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Abstract

Renewable electricity, particularly solar PV and wind, creates external benefits of learning-

by-doing that drive down costs and reduce CO2 emissions. The Global Apollo Programme

called for collective action to develop renewable energy. This paper sets out a method for

assessing whether a trajectory of investment that involves initial subsidies is justified by the

subsequent learning-by-doing spillovers and if so, computes the maximum justifiable addi-

tional subsidy to provide, taking account of the special features of renewable electricity –

geographically dispersed and variable quality resource base and local saturation. Given cur-

rent costs and learning rates, accelerating the current rate of investment appears globally

socially beneficial for solar PV in most but not all cases, less so for on-shore wind. The opti-

mal trajectory appears to involve a gradually decreasing rate of growth of installed capacity.

1 The case for supporting renewables

The Global Apollo Programme called for collective action with “one aim only – to develop renew-

able energy supplies that are cheaper than those from fossil fuels. . . . These price trends help

to create a prima facie case in favour of focussing heavily on solar energy.” (King et al., 2015,

p15). The case for support is primarily to compensate for the otherwise unremunerated learning

spill-overs arising from cumulative production. Each additional installation adds to the cumu-

lative production, which figure 11 persuasively suggests is the prime driver of cost reductions

∗This paper was prompted by Neuhoff (2008), who was pessimistic about the social profitability of PV when its

cost was much higher, but noted that increasing current investment might relax constraints on future investment

rates, which conferred an additional and potentially large extra benefit. I am indebted to insightful comments

from Rutger-Jan Lange, and very careful checking of the paper and formulae to Linden Ralph and Bowei Guo, as

well as to very helpful reviewers.
1Source: Delphi234 - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=33955173. The

straight green line predicts that modules decrease in price by 20% for every doubling of cumulative shipped

modules. The other line (with squares) shows world-wide module shipments vs. average module price. The data
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of solar modules (Fraunhofer, 2016; Rubin et al., 2015a). Renewable electricity technologies,

particularly wind and solar PV (hereafter just PV), have been heavily subsidized for many years.

Both PV and wind are finally at the point of becoming commercially viable without subsidies in

some locations, but new installations continue to enjoy significant, if now much lower, support in

many jurisdictions. This paper asks whether past and continued support for such technologies is

justified, and, more fundamentally, how to determine the appropriate level of support now and

in the future for emerging low-carbon technologies with learning spillovers. While it is easy to

present qualitative arguments for such support, the practical question is to quantify the level of

justified support, and relate it to observable features of the technology and the location. The

strongest case is one in which all countries recognize the social value of supporting immature

zero-carbon technologies and collectively fund that support. Mission Innovation is a recent ex-

ample, through which “22 countries and the European Union are taking action to double their

public clean energy R&D investment over five years”.2

This paper provides a method for calculating the justified subsidy to compensate for the

learning spillovers. There is typically also a shortfall between the social cost of carbon and its

market price to account for in the social cost-benefit analysis. To justify the learning subsidy the

investment must be socially profitable – if it never becomes socially profitable there is little point

in pursuing these cost reductions. The paper sets out a methodology for a social cost-benefit

analysis of a global support programme for low-carbon electricity generation technologies, illus-

trated for PV and on-shore wind. The electricity supply industry has particular characteristics

that need careful modeling if the results are to carry credibility. Consumption is constrained

by current available capacity as storage is costly, and transmission constraints limit the size of

the market that can be supplied from local capacity. As a result the value of electricity can

vary strongly over time and space in ways that make the concept of a global market inappro-

priate. Local saturation is an important element, while the value of any one low-carbon option

depends on what others are available and when they become competitive. A key issue is whether

to accelerate deployment to reap earlier learning, or delay until the technology becomes more

competitive against rising fossil energy costs.3

are from ITRPV 2015 edition and can be updated to 2015 with ITRPV (2016). later updates are available annually

at http://www.itrpv.net/Reports/Downloads/.
2See http://mission-innovation.net/
3Grubb et al. (2002) review the implications of induced technical change for energy modeling. They note

the contrast between learning, which argues for earlier support for climate mitigation, while autonomous technical

change argues for later support when more knowledge has accumulated, making action later cheaper. Our emphasis

is on changing relative costs rather than autonomous technical change.

