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Abstract

The optimisation of the cleaning schedule in heat exchanger networks (HENs) subject to
fouling is presented in which the impact of parametric uncertainty is considered. This work is
based on the realisation that these HEN cleaning scheduling problems are multistage mixed-
integer optimal control problems (MIOCPs) in which the controls, i.e. cleaning actions,
exhibit bang-bang behaviour as they occur linearly in the system equations. A multiple
scenario feasible path MIOCP approach is proposed, whereby many scenarios of the HEN
multiperiod problem are stacked, sharing the same control actions. This is implemented on a
10 unit and a 25 unit HEN case studies representing crude oil refinery preheat trains (PHTs).
Results show that there is a large difference in financial performance for the deterministic
case versus the parametric uncertainty problem and hence it is vital that uncertainty be
taken into account during the optimisation of schedules for HEN maintenance problems.
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1. Introduction

Fouling is the deposition and accumulation of undesirable insulating material on the sur-

faces of heat exchangers. These deposits restrict heat transfer, resulting in loss of efficiency

and operability. In studies from the 1980s to the early 1990s, the cost of heat exchanger

fouling due to cleaning, fluid treatment, additional hardware and loss of production has

been estimated at 0.25% of the gross domestic product (GDP) of industrialised countries

(Müller-Steinhagen et al., 2005). Fouling-related costs in the UK based on the year 1984

were estimated to be in the range of 700-930 million USD (Müller-Steinhagen, 2000). The

loss of efficiency in heat exchangers is offset through process turndown or increased utility
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consumption which results in a surge in greenhouse gas emissions until operational require-

ments such as temperature and pump-around targets are met. In cases where fouling-related

pressure drop changes reduce throughput plant shutdown is often required.

Economic losses are more significant in larger heat exchanger networks which are asso-

ciated with long continuous operational times, specifically in the PHTs on crude distillation

units in oil refineries. Costs linked to crude oil fouling in PHTs worldwide were estimated to

be in the order of 4.5 billion USD p.a. according to 1995 figures (Pugh et al., 2002). The

addition of antifoulant chemicals, using more robust heat transfer equipment and regular

cleaning of fouled units are among the techniques used to alleviate fouling. Cleaning of heat

exchangers involves taking units offline, resulting in an increase in operational costs. These

cleaning costs can be minimised through optimisation strategies which improve heat transfer

of the network over time. Such strategies have been proposed by Ma and Epstein (1981);

Sheikh et al. (1996); Smaïli et al. (1999); Georgiadis and Papageorgiou (2000); Lavaja and

Bagajewicz (2004b); Ishiyama et al. (2011), among others.

The cleaning scheduling problem is a nonlinear discrete decision-making problem of com-

binatorial nature where continuous and binary decision variables co-exist, resulting in a

mixed-integer nonlinear programming (MINLP) problem. In this problem, time is discret-

ised into periods which are further discretised into cleaning and operating subperiods. Here,

a decision must be made to determine which period cleaning should occur and which unit

is to be cleaned. This MINLP problem has been solved in a number of ways: (i) Smaïli

et al. (2001) used Mathematical Programming (MP) techniques involving discretisation of

time into periods, however this approach some times suffers from failure in convergence;

(ii) Georgiadis and Papageorgiou (2000) and Lavaja and Bagajewicz (2004b) reformulated

the MINLP model into a mixed integer linear programming (MILP) model, but this approach

may be computationally expensive and involve the introduction of unsuitable approximations

to models; (iii) Smaïli et al. (2002a) used stochastic optimisation frameworks, though this

solution method is not guaranteed to be optimal; and (iv) Smaïli et al. (2001); Ishiyama et al.
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(2009)and Gonçalves et al. (2014) used the greedy algorithm, but this scheme is inefficient

as it does not consider all the cleaning options over the complete horizon.

In the literature on deterministic optimisation, such problems are classified as linear

programming (LP), nonlinear programming (NLP), MILP and MINLP depending on decision

variables, objectives and constraints. In reality, perfect forecast of the future is not possible

and should be considered uncertain. Stochastic optimisation involves optimal decision making

with uncertainties in the data or the model (Diwekar, 2003).

The performance of heat exchangers is directly impacted by uncertainties in data. Babuška

and Silva (2014) reported that heat exchangers are typically over-designed by 70–80%, with

30–50% of which being attributed to fouling. Fouling is subject to many factors with inherent

uncertainty which can be systematic (e.g. the form of the fouling model and whether it should

incorporate deposit ageing) and quasi-random (e.g. variation in processed fluid composition

over time). Extending lab results to real systems is not straightforward (Smaïli et al., 2002b;

Wilson et al., 2017).

In practice, a range of likely fouling rates must be considered when performing scheduling

calculations. The areas where parametric uncertainty arise in models for predicting the rate

of fouling in crude oil have been highlighted by Wilson et al. (2017):

(i) The type of fouling model that will be observed in a unit cannot be predicted a priori.

This is due to the semi-empirical nature of the fouling models as well as the unestab-

lished relationship to crude oil composition and characteristics;

(ii) Fouling models constructed from reconciliation of plant fouling data are commonly

used. These are associated with measurement and calculation uncertainties leading to

inaccurate fouling rate data;

(iii) In the majority of applications there is variation in the fouling rate over time due to

changes in the crude being processed. The relationship between fouling rates and crude

composition (e.g. source, blending) is not currently known.

