrival in different pre-synaptic neurons
as independent, the probability of having st spikes in all
pre-synaptic terminals, i.e., P{

∑M
i=1 Si[n] = st} is derived

based on Poisson-Binomial distribution with mean, µst, and,
variance, σ2

st, given below.

µst =

M∑
i=1

P{Si[n] = 1}, (11)

σst[n]2 =

M∑
i=1

P{Si[n] = 1}
(
1− P{Si[n] = 1}

)
.

Note that by using same spike rate for different pre-synaptic
terminals, P{

∑M
i=1 Si[n] = st} can be derived based on

Binomial distribution with mean, µst, and, variance, σ2
st.

TABLE I
SIMULATION PARAMETERS

Parameters Symbols Values
Time to reach peak of EPSP tp 220 µs [20]
Size of RRP Ni for ∀i 10 [25]
Resting potential e0 −65 mV
Spiking threshold θ0 −45 mV [26]
Noise standard deviation σn 0.1 mV [7]
Neurotransmitters in a vesicle T0 300
Synaptic cleft height Hi for ∀i 20 nm [27]
Diffusion coefficient Dc 0.33 µm2/ms [28]
Side length of PSD Li for ∀i 0.4 µm [20]
Receptor density [AMPA] 500/µm2 [29]
Pre-synaptic re-uptake Pi,u for ∀i 10% [20]
Binding rate of AMPA κb 78× 106 1

Ms
[30]

Dissociation rate of AMPA κd 750 s−1 [30]
Effective volume |Vi,r| for ∀i, r 1× 1× 0.5 nm3

Simulation time step ∆τ 3.85 ns [20]
Time step and spike width ∆t = ∆ts 4 ms [8], [10]

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the sum rate of MISO neuro-
spike communication channel by considering same charac-
teristics for all pre-synaptic inputs given in Table I. More-
over, we consider that all pre-synaptic neurons use same
spiking rate, i.e, λi = λ. Note that we utilize a smaller
simulation time step, called ∆τ , within ∆t to derive Oi,r(t)
[20]. Moreover, the peak EPSP amplitude contributed by ith
synapse is calculated as hi = hpBi,max[n], where hp is
fixed such that hi = 1 mV for parameters given in Table
I [7]. Variations in parameters may lead to different values
of hi as Bi,max[n] may change. Furthermore, tp depends on
synaptic parameters such as number of neurotransmitters in
each vesicle, re-uptake probability, synaptic geometries, and
offset in vesicle release site [20]. If these parameters change
in a way that tp increases, the shape of ei(t) widens, which
can result in ei(t) that is wider than the discretization time
step, ∆t. In this case, the probability of spike generation
at output, i.e., P{Y [n] = 1}, depends on released vesicles
in previous time steps, thus the mutual information of the
channel changes with time, which is not under the focus of
this study. The results reported in this section give insight
in the way neurons communicate and the performance of
nanonetwork designed based on neuro-spike communication
paradigm. Further studies are required to investigate impacts
of selecting synaptic parameters that lead to bigger values of
tp on the performance of this communication channel.

A. Mutual Information

In this section, we evaluate impacts of changes in spiking
rate, λ, and the number of inputs, M , on the mutual informa-
tion between input and output of the channel, I .

To generate a spike in post-synaptic terminal, its mem-
brane potential needs to increase from resting potential, i.e.,
e0 = −65mV, to spiking threshold, i.e., θ0 = −45mV.
Two factors are important in finding the average number
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Fig. 3. (a) Mutual information, I , (b) average consumed metabolic energy, wp, and (c) maximum achievable sum rate for different number of neurons, M.

of spikes needed at input to cause this required potential
change (i) vesicle release probability after spike arrival to a
pre-synaptic terminal, i.e., Pi = 0.85, and (ii) the average
contribution of each pre-synaptic terminal in post-synaptic
membrane potential after vesicle release, which is considered
as Bi,max[n]hp = 1mV same as [7]. Hence, on average,
arrival of more than θ0−e0