2



Figure 1: PV Module price reductions

1.1 Literature review

The idea of including learning-by-doing as a general driver of technical progress dates back at

least to Arrow (1962), and has spawned an extensive literature.4 Two immediately relevant

strands are the extent to which cost falls can be reliably estimated and attributed to cumulative

deployment (Rubin et al., 2015a) or R&D (Jamasb, 2007; Nordhaus, 2014),5 and the policy

implications of the market failure of unremunerated spillovers. The focus here is on low-carbon

technologies, which, because of heavy subsidies, have attracted particular attention. Most papers

study how specific subsidy policies have worked and whether they were justified (e.g. Bollinger

4The concept has been influential in both policy design (e.g. Succar, 1978) oligopoly pricing policy (e.g. Spence,

1981), and industrial and trade strategy (e.g. Ghemawat and Spence, 1985; Dasgupta and Stiglitz 1988).
5Grubb et al. (2002) and Gambhir et al. (2014) note the complex interactions between R&D and deploy-

ment, with increased deployment stimulating more R&D and vice versa, supporting the view that increments in

cumulative capacity are the main factor driving down costs in later near-market stages. Papineau (2006) cautions

that adding time and R&D makes cumulative production statistically insignificant; a reflection of the often high

colinearity between time and log cumulative output.
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and Gillingham, 2014; Rasmussen, 2001 for wind in Denmark; van Benthem et al., 2007 for

Californian PV; Andresen, 2012 for offshore Norwegian wind). Others address how to design

policy (Bardhan, 1971; Lehmann, 2013; Mazzola and McCardle, 1997), and what is the right

instrument – whether to subsidize capacity (Andor and Voss, 2016) or support the production

of the technology (Reichenbach and Requate, 2012). Few if any papers attempt to estimate the

justified subsidy for specific technologies with their own characteristics.6 An earlier working paper

(Newbery, 2017, a shortened version of which appeared as an appendix in Newbery, 2018) took

a similar but simpler approach, but ignored future competition from other low-carbon options,

and future post-saturation growth. The present paper points out the sensitivity of results to the

details of the modeling assumptions.

Goulder and Mathei (2000) build an elegant but highly simplified global optimal abatement

model in which abatement reduces CO2 emissions, whose cumulative stock must be kept below

some critical level. Investment in R&D generates knowledge, as does cumulative abatement

effort (learning-by-doing, LbD). If cost reductions come from R&D alone, the optimal choice of

abatement will be later when costs are lower, but if it comes from LbD, the impact on timing is

ambiguous, although Grubb et al. (2002), in reviewing their model, note “their specific examples

do yield stronger early mitigation with LbD”. The model developed here is very partial (just

the electricity sector) and ignores any impact on the carbon price (central to global energy-

environment models), but it asks whether it is desirable to accelerate or delay deployment in the

presence of LbD, and what might influence that choice.

1.2 Relevant technology characteristics

PV is a key low-carbon7 generation technology as it enjoys the highest rate of cost reduction

and is already commercially viable in high insolation locations such as Mexico and Chile. It

also has the highest sustained rate of growth of all renewable energy supplies, but it, like wind,

has important characteristics that need to be taken into account in projecting future costs and

benefits. First, PV and wind enjoy site-specific resources – not all locations are equally sunny or

windy. Second, and as a result, they can potentially saturate the local market, so that efficient

deployment involves moving to less attractive sites. Finally, the hours of sunlight limit total

penetration. Wind is not constrained to daylight hours, and can be complementarity with PV,

with higher outputs often in winter, but in some locations wind may peak inconveniently in

late night hours (Hoste et al., 2011, figs 5, 6). As peak output in both cases is a multiple of

6Kalkuhl et al. (2012) presents a calibrated general equilibrium global model and gives graphs of optimal

learning subsidies (fig. 5) for generic technologies.
7Although PV generation is zero-carbon making the modules is quite energy and potentially carbon intensive.

Wider decarbonisation would reduce its manufacturing carbon footprint.
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average output, wide-area penetration is ultimately limited by the extent of excess renewable

generation (Hirth, 2018). This paper develops techniques to handle all three characteristics,

while an appendix discusses other low-carbon options like Carbon Capture and Storage (CCS)

that avoid these limitations.

The model is as simple as possible consistent with capturing cannibalization and saturation,

to provide simple formulae for justified subsidy rates that can be rapidly numerically evaluated.

The global social cost-benefit formula accounts for important characteristics of electricity markets

largely ignored in the learning/technology policy literature and allows a quick test for whether

early acceleration or delay is appropriate.

The next section discusses the form and implications of learning-by-doing. Section 3 presents

a simple model that captures the site-specific nature of PV or wind and its implication for

future output. Section 4 presents the components and results of the social cost-benefit analysis,

followed in section 5 by a method of determining the maximum justifiable learning subsidy. The

appendices provide the evidence base for quantification, comparable results for other low-carbon

technologies, and the more tedious derivations.

2 Learning-by-doing cost reductions

The key assumption is that past learning rates will continue. While there is uncertainty not

only about past learning rates (Rubin et al., 2015) but clearly about future rates and even

their attribution to deployment or R&D (Jamasb, 2007; Nordhaus, 2014),8 figure 1 shows that

learning rates for technologies like PV are impressive and persistent. The market for renewable

technologies is intensely competitive, making it hard for manufacturers to capture these learning

benefits, which primarily lower subsequent production costs.

The second case for supporting PV (and all low-carbon technologies) is that even in countries

that have an explicit carbon price, such as the European Union’s Emissions Trading System, the

carbon price is well below any plausible estimate of the social cost of carbon – the present value

of the future damage caused by a higher stock of greenhouse gases (Dolphin et al., 2016; US

EPA, 2016). The social cost benefit analysis therefore needs to include the social cost of carbon.