Heat exchanger design is highly reliant on physical properties, e.g. density, specific heat
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capacity, viscosity and thermal conductivity, for estimating heat transfer coefficients and

therefore performing overall heat transfer coefficient calculations. Such physical properties

are susceptible to a certain degree of uncertainty due to measurement errors, extrapolation

and interpolation errors, estimation errors, etc. Furthermore, in the standard methods for

heat exchanger analysis such as the number of transfer units (NTU)-effectiveness method, the

overall heat transfer coefficient is assumed to be constant and uniform throughout the heat

exchanger. In practice this coefficient changes along the length of the heat exchanger and is

strongly dependent on a number of factors including the fluid thermo-physical properties and

the flow Reynolds number. In a viscous liquid heat exchanger, the heat transfer coefficient

can vary by 10-fold when the flow pattern encompasses laminar, transition and turbulent

regions on one side leading to the variation of the overall heat transfer coefficient (Sharqawy

and Zubair, 2010). Prasad et al. (2002) highlighted that experimental and/or empirical data

for heat transfer coefficients are usually subject to large uncertainties of over 50% for overall

heat transfer coefficients.

These features are evident in figure 1, which shows a time series of the fouling resistance

calculated for an industrial shell-and-tube heat exchanger in fouling service. The instantan-

eous fluctuation arise from the uncertainties in measurement, data, collection and calculation.

Pseudo-linear trends are evident between each cleaning event, but the gradient (the fouling

rate) differs in each case.

The scheduling of cleaning actions in HENs is highly dependent on fouling model para-

meters and figure 1 demonstrates how there can be considerable uncertainty in these inputs.

Although general scheduling problems with uncertainty have been considered by several au-

thors (Lusa et al., 2008; Galetakis et al., 2012; El Amraoui and Mesghouni, 2014; Hu and

Hu, 2016; Kenan et al., 2017; Sel et al., 2017), there has been limited work on HEN cleaning

scheduling under uncertainty. A search through the literature found a few publications, such

as Lavaja and Bagajewicz (2004a, 2005). Lavaja and Bagajewicz (2004a) extended a reformu-

lated MILP model for the planning of HEN cleaning in chemical plants to include uncertainty

4



Figure 1: Evolution of fouling resistance in a refinery heat exchanger over a 40 month period. Letters indicate
when the unit was cleaned. Rigorous cleaning was performed at A and E: less intensive cleaning at B, C and
D. Dashed lines show simple linear fits to data following cleaning. Reproduced from Ishiyama et al. (2017).

in the data. Although the fouling coefficients, cleaning costs, plant turnaround horizons and

the processing of different crudes at different times are uncertain parameters, they only

considered uncertainty in energy prices. Lavaja and Bagajewicz (2004a) used the standard

two-stage stochastic programming model, which was developed by Beale (1955); Dantzig

(1955). They constructed the scenarios through sampling energy prices. The sampling was

done assuming normal distributions, with increasing standard deviation for similar months

of the year as the time horizon increases. They compared their stochastic solutions to de-

terministic and heuristic solutions and discussed financial risk management options. Lavaja

and Bagajewicz (2005) studied the effects of uncertainty in parameters, including the future

fuel price used in the furnace, the change of feedstock and the fouling rate of the crude

processed, on the cleaning schedule. They used a reformulated MILP model coupled with

a multi-scenario based approach and showed how the optimal cleaning schedule can vary

when different parameters are considered uncertain simultaneously. Furthermore, their res-

ults showed how the model helped determine the best cleaning schedule to apply when risk

is involved.
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In our recent work on an optimal control approach to HEN cleaning scheduling we showed

that HEN cleaning scheduling problems are in actuality MIOCPs which exhibit a nearly bang-

bang solution (Al Ismaili et al., 2018). In this work a stochastic optimisation version of these

models is developed for the first time and applied to crude oil PHTs in oil refineries. The

paper is organised as follows: Section 2 describes the formulation as a multi-period optimal

control problem (OCP) and presents the general HEN cleaning scheduling problem. The

approach for HEN cleaning scheduling with parametric uncertainty is presented in section 3.

Implementation and solutions to two case studies are presented in sections 4 and 5.: (i) a

network consisting of 10 heat exchangers and (ii) a larger network of 25 units. A commercial

optimisation software is used.

2. Solution procedure: HEN cleaning scheduling without uncertainty

Equations (1a) to (1d) show the general formulation for an OCP in which the performance

index is minimised subject to control, u(t) and differential algebraic equations (DAEs). These

equations describe an index-1 differential algebraic equation (DAE) system where an initial

condition, x0 and a fixed final time, tF, are given. The problem considered involves differential

and algebraic state variables x(t) and y(t), respectively, as well as binary control variables,

u(t), hence it is termed a MIOCP.

min
u(·)

Obj = φ[x(tF)]+

tF̂

0

L[x(t), y(t), u(t), t] dt (1a)

subject to

ẋ(t) = f [x(t), y(t), u(t), t], x(t0) = x0, (1b)

g(x(t), y(t), u(t), t) = 0, (1c)
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u(t) ∈ U , U ∈ {0,1} ∀ t ∈ [0, tF] (1d)

For the OCP solution procedure, time is discretised into a number of periods, p =

1, 2, . . . , NP , in which NP is the total number of periods. Period lengths have not been

specified. Here, there are discontinuities present within the control profiles at a finite num-

ber of time points, tp, where these are the points in time where period p ends and is termed

a junction. A general form of junction conditions between stages, i.e. periods p and p+ 1 is

given in equation (2) (Vassiliadis, 1993).

Jp(ẋp+1(t
+
p ), xp+1(t

+
p ), yp+1(t

+
p ), up+1(t

+
p ), ẋp(t

−
p ), xp(t

−
p ), yp(t

−
p ), up(t

−
p ), tp) = 0

∀p = 1, 2, . . . , NP − 1
(2)

The basic formulation of a multi-period OCP over time periods, p = 1, 2, . . . , NP , t ∈

[tp−1, tp] with tNP = tF is displayed in equations (3a) to (3g).

min
u(·)

Obj =
NP∑
p=1

[
φ(p)(x(p)(tp), y

(p)(tp), u
(p), t(p))

]
+

tp̂

tp−1

L(p)
[
x(p)(t), y(p)(t), u(p), t

]
dt (3a)

subject to

ẋ(p)(t) = f (p)(x(p)(t), y(p)(t), u(p), t) (3b)