Bi,max[n]hpPi
= 23.52 spikes in all

pre-synaptic terminals is needed to generate a spike in post-
synaptic neuron. Moreover, the average number of spikes ar-
rive to all pre-synaptic terminals is µst = M

(
1−exp(−λ∆t)

)
according to (11). Hence, the probability of spike generation in
post-synaptic terminal tends to zero for M ≤ 23 independent
from the activation of pre-synaptic terminals, thus, the mutual
information between input and output of the channel is neg-
ligible as shown in Fig. 3. However, the chance of arrival of
enough spikes for activating post-synaptic terminal increases
for higher values of M .

As it is shown in the Fig. 3(a), for M ∈ [30, 50, 70, 100],
increasing λ first improves the mutual information between
input and output until reaching its maximum value. Then,
further increase in λ decreases the mutual information. The
reasons of this trend is investigated in the following.
• For small values of λ, the probability of spike arrival

in each pre-synaptic terminal during a time step, i.e.,
P{Si[n] = 1} = 1−exp(−λ∆t), is very small. Thus, the
total number of spikes arrived in all pre-synaptic input is
insufficient to fire a spike in post-synaptic neuron. Hence,
if λ is small, the probability of spike generation in post-
synaptic terminal, thus, the mutual information between
input and output of the channel, tends to zero.

• For very big values of λ, the probability of spike arrival in
each pre-synaptic terminal tends to 1. Thus, if the number
of input neurons, M , is high enough, there is sufficient
number of spikes in all pre-synaptic inputs to generate
a spike in post-synaptic terminal during all time steps.
Hence, the mutual information between input and output
of the channel tends to zero.

• Increasing spiking rate, λ, monotonically increases the
probability of spike arrival in ith pre-synaptic terminal,
which in turn increases the number of all spikes arrived in
all pre-synaptic neurons. Hence, the probability of spike
generation in post-synaptic terminal, i.e., P{Y [n] = 1}
monotonically increases from 0 in low values of λ to
1 in higher values of λ. Note that, the maximum mutual

information happens when P{Y [n] = 1} reaches an opti-
mum value. Moreover, I becomes less than its maximum
value for pre-synaptic activities causing higher or lower
P{Y [n] = 1} compared to its optimum value. Hence,
increase in spiking rate, λ, increases the mutual informa-
tion, I , until reaching its maximum value as shown in
Fig. 3(a). However, after reaching the maximum mutual
information, increasing λ decreases I since it causes more
deviation from optimum value of P{Y [n] = 1}.

Moreover, since the average number of spikes arrive to all pre-
synaptic terminals is µst = M(1−exp(−λ∆t)), the maximum
mutual information can be achieved with lower value of M if
λ is increased.

As it is shown in Fig. 3(a), the changes in mutual informa-
tion with respect to λ is faster for higher values of M . This
makes the performance of the system sensitive to jitters in λ
for higher values of M , which should be considered in future
applications of this communication paradigm.

The average consumed metabolic energy, wp, for different
spiking rates, λ, and number of input neurons, M , is shown
in Fig. 3(b). Either increasing λ or M increases the number
of spikes at the input, which in turn increases the average
required metabolic energy, wp, based on (5). Moreover, the
metabolic energy required to maintain resting potential also
increases for higher values of M .

B. Performance for Different Number of Pre-synaptic Inputs

The sum rate of the MISO channel without considering
the metabolic cost constraint is calculated by maximizing the
mutual information, shown in Fig. 3(a), over λ. As depicted
in Fig. 3(c), higher number of pre-synaptic terminals, M ,
increases the maximum achievable sum rate, i.e., C, since the
average and standard deviation of number of spikes in the input
increases. However, the increase rate of C is decreasing by in-
creasing M. This should be considered in design of nanoscale
communication systems based on neuro-spike communication
since increasing number of inputs does not efficiently improve
the achievable sum rate of the system.