0 = g(p)(x(p)(t), y(p)(t), u(p), t) (3c)

tp−1 ≤ t ≤ tp, p = 1, 2, . . . , NP (3d)
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x(1)(t0) = I(1)(u(1)) (3e)

x(p)(tp−1) = I(p)(x(p−1)(tp−1), y
(p−1)(tp−1), u

(p)) ∀p = 2, 3, . . . , NP (3f)

u(t) ∈ U , U ∈ {0,1} (3g)

For the HEN cleaning scheduling problem the controls u(p)(t) are considered to be piece-

wise constant so as to reflect the on/off nature of a unit being cleaned or not. The stage

switching times tp are fixed in this initial derivation and period lengths are equal. The col-

lective vector of controls over all stages is described in equation (4). Junction conditions

allow differential state variables to be reset based on the value of the control variable, as

shown in equation (5).

u = (u(1), u(2), . . . , u(NP ))T (4)

x(p)(tp−1) = u(p)(t) · x(p−1)(tp−1) ∀p = 2, . . . NP (5)

The control in the relaxed multistage MIOCP for cleaning scheduling is linearly related

to the process variables. When this occurs, the optimal control for the relaxed MIOCP

will exhibit bang-bang behaviour (with potential singular arcs). Bang-bang solutions occur

when the optimal control action is at either bound of the feasible region (Bryson and Ho,

1975). Controls that are not bang-bang, where the control lies between the bounds, are

called singular arcs. Pure bang-bang controls have been reported in a variety of applications

(Bellman et al., 1956; Blakemore and Aris, 1962; Mohler, 1973; Belghith et al., 1986; Alt

et al., 2016; Yan and Zhu, 2017).

Sager (2009) reviewed approaches for optimal control of nonlinear dynamical systems with
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binary controls (on/off). For bang-bang optimal control behaviour, the general OCP is

reformulated such that the binary controls are presented linearly in the system dynamics.

It may be required to use heuristics, e.g. rounding up, a sum up rounding strategy, or

algorithms such as Branch and Bound when singular arcs appear.

The scheduling cleaning problem does not require this reformulation as the controls involved

are already presented linearly in the system. Discretisation of the system equations is unne-

cessary, as formulating this problem as an OCP aids the solution of the relaxed NLP problem

through the feasible path (i.e. sequential) approach, which otherwise leads to a very large

scale optimisation problem with a strongly nonlinear system of equality constraints.

The HEN scheduling optimisation formulation is presented as follows:

The overall heat transfer coefficient, U , is related to the fouling resistance, Rf by:
1

U
=

1

Uc
+Rf (6)

where subscript c denotes the clean condition.

A number of different fouling behaviours are encountered in practice. Two common ones are

considered here, namely linear and asymptotic forms:

Ṙf = a (7)

Rf = R∞f (1− exp(−t′/τ)) (8)

where a is the linear fouling rate, R∞f is the asymptotic fouling resistance, τ is the decay

constant and t′ is the operating time elapsed since the last cleaning action. The values of

the parameters can vary between exchangers in a PHT due to differences in bulk and wall

temperature and design.

Using the the log-mean temperature difference method, the heat duty of a shell and tube

heat exchanger is given by:

Q = UAG4Tlm (9)
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Here, A is the area, 4Tlm is the logarithmic mean temperature difference and G is the

configuration geometry factor. In this work, G is set to unity, corresponding to pure co-

or counter-current flow. The full optimisation model development follows the derivation

presented in Al Ismaili et al. (2018), and is shown in Appendix A.

3. Solution procedure: HEN cleaning scheduling with parametric uncertainty

A similar formulation to the one presented in the previous section, where the problem is

formulated as an OCP, is used for the HEN maintenance scheduling problem with parametric

uncertainty along with a few modifications:

(i) Multiple scenarios, s, where s ∈ S, are created by generating random values normally

distributed about the mean of each of the uncertain parameters (ā, R̄∞f , τ̄ , Ūc and C̄E),

i.e. a totally random sampling of space and not a systematic one. This is achieved

using the normrnd function in MATLAB®.

(ii) The objective function is modified from equation (A.4) to equation (10), where this is

now a summation of the mean operating cost from all scenarios and the cleaning cost.

Obj =

 S∑
s=1

tFˆ

0

CE,sQF,s(t)

ηf
dt

 /S +
NP∑
p=1

NE∑
n=1

Ccl(1− yn,p) (10)

(iii) The same control action is applied to all scenarios, as given in equation (10).

A multiple scenario based approach is proposed due to its simplicity and direct implement-

ation to the MIOCP approach. Here, a simulation is used to evaluate a batch of scenarios

based on the level of uncertainty in each of the parameters in question. An analysis of the

effect of the number of scenarios produced in this scheduling cleaning problem is conducted.

The impact of uncertainty in the fouling rate parameters, which includes the linear fouling

constant, a, asymptotic fouling resistance, R∞f and decay constant, τ , on the HEN cleaning

scheduling problem is assessed. The sensitivity of the overall cost due to fouling to the overall

heat transfer coefficient in the clean condition, Uc and fuel cost, CE, are also analysed. This
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analysis is performed by considering uncertainty in one parameter at a time whilst the other

parameters are fixed. For the parametric uncertainty problem, uncertainty is considered in

all of the aforementioned parameters simultaneously.

This multiple scenario approach gives a larger DAE system by stacking many realisations

of the HEN multiperiod problem whilst applying the same control action among all scenarios.

In the simulation phase, the DAE integrator is overloaded while the optimisation problem

remains at the same size as a single scenario presented to the optimiser. Here, the number of

decision variables is the same among the multiple scenarios which are solved using the feasible

path approach. Hence, the optimiser is presented with effectively an unconstrained problem,

whether a single-scenario case is used or a multiple-scenario case. The only constraints

that may be present in these formulations are the ones that are associated with the binary

variables which are not dependent on the number of scenarios. This highlights the potency

of the proposed feasible path methodology, in that it can be used effectively to tackle the

maintenance scheduling problem with uncertainty. This strategy is used for the sake of

keeping both the optimisation problem size under control, as well as contributing to reducing

computational time to a practical level. Computational time can be further reduced owing

to this approach being highly parallelisable.

The implementation is performed in MATLAB® R2016b with its Optimisation Tool-

box TM and Parallel Computing Toolbox TM (The MathWorks Inc., 2016). The MATLAB®

code works as a standard multi-period optimal control problem solver using the feasible path

approach by linking together the Ordinary Differential Equation (ODE) solver ode15s with

the optimiser fmincon. The default settings for ode15s are used, with absolute tolerance

of 10-6 and relative tolerance of 10-3. The optimiser fmincon is used with the Sequential

Quadratic Programming (SQP) algorithm option whilst keeping the remaining settings at

their default values: constraint, optimality and step tolerances of 10-6 using a forward finite

difference scheme for the calculation of gradients. Gradient evaluations conducted via finite

differences are costly and require repeated simulations of the dynamic process model. The

11



Parallel Computing ToolboxTM in MATLAB® is used for parallelisation of the gradient eval-

uations. All case studies are performed on a 4GHz Intel Core i7, 16 GB RAM iMac running

on macOS Sierra. Single optimisations are performed for each scenario, i.e. from a single

starting point. Here, all the control variables’ initial points are set to 1.

4. Case studies

Computational experiments for the scheduling of cleaning actions for HENs with para-

metric uncertainty in the form of in crude oil PHTs undergoing fouling are considered here.

We present a network of 10 units appearing in the work of Lavaja and Bagajewicz (2004b)

(Case I) and a more complex network of 25 units presented by Smaïli et al. (2002a) (Case

II). These are shown in figures 2 and 3. Stream data for each model are presented in tables 1

and 3. Case I employs 18 periods (NP = 18) while Case II employs 36 periods (NP = 36).

The selection and operational constraints imposed on each of these cases are summarised in

tables 2 and 4, respectively. Both linear and asymptotic fouling models are considered in

Case I whilst only linear fouling is modelled in Case II.

The scheduling problem was reformulated into a MILP problem by Lavaja and Baga-

jewicz (2004b) whereas Smaïli et al. (2002a) solved the MINLP problem directly using two

methods: a Backtracking Threshold Accepting (BTA) stochastic search algorithm and the

Outer Approximation (OA) method.

There is no mention of the furnace fuel cost in the work of Lavaja and Bagajewicz, so a

C̄E of £2.93/MM Btu is used in Case I which is based on the value reported by Smaïli et al.

(2002b). The work of Smaïli et al. (2002b) is the source of data for Lavaja and Bagajewicz’s

models where they compared the solutions from their MILP approach with those obtained

by Smaïli et al. (2002b) using an OA/ER algorithm. For Case II, a C̄E of £0.34/kW day is

used. For Case I, although Lavaja and Bagajewicz stated that they accounted for the decay

in the heat transfer coefficient in each sub-period, expressed by ηc, there is no mention of the

value of this parameter in their work. Hence, we considered the value of parameter ηc to be
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1 in our model. This decay parameter is also fixed at the value of 1 in Case II along with the

furnace efficiency ηf . Smaïli et al. (2002a) did not consider these parameters in their model.

The mean cleaning cost incurred for cleaning operations, C̄cl, is £4000 per cleaning action in

Case I and £5000 for Case II. For the latter case, the duration of the cleaning and operating

sub-periods are equal with 4tCL = 4tOP = 15 days.

For Case I, sensitivity analysis of the overall cost to the following parameters is performed:

linear and asymptotic fouling parameters (a, R∞f and τ); the overall heat transfer coefficient in

the clean condition (Uc); and the furnace fuel cost (CE). Additionally, for this case, the impact

of the number of scenarios (S) on the schedule is considered. Relative standard deviation

(RSD) values of 5, 10, 15 and 20% around the mean of each of the parameters examined

are considered while the range 10 ≤ S ≤ 50 is considered for the study of the impact of

the number of scenarios. For the parametric uncertainty problem, a single realisation is

performed in each of the case studies.
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Figure 2: Flow diagram for Case I, 10 unit HEN. Temperature values are given for initial, clean condition.
Adapted from Lavaja and Bagajewicz, 2004b.
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Figure 3: Flow diagram for Case II, 25 unit HEN case. Solid lines, cold (crude) streams; dashed lines, hot
streams; CIT, crude inlet temperature to furnace. Temperature values are given for initial, clean condition.
Adapted from Smaïli et al., 2002a.

5. Computational results

5.1. Case I

For Case I, the RSD for each uncertain parameter is fixed at 10% when the impact

of number of samples on the schedule is assessed. For the case with linear fouling, the

deterministic cost due to fouling i.e. the optimal cost without uncertainty, is £260k. Results

for the impact of the number of samples with linear fouling are shown numerically in table

5.
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Table 2: Operational constraints for Case I. Adapted from Lavaja and Bagajewicz, 2004b.
only one unit of exchangers 1-4 can be cleaned in each period y1p + y2p + y3p + y4p ≥ 3 ∀p
only one unit of exchangers 5-7 can be cleaned in each period y5p + y6p + y7p ≥ 2 ∀p
temperature drop across desalter T in

c,5p = T out
c,4p − 18 ∀p

Table 3: Data for Case II. Adapted from Smaïli et al., 2002a.
HEX Fh

(kg s−1)
Fc

(kg s−1)
Ch
(kJ kg−1K−1)

Cc
(kJ kg−1 K−1)

Ūc
(kW m−2K−1)

A
(m²)