C. Maximum Achievable Sum Rate Versus Metabolic Cost

Limiting the average metabolic energy available for this
MISO communication, i.e., W , controls the average number
of pre-synaptic terminals that can have a spike in a given
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Fig. 4. (a) Sum rate of MISO synaptic channel with metabolic cost constraint (b) the spiking rate that maximizes the sum rate, i.e., λop and (c) the maximum
achievable sum rate per unit metabolic energy.

time step. Hence, it affects the maximum achievable mutual
information. The maximum achievable sum rate of the MISO
channel as a function of W is shown in Fig. 4(a) for different
number of pre-synaptic neurons. The dotted lines in this figure
show the sum rate that can be achieved for a particular number
of inputs in the absence of metabolic cost constraint.

By increasing W more number of spikes are allowed in the
input, which increases the mutual information as observed in
Fig. 3(a). Hence, relaxing the upper bound on the average con-
sumed metabolic energy increases the maximum achievable
sum rate of the channel, C(W ), as it is shown in Fig. 4(a).
Moreover, C(W ) increases with almost the same rate for each
M since it is a function of average number of spikes allowed at
the input, which is not affected by changing M for a constant
W . As it is shown in Fig. 4(a), C(W ) is saturating after
reaching the peak of mutual information for each value of M .
Furthermore, this peak is occurring at almost the same value of
W for all M since it depends on number of pre-synaptic input
and the required metabolic energy for spike generation is very
higher than the required energy for achieving resting potential
in neurons. However, it can be observed that as number of
pre-synaptic inputs increases a slightly higher W is required
to achieve the peak of mutual information.

The average number of spikes in the input of the MISO
neuro-spike communication is limited by the metabolic cost
constraint, i.e., wp < W . Hence, possible values of spiking
rate, λ, that can be used to calculate the maximum achievable
sum rate in (6) is changing for different values of W . Values of
spiking threshold that maximizes the the sum rate, i.e., λop, are
shown in Fig. 4(b) for different values of W . Since increasing
W allows bigger values of λ to be used in (6), we can observe
that higher λop is obtained for bigger values of W for each
M . It is also shown in Fig. 4(b) that λop saturates at the value
corresponding to the peak of mutual information in Fig. 3(a).
Moreover, the maximum sum rate is achieved at lower λop
for higher values of M since average number of spikes at the
input increases with increasing M for a certain value of λ.

D. Information-Cost Efficiency

The amount of consumed metabolic energy is an important
factor in determining the rate of error free information trans-
mission between brain and the outside world. As shown in

Fig. 4(a), the sum rate of MISO neuro-spike communication
increases with increasing W until reaching a saturation point.
After this point, providing more metabolic energy does not
improve the achievable sum rate. Hence, we find a trade-
off in terms of information-cost efficiency, E(W ) = C(W )

W ,
as shown in Fig. 4(c). The parameter E(W ), showing the
maximum achievable sum rate per unit metabolic energy, can
be used to select the optimum value of W in designing a MISO
neuro-spike communication system . It can be observed that
if enough metabolic energy is not provided for the system,
the number of active inputs are decreased, thus reducing
the maximum achievable sum rate. Moreover, increasing the
available metabolic energy after reaching the peak of E(W )
does not improve the performance of the system.

E. Impacts of Spike Generation Thresholds on Sum Rate

The spike generation threshold changes according to the
memory of postsynaptic neuron [23], which can affect the
information transmission over the MISO neuro-spike commu-
nication channel. Here, we utilize the closed form equation
derived for the sum rate of the MISO synaptic channel with
constant spiking threshold in Section III, and find the impact
of variations in the spiking threshold on the performance of
the channel. As depicted in Fig. 5(a), more metabolic energy is
required to reach the peak of C(W ) by increasing the spiking
threshold, θ, since more number of spikes are required in the
input for spike generation at output neuron. Moreover, the
peak of C(W ) decreases with increasing spiking threshold,
θ0, when M is constant as shown in Fig. 5(a), which is
the same as observations in Fig. 3(c). The reason is that
changes in θ0 − E(t), which is important in deriving the
probability of spike generation at output neuron, is the same
for (i) increasing spiking threshold θ0 when number of input
neurons is constant, considered in Fig. 5(a), and (ii) decreasing
number of input neurons M , which leads to smaller E(t),
when spiking threshold, θ0, is constant, studied in Fig. 3(c).