ā× 1011

(m²KJ−1)
1A 8.7 23 2.8 2.4 0.5 21.3 1.9
2A 11.4 23 2.9 2.4 0.5 29.7 1.8
3A 4.8 23 2.8 2.4 0.5 31.4 1.6
1B 8.7 23 2.8 2.4 0.5 21.3 1.9
2B 11.4 23 2.9 2.4 0.5 29.7 1.8
3B 4.8 23 2.8 2.4 0.5 31.4 1.6
1C 8.7 23 2.8 2.4 0.5 21.3 1.9
2C 11.4 23 2.9 2.4 0.5 29.7 1.8
3C 4.8 23 2.8 2.4 0.5 31.4 1.6
1D 8.7 23 2.8 2.4 0.5 21.3 1.9
2D 11.4 23 2.9 2.4 0.5 29.7 1.8
3D 4.8 23 2.8 2.4 0.5 31.4 1.6
4A 23 47.4 2.8 2.3 0.5 26.7 1.5
5A 28 47.4 2.6 2.3 0.5 35.4 1.1
6A 17.4 47.4 2.9 2.3 0.5 79.1 1.5
4B 23 47.4 2.8 2.3 0.5 29.2 1.6
5B 28 47.4 2.6 2.3 0.5 35.4 1.1
6B 17.4 47.4 2.9 2.3 0.5 79.1 1.5
7A 25 47.4 2.6 1.92 0.5 60.8 0.8
7B 25 47.4 2.6 1.92 0.5 80.3 0.8
8 49.6 95 2.6 1.92 0.5 129 0.8
9A 55.8 95 2.6 1.92 0.5 110 0.9
9B 55.8 95 2.6 1.92 0.5 96.6 0.9
10 3.3 95 2.9 1.92 0.5 8.5 0.6
11 19.1 95 2.8 1.92 0.5 56.6 0.6
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There is no direct correlation between mean overall cost due to fouling and number of

samples. Although the mean cost increases by £62k when the number of samples are increased

from 10 to 40, this value decreases by £8k from 40 to 50 samples (see table 5). This is because

of the way in which the sample sets are generated. The set of samples are independent from

each other, i.e. they are not produced by the addition of 10 more samples to the previous

set repeatedly. Sample sets are created in the same manner for the asymptotic fouling case.

The costs due to fouling for each scenario are broadly dispersed about their mean value.

Here, the RSD ranges from 31.1% up to 53.7%, with the largest deviation corresponding to

the least number of samples. In addition, the difference between maximum and minimum

cost for each scenario is large, ranging from £321k to £500k, as shown in table 5. The total

number of cleanings for the deterministic case is 11, while this ranges from 9 to 11 cleanings

with a mode of 10 cleanings when the number of samples are varied.

The sensitivity analysis for each of the fouling, overall heat transfer coefficient and fuel

cost parameters is performed with a fixed number of samples, of 30. Results concerning

the sensitivity of the overall cost due to fouling to the linear fouling rate, a, show that the

sensitivity of the cost to this parameter is limited. Table 6 shows that the mean cost varies

by only up to £4k when the deviation of the linear fouling rate about its mean is increased

from 5% to 20%.

Moreover, the results are narrowly dispersed about the mean cost, where the variation

in the RSD value lies within the range of 1.1% to 4%. The largest difference between the

maximum and minimum costs is £45.6k for the 20% deviation case. The variation in the

number of cleanings between each case is small, increasing from 10 cleanings for the 5% and

10% deviation scenarios to 11 for the 15% and 20% scenarios (see table 6).

Table 7 shows that the cost due to fouling is sensitive to CE; the RSD increases from 4.7%

to 15.5% as the deviation of the fuel cost parameter is risen from 5% to 20%. Furthermore,

the difference between the maximum and minimum value of the overall cost due to fouling

increases by more than a factor of 3, from £47.4k to £159k. The overall costs due to fouling
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are more scattered in this parameter than the linear fouling rate. In this scenario, the mean

cost due to fouling increases by £12k, from £261k to £273k, when the deviation of the fuel

cost parameter is increased from 5% to 20%.

As expected, the maximum cost increases when the deviation of CE is increased. However,

although the minimum cost decreases, from £157k to £67k, when the deviation of CE is

increased from 5% to 10%, this value increases to £109k when the deviation is increased by

10% further. Generally, the minimum cost should decrease with increase in deviation for well

sampled scenarios. This is also observed in the results for the sensitivity of the cost due to

fouling to Uc (see table 8) and in the asymptotic case (see tables 12 to 15) . In contrast to

the impact of a on the schedule, the number of cleanings here does not change with the level

of deviation in CE and remains constant at 10 cleanings.

Results for the sensitivity of the cost due to fouling to the overall heat transfer coefficient

in the clean condition, shown in table 8, reveal that the cost associated with the HEN cleaning

scheduling problem is highly sensitive to this parameter. The RSD increases from 17.2% to

60.7% when the deviation of this parameter is increased from 5% to 20%. Moreover for each

scenario, there is a large difference between the maximum and minimum cost, e.g. over 7

times and over 16 times in the 10% and 20% deviation scenarios, respectively. Generally, the

number of cleaning actions required here remain constant at 10 and only increases by 1 in

the 20% deviation scenario.

For the case with parametric uncertainty, we show one realisation where each of a, Uc

and CE parameters are considered uncertain simultaneously. Here, we set the deviation of

each of these parameters to 10% and the number of samples to 30. The results in table 9

show the P90, P50 and P10 cost values. The P90 is the cost level with 10% probability of

exceeding and 90% probability to under run. This value is £397k, as shown in table 9, and

is considered a conservative estimate of the cost due to fouling. P10 is the cost value with

90% probability of exceeding and 10% probability to under run; this more optimistic value

is £168k. The P50 cost, also known as the 50th percentile, is the median and is £276k. In
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Table 5: Effect of number of samples for Case I (linear fouling).
No. of samples

10 20 30 40 50
Mean cost [k£] 234 274 276 296 288
RSD [%] 53.7 34.3 31.1 34.6 36.0
Minimum cost [k£] 40.8 94.0 87.1 98.9 43.7
Maximum cost [k£] 523 519 408 546 544
No. of cleanings 9 10 10 11 10

this case, this value is equivalent to the mean cost due to fouling resulting in a normal curve,

i.e. symmetrical distribution of a cost against probability curve with no skew, as shown in

figure 4. The associated full width at half maximum (FWHM) and standard deviation (SD)

is £202k and £86k, respectively. The weighted average cost is the sum of all outcomes times

the respective probabilities, and given that we have a normal curve, this value is very similar

to that of the P50 with only £1k difference, as shown in table 9. Overall, the anticipated

cost associated with this realisation is £277k ± 31.1% in comparison to a cost of £260k for

the deterministic case.

Table 10 compares the cleaning schedules for the linear fouling case with and without

parametric uncertainty. All exchangers except unit 2 are cleaned the same number of times

in each scenario. In the parametric uncertainty case, unit 2 is not cleaned at all, while

it is cleaned once in the deterministic case. There is a limited number of common cleaning

actions with only 1 for unit 10 during the 12th month. Moreoever, the parametric uncertainty

cleaning actions sometimes take place earlier than the deterministic ones and other times

later. However, these cleanings are always within 2 periods of each other.

In terms of resource usage, convergence for the deterministic problem of the linear fouling

case required 446 CPU s (7.4 CPU min) over 13 SQP major iterations and 2,269 function

evaluations, i.e. simulations (this number includes simulations required for finite difference

calculations). The corresponding problem with parametric uncertainty required ≈36 times

more resource usage totalling 16,160 CPU s (4.5 CPU hr) with 16 SQP major iterations and

2,921 function evaluations.
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Table 6: Sensitivity of linear fouling constant for Case I.
Deviation of linear fouling constant [%]
5 10 15 20

Mean cost [k£] 262 266 265 266
RSD [%] 1.1 2.2 3.2 4.0
Minimum cost [k£] 257 254 247 247
Maximum cost in [k£] 267 275 279 293
No. of cleanings 10 10 11 11

Table 7: Sensitivity of fuel cost parameter for Case I (linear fouling).
Deviation of fuel cost parameter [%]
5 10 15 20

Mean cost [k£] 261 266 265 273
RSD [%] 4.7 8.7 13.5 15.5
Minimum cost [k£] 235 215 180 196
Maximum cost [k£] 283 311 338 355
No. of cleanings 10 10 10 10

Table 8: Sensitivity of overall heat transfer coefficient parameter for Case I (linear fouling).
Deviation of overall heat transfer coefficient parameter [%]
5 10 15 20

Mean cost [k£] 252 269 299 303
RSD [%] 17.2 38.2 43.0 60.7
Minimum cost [k£] 157 67.4 109 50.2
Maximum cost in [k£] 338 483 620 836
No. of cleanings 10 10 10 11

Table 9: Cleaning scheduling with parametric uncertainty for Case I (linear fouling).
Mean cost [k£] 276
RSD [%] 31.1
FWHM [k£] 202
SD [k£] 86
Minimum cost [k£] 87.1
Maximum cost [k£] 458
P90 [k£] 397
P50 [k£] 276
P10 [k£] 168
Weighted average cost [k£] 277

22



T
ab

le
10
:
C
le
an

in
g
sc
he
du

le
fo
r
C
as
e
I
(l
in
ea
r
fo
ul
in
g,

cl
ea
ni
ng

co
st

=
£
4k

).
E
xc
ha

ng
er

N
o.

T
im

e
(m

on
th
s)

N
o.

of
cl
ea
ni
ng

ac
ti
on

s
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
+

,
1

0
0

2
,

0
1

3
,

+
1

1
4

+
,

1
1

5
,

+
1

1
6

+
,

1
1

7
,

+
1

1
8

+
,

1
1

9
+

,
+

,
2

2
10

,
+

⊕
2

2
C
le
an

in
g
ac
ti
on

s:
+

pa
ra
m
et
ri
c
un

ce
rt
ai
nt
y
ca
se
;,

de
te
rm

in
is
ti
c
ca
se
;⊕

co
m
m
on

10
11

23



Figure 4: Cost versus probability curve for Case I (linear fouling).

For the asymptotic fouling behaviour scenario a similar procedure is followed, where the

deviation of uncertain parameters is fixed at 10% when the effect of the number of samples

is assessed and the number of samples is fixed at 30 when the sensitivity of these parameters

is analysed.

Results for the effect of the number of samples on the cost due to asymptotic fouling

displayed in table 11 show that the mean cost varies from £476k to £552k in comparison

to £507k for the deterministic case. As with the linear fouling case, due to the sample sets

being independent from each other, there is no direct relation between the mean cost due to

fouling and the number of samples considered. In this case, with every increase of 10 samples

there is an increase in the mean cost followed by a decrease in this value, e.g. the mean cost

increases by £48k when the sample size is increased from 10 to 20, but decreases by £17k

when the sample size is increased further to 30.

The overall costs due to fouling are scattered about their mean value (see table 11) and
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consequently the RSD varies from 18.2% to up to 21.8% . In comparison to the linear fouling

case, these costs are less dispersed (21.8% maximum in this case vs. 53.7% maximum in the

linear fouling case), with the largest RSD corresponding to the largest number of samples.

The total number of cleaning for the deterministic case and parametric uncertainty case are

similar (4 vs. a mode of 3 cleanings).

Numerical results concerning the sensitivity of the cost of fouling to R∞f and τ are shown

in tables 12 and 13, respectively. There are a couple of similarities in the results concerning

the sensitivity analysis of these asymptotic fouling parameters: (i) The sensitivity of the

cost to the asymptotic fouling parameters is limited, such that the mean cost only varies by

£13k and £17k across a deviation of 5 to 20% for R∞f and τ , respectively (shown in tables 12

and 13) and (ii) there is a tight spread of results about the mean cost, where the RSD reaches

a peak of 4.9% and 7% when the deviation of R∞f and τ are increased to 20%, respectively.