F. Sum Rate vs Number of Released Neurotransmitters

One of the important factors for the performance of
neuro-spike communication channel is the number of neuro-
transmitters in each vesicle, which can be different from
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Fig. 5. Sum rate of MISO synaptic channel with metabolic cost constraint considering M = 150 and different (a) spiking thresholds, (b) number of released
neurotransmitter, (c) synaptic cleft heights, (d) synaptic cleft side lengths, (e) density of receptors, (f) uptake probabilities.

one neuron to another one and can also be affected by
different diseases such as Parkinson [31]. Here, we analyze
how changes in number of neurotransmitters in a vesicle, T0,
affects the performance of MISO neuro-spike communication
channel. By increasing T0, number of bound neurotransmitters
per vesicle release increases which results in higher ampli-
tude of EPSP per synapse. This scenario is equivalent with
increasing M when T0 is fix, for which changes in sum rate
is shown in Fig. 3(c). Hence, the peak of C(W ) is higher
for bigger values of T0 as shown in Fig. 5(b). Furthermore,
bigger values of EPSP per synapse results in need for less
number of pre-synaptic spikes to fire a spike at output neuron.
Hence, the peak of C(W ) is reached with consuming lower
metabolic energy. Moreover, changes in C(W ) caused by
increasing T0 saturate since the available number of receptors
in postsynaptic neuron is limited and almost all of them are
bound to a neurotransmitter in the saturation point. Hence,
further increase of T0 does not affect the EPSP generation
and the performance of this channel.

G. Sum Rate for Different Synaptic Geometries

Synaptic geometries strongly affect the number of neuro-
transmitters that bind to receptors of since by increasing either
the height or the length of the synapse, the distance that
neurotransmitters need to pave to reach receptors increases.
This increases the chance of diffusion of neurotransmitters to
outside of synaptic cleft or re-uptake of them by pre-synaptic
terminal, which results in reduction of the amplitude of EPSP
generated per vesicle release. Hence, more number of pre-
synaptic spikes, thus, more metabolic energy, is required for

spike generation. As a result, peak of C(W ) occurs at higher
values of W as shown in Fig. 5(c) and Fig. 5(d).

H. Sum Rate vs Density of Post-synaptic Receptors

Increasing the density of post-synaptic receptors, increases
the number of bound neurotransmitters, thus, the peak of EPSP
generated, per vesicle release. These consequences are the
same with the outcomes of increasing number of neurotrans-
mitters per vesicle when the density of receptors is constant
as discussed in Section IV-F. Hence, increasing the receptors
density results in bigger peak of C(W ) and the occurrence of
peak at lower W as shown in Fig. 5(e). Moreover, the amount
of changes in C(W ) reduces by increasing density of receptors
since after some point the released neurotransmitters are not
enough for binding to the newly added receptors.

I. Sum Rate vs Clearance of Neurotransmitters from Synapse

In this section, we study the impact of changes in the
probability of uptake of neuro-transmitters by pre-synaptic
neurons, Pi,u, on the performance of MISO neuro spike
communication. Increasing Pi,u reduces number of bound
neurotransmitters to receptors of post-synaptic neuron, thus,
decreases the amplitude of EPSP generated, per vesicle re-
lease. These consequences are the same with the outcomes of
decreasing number of neurotransmitters per vesicle when Pi,u
is constant as discussed in Section IV-F. Hence, increasing
Pi,u results in smaller peak of C(W ) and the occurrence of
peak at higher W as shown in Fig. 5(f).