However, in contrast to the linear fouling constant, there is a larger variation in the

number of cleanings required for the asymptotic fouling resistance, where this ranges from 3

up to 6 cleaning actions. This is not the case for the decay constant parameter which shows

a limited variation (3 to 4 cleaning actions).

Results for the effect of the fuel cost parameter show that the overall cost is more sensitive

to this parameter than the asymptotic fouling parameters. This is shown in table 14, where

the RSD varies up to 17.7% for a deviation of 20% of CE . In addition, there is an increase

in the difference between the maximum and minimum cost of more than 4 times from £78.4k

to £334k over the range of 5 to 20% deviation in the fuel cost parameter. Therefore, there

is more of a spread in the cost than that associated with the asymptotic fouling parameters.

Unlike the linear fouling case, a decrease in the mean cost is observed when the deviation

of the fuel cost parameter is increased from 5% to 20%. The number of cleaning actions

required is almost constant and only varies from 3 to 4 in this case.

Results for the sensitivity of the cost to Uc are shown in table 15. Similarly to the linear

fouling case, the HEN scheduling problem’s cost is highly sensitive to Uc, in which the RSD
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is 36.4% when the deviation of this parameter is increased to 20% (see table 15). Moreover,

the difference between the maximum and minimum cost is over 4 times in the 20% deviation

scenario. The number of cleaning actions required is almost constant (3 to 4).

Furthermore, similarly to the linear fouling case, for the asymptotic fouling problem

with parametric uncertainty, we show one realisation where each of R∞f , τ , Uc and CE are

considered uncertain simultaneously. Again, we set the deviation of each of these parameters

to 10% and the number of samples to 30. The P90, P50 and P10 values are £666k, £502k and

£401k, respectively, as shown in table 16. In this case the mean cost is £5k higher than the

P50 value at £507k, resulting in a slightly positively skewed cost against probability curve,

as shown in figure 5. As this curve is only slightly skewed, i.e. has an almost symmetrical

distribution, the weighted average cost is equal to the P50 value. Hence, the expected cost

associated with this realisation is £502k± 20.6% in comparison to a cost of £507k for the

deterministic case.

The comparison of the cleaning schedules with and without parametric uncertainty in

table 17 shows that only exchangers 9 and 10 are cleaned over the horizon of 18 months.

Exchanger 9 is cleaned one less time in the parametric uncertainty case than the deterministic

one, giving a total of 3 cleaning actions in the former versus 4 cleaning actions in the latter.

There are 2 common cleaning actions taking place just before the midpoint of the horizon.

In terms of resource usage, convergence for the deterministic problem with asymptotic

fouling required 461 CPU s (7.7 CPU min) over 11 SQP major iterations and 2,055 func-

tion evaluations. Convergence for the parametric uncertainty case required 8,722 CPU s

(2.4 CPU hr) with 7 SQP major iterations and 1,370 function evaluations.

5.2. Case II

For parametric uncertainty problem of Case II, one realisation is performed where a,

Uc and CE are considered uncertain simultaneously. Again, we set the deviation of each of

these parameters to 10% and the number of samples to 30. The P90, P50 and P10 values

are £1140k, £925k and £804k, respectively, as shown in table (18). The mean cost is £29k
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Table 11: Effect of number of samples for Case I (asymptotic fouling).
No. of samples

10 20 30 40 50
Mean cost [k£] 476 524 507 552 534
RSD [%] 18.2 16.9 20.6 17.2 21.8
Minimum cost [k£] 316 352 310 360 327
Maximum cost [k£] 635 718 732 795 769
No. of cleanings 4 3 3 3 4

Table 12: Sensitivity of asymptotic fouling resistance for Case I.
Deviation of asymptotic fouling resistance [%]
5 10 15 20

Mean cost [k£] 508 499 511 512
RSD [%] 1.2 2.5 4.3 4.9
Minimum cost [k£] 493 475 454 457
Maximum cost [k£] 519 528 543 568
No. of cleanings 3 6 4 3

Table 13: Sensitivity of decay constant for Case I (asymptotic fouling).
Deviation of decay constant [%]
5 10 15 20

Mean cost [k£] 508 518 501 508
RSD [%] 1.5 3.0 5.4 7.0
Minimum cost [k£] 493 490 424 428
Maximum cost [k£] 522 546 552 581
No. of cleanings 4 3 4 3

Table 14: Sensitivity of fuel cost parameter for Case I (asymptotic fouling).
Deviation of fuel cost parameter [%]
5 10 15 20

Mean cost [k£] 504 503 498 499
RSD [%] 4.3 9.7 13.9 17.7
Minimum cost [k£] 466 404 307 302
Maximum cost [k£] 545 590 641 620
No. of cleanings 4 4 3 4
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Table 15: Sensitivity of overall heat transfer coefficient parameter for Case I (asymptotic fouling).
Deviation of overall heat transfer coefficient parameter [%]
5 10 15 20

Mean cost [k£] 523 530 587 515
RSD [%] 6.4 18.6 17.5 36.4
Minimum cost [k£] 462 347 411 218
Maximum cost [k£] 590 763 806 895
No. of cleanings 4 4 3 4

Table 16: Cleaning scheduling with parametric uncertainty for Case I (asymptotic fouling).
Mean cost [k£] 507
RSD [%] 20.6
Minimum cost [k£] 310
Maximum cost in [k£] 732
P90 [k£] 666
P50 [k£] 502
P10 [k£] 401
Weighted average cost [k£] 502

Figure 5: Cost versus probability curve for Case I.
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Table 18: Cleaning scheduling with parametric uncertainty for Case II.
Mean cost [k£] 954
RSD [%] 16.3
Minimum cost [k£] 654
Maximum cost in [k£] 1305
P90 [k£] 1140
P50 [k£] 925
P10 [k£] 804
Weighted average cost [k£] 935

higher than the P50 value at £954k resulting in the cost vs. probability curve being slightly

positively skewed, as shown in figure (6). Here, the weighted average cost is £10k more than

the P50 value. Hence, the expected cost associated with this realisation is £935k± 16.3% in

comparison to a cost of £896k for the deterministic case.

The cleaning schedules with and without parametric uncertainty displayed in table (19)

differ. No pattern is observed here and cleaning actions occur earlier for some units in the

parametric uncertainty case in comparison to the deterministic one and later for other units.

There are only 6 common cleaning actions out of a total of 39 and 37 cleaning actions for

the parametric uncertainty and deterministic cases, respectively.

The resource usage is 29,173 CPU s (≈8.1 CPU hr) and 1.26 million CPU s (≈14.6

CPU day) for the deterministic and parametric uncertainty cases, respectively. For the

former case, convergence required 26 SQP major iterations and 23,696 function evaluations.

For the latter case, convergence required 38 SQP major iterations and 34,208 function eval-

uations. The high time CPU time is attributed to the use of a finite difference scheme for

the calculation of gradients which is inefficient. Future work will include the reduction of

the CPU time to a more practical value. This will be achieved through the use of sensitivity

equations for gradient calculations.
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Figure 6: Cost versus probability curve for Case II.

6. Discussion

The above case studies have demonstrated how finding that HEN cleaning scheduling

problems exhibit bang-bang control characteristics allows the uncertainty associated with

fouling behaviour and other input parameters to be incorporated in scheduling calculations.

This allows the impact of uncertainty in the fouling behaviour(s) to be quantified alongside

the sensitivity of the results to the costing parameters that appear in the objective function.

The former can be considered as a ‘natural’ variation, while the latter can vary simply as a

result of budget and market considerations. The latter are also likely to vary between install-

ations owing to differences in network configuration, availability of fuel and other factors.

The methodology presented here therefore allows the significance of each source of un-

certainty to be established and the sensitivity of these factors to be compared. For instance,

if the source of uncertainty in fouling model parameterisation is dominated by the absence

of reliable data, the results can be used to justify the cost of installing new instrumenta-
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tion. Likewise, if the schedule is strongly dependent on the costing parameter, management

decisions can be made on the basis of forecasts over the anticipated operating period.

Furthermore, it is important to highlight that the methodology presented in this work

is based on an offline scheduling approach. Adaptive scheduling can be used for the HEN

cleaning scheduling problem, where estimates for the fouling and cost data can be refined

in ‘real’ time, i.e. online, as one goes along. This will ultimately reduce the impact of

uncertainty in these parameters on the overall cost due to fouling.

7. Conclusions

In conclusion, for the first time a multiple scenario feasible path MIOCP approach is

developed and applied to the scheduling of cleaning actions in HENs which undergo fouling.

The parametric uncertainty model runs automatically with ease without any failures. Results

show that some parameters, specifically the cost of fuel and the clean overall heat transfer

coefficient, have a strong influence on the overall cost due to fouling in HEN maintenance

scheduling problems. Consequently, comparison of results with and without parametric un-

certainty shows that there is a large difference in economics for the deterministic case versus

the parametric uncertainty case. Therefore, it is imperative that uncertainty be taken into

account during the optimisation of schedules for HEN maintenance problems.
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Appendix A

There is a linear relation between the heat duty and the stream inlet and outlet temperatures.

This is via the energy balances outlined in equations (A.1) and (A.2):

Q = FcCc (T out
c − T in

c ) (A.1)
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Q = FhCh (T in
h − T out

h ) (A.2)

where Fh and Fc are the mass flow-rates of the hot and cold streams, respectively and Ch

and Cc are their specific heat capacities.

The cleaning scheduling problem is a multi-period decision-making OCP. A decision must be

made regarding in which period(s) cleaning should occur and which unit(s) should be cleaned.

Time is discretised into periods of equal length and each period is discretised further into a

cleaning and operating sub-period. A control action represented by binary variable yn,p is

defined to describe the cleaning status of each exchanger in each cleaning sub-period, where

yn,p =

{
0 if the nth heat exchanger is cleaned in period p

1 otherwise
∀n, p (A.3)

The control action is fixed to 1 when all units are online, i.e. within an operating sub-period.

Over a specified operating horizon, tF, the objective is to minimise the overall operating and

cleaning costs due to fouling. The objective is given by equation (A.4), which is generally

common to all approaches.

Obj =

tFˆ

0

CEQF(t)

ηf
dt+

NP∑
p=1

NE∑
n=1

Cc(1− yn,p) (A.4)

Here, QF(t) represents the extra furnace duty consumption due to fouling, which is based

on the crude inlet temperature (CIT); CE is the cost of fuel, ηf is the furnace efficiency; NE

is the total number of exchangers considered for cleaning; and Cc is the cost per cleaning

action. By incorporating yn,p, equations (7) and (8) become:

Ṙf = yn,pa ∀n, p (A.5)

Rf = R∞f (1− exp(−t′/τ)) (A.6a)
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ṫ′ = yn,p ∀n, p (A.6b)

Initially, in the first period the fouling resistance is set to 0 for all exchangers, i.e. all

units start from a clean condition. In subsequent periods, the fouling resistance is related to

that at the end of the previous period. When cleaning takes place, this value is reinitialised

via a junction condition.

The performance of the simple countercurrent heat exchangers considered is determined using

the NTU-effectiveness approach. The temperatures of the cold and hot streams leaving an

exchanger can be calculated by:

T out
c = T in

c + P
(
T in

c − T out
c

)
(A.7)

T out
h = yn,p

[
(1− P )T in

h exp(−α(1− P )) + T in
c (1− exp(−α(1− P )))

1− P exp(−α(1− P ))

]
+ (1− yn,p)T in

h

∀n, p (A.8)

where the effectiveness term, α and the ratio of capacity flowrates, P , are (Smaïli et al.,

2001):

α =
UA

FhCh
(A.9)

P =
FhCh

FcCc
(A.10)

Equations (A.7) and (A.8) are applicable to configurations with P < 1. In a crude PHT, the

cold (crude) stream usually has a significantly higher flow rate than the hot stream.
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