10

V. CONCLUSION

Certain limitations and constraints exist on the transmission
capacity of a MISO neuro-spike communication system as
a result of different stochastic processes involved in it and
the available metabolic energy for neurons to carry out their
routine processing. In this paper, we derived the closed form
equation for the mutual information between input and output
of a MISO neuro-spike communication system. Moreover, we
quantified the maximum rate of information transmission after
taking into account the consumed metabolic energy in terms
of ATP molecules. Furthermore, we have studied impacts of
number of pre-synaptic terminals, biological parameters of
the channel and available metabolic energy on the maximum
achievable sum rate of the MISO neuro-spike communication.
The results provided in this paper gives insights on (i) selecting
channel parameters while designing bio-inspired nanonetworks
based on neuro-spike communication and (ii) the impact of
diseases that change the neuro-spike communication channel
characteristics on the performance of nervous nanonetwork.
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[17] M. Veletić, P. A. Floor, Z. Babić, and I. Balasingham, “Peer-to-peer
communication in neuronal nano-network,” IEEE Trans. Commun.,
vol. 64, no. 3, pp. 1153–1166, 2016.

[18] L. E. Dobrunz and C. F. Stevens, “Heterogeneity of release probability,
facilitation, and depletion at central synapses,” Neuron, vol. 18, no. 6,
pp. 995–1008, 1997.

[19] V. N. Murthy and C. F. Stevens, “Reversal of synaptic vesicle docking
at central synapses,” Nature neuroscience, vol. 2, pp. 503–507, 1999.

[20] T. Khan, B. A. Bilgin, and O. B. Akan, “Diffusion-based model for
synaptic molecular communication channel,” IEEE Trans. NanoBiosci.,
2017.

[21] A. Destexhe, Z. Mainen, and T. Sejnowski, “kinetic models for synaptic
interactions,” The Handbook of Brain Theory and Neural Networks, pp.
1126–1130, 2002.

[22] M. Fernandez and S. Williams, “Closed-form expression for the poisson-
binomial probability density function,” IEEE Trans. Aerospace and
Electronic Systems, vol. 46, no. 2, pp. 803–817, April 2010.

[23] R. Kobayashi, Y. Tsubo, and S. Shinomoto, “Made-to-order spiking
neuron model equipped with a multi-timescale adaptive threshold,”
Frontiers in computational neuroscience, vol. 3, p. 9, 2009.

[24] D. Attwell and S. B. Laughlin, “An energy budget for signaling in the
grey matter of the brain,” J. Cerebral Blood Flow & Metabolism, vol. 21,
no. 10, pp. 1133–1145, 2001.

[25] T. Schikorski and C. F. Stevens, “Quantitative ultrastructural analysis
of hippocampal excitatory synapses,” J. Neurosci., vol. 17, no. 15, pp.
5858–5867, 1997.

[26] R. Plonsey and R. C. Barr, Bioelectricity: a quantitative approach.
Springer, 2007.

[27] L. P. Savtchenko and D. A. Rusakov, “The optimal height of the synaptic
cleft,” Proc Natl Acad Sci U S A, vol. 104, no. 6, pp. 1823–1828, 2007.

[28] T. A. Nielsen, D. A. DiGregorio, and R. A. Silver, “Modulation of
glutamate mobility reveals the mechanism underlying slow-rising ampar
epscs and the diffusion coefficient in the synaptic cleft,” Neuron, vol. 42,
no. 5, pp. 757–771, 2004.

[29] J. Montes, J. M. Peña, J. DeFelipe, O. Herreras, and A. Merchan-Perez,
“The influence of synaptic size on ampa receptor activation: A monte
carlo model,” PloS one, vol. 10, no. 6, p. e0130924, 2015.

[30] N. Agmon and A. L. Edelstein, “Collective binding properties of receptor
arrays.” Biophys. J., vol. 72, no. 4, p. 1582, 1997.

[31] O. Hornykiewicz, “Biochemical aspects of parkinson’s disease,” Neurol-
ogy, vol. 51, no. 2 Suppl 2, pp. S2–S9, 1998.