8Gambhir et al. (2014) note the complex interactions between R&D and deployment, with increased deployment

stimulating more R&D and vice versa, supporting the view that increments in cumulative capacity are the main

factor driving down costs in later near-market stages.
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2.1 Learning rates and cost reductions

The simple one-factor learning model has the unit cost at date t, ct:

ct = aK−b
t , so

∆c

c
= (1 + ∆K/K)−b − 1, (1)

where Kt is cumulative production of units to date t, and b measures the rate of cost reduction.

(A list of symbols together with their assumed values is given in Table 1 below.) The learning

rate, λ, is the reduction in unit cost for a doubling of capacity, so setting ∆K = K in (1),

λ = −∆c
c = 1 − 2−b. For λ = 22%, (ITRPV, 2016) b = 0.358. The factor b can then be used to

estimate the future unit cost from (1). Over longer periods of time, it is implausible to assume

that learning rates can continue until costs fall almost to zero.9 Equation (1) can be modified to

allow for an irreducible minimum production cost, cm.

Assumption 1 (cost) The unit cost, ct, at date t, where Kt is cumulative production of

the units to date t, is

ct = cm + aK−b
t = c0(φ+ (1− φ)(

Kt

K0
)−b), (2)

where φ ≡ cm/c0 is the ratio of the minimum ultimate cost, cm, to that at date zero.

Initially, ∆c/(c− cm) ' ∆c/c, and the estimated learning rate will not be much affected if φ

is small, but as costs fall the difference can become appreciable. If installed capacity is growing

at rate g costs will be initially falling at rate bg.

The learning formulae, (1) or (2), imply that the cost of delivering learning is lowest when

the stock of knowledge is lowest. The subsidy cost of doubling cumulative production from 1 GW

is far lower than doubling it from 100 GW. That suggests the globally optimal solution is either to

do no further investment (if the technology will never be competitive), or to accelerate investment

at the maximum possible rate. In mathematical terms, the optimal solution would be ‘bang-bang’

– to immediately jump to the optimal cumulative production that delivers competitive PV from

here on. As Neuhoff (2008) cogently argued, this strategy is implausible for at least two reasons.

The first is that scaling up production capacity takes time, and second, more fundamentally,

learning itself takes both experience and time for it to disseminate and be incorporated into best

practice. Indeed, the two-factor model stressing the importance of R&D would likely find it hard

to discriminate between R&D and the elapse of time for dissemination. It is often remarked

that Silicon Valley is more innovative than Japan because of the high turnover of staff carrying

their knowledge to competing firms, in contrast to life-time employment practices in Japan that

make such people-mediated knowledge transfer less likely (McMillan, 1984). These limitations

are summarised in

9King et al. (2015) note that “The IEA believe that photo-voltaic panels will eventually reach a floor price,

but new truly disruptive technologies, such as plastic photovoltaics, could continue the downward fall in price.”
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Assumption A2 (growth) There is a maximum feasible rate of expansion of cumulative

capacity of rate g.

The global rate of growth of cumulative PV capacity has been at or above 30% since 1992,10

and this may well be near the plausible limit to sustained growth. Future growth will be limited

by the size of the resource, the fact that the sun does not shine at night (at least, in any one

location), saturation (with curtailment) of local markets constrained by interconnection, and the

rate of growth of demand for total electricity. Global saturation will occur at date T (determined

in A4 below) when all sites at which investment is socially profitable have been exploited. After

that date investment opportunities are limited by the rate of growth of the total market demand

for electricity.

While the argument for maximizing the rate of installation looks persuasive, it needs exami-

nation, as future carbon prices will be higher, raising the value of future decarbonization relative

to the present. In addition, increasing cumulative capacity raises the cost of each doubling

substantially, and may eventually argue for reducing the rate of investment.

Hypothesis H The globally optimal investment strategy is to invest at the maximum growth

rate g, until saturation at date T , at which point PV growth is constrained by the global rate of

increase of electricity demand.

This can be tested by checking that increasing the rate of investment above this trajectory

at any moment increases the net social value. This is done in section 5.1 below, which supports

the hypothesis for cases of PV with high learning and growth rates, but not for cases of lower

learning and growth rates, nor is the hypothesis confirmed for wind, with lower learning and

growth rates. A more sophisticated approach would be to set the problem up as a dynamic

optimization problem (as in Goulder and Mathai, 2000), or, more ambitiously, to make the

learning curve stochastic and use a Bellman approach, as in Mazzola and McCardie (1997), but

these can only be solved numerically, reducing their transparency.

3 A simple model

The simplest model to represent the aspirations of the Global Apollo Programme (King et al.,

2015) has a central planner allocating investment to its most attractive location at each mo-

ment.11 The model starts at date t = 0 with an inherited stock of capacity, K0. Future capacity

10https://en.wikipedia.org/wiki/Growth of photovoltaics
11This social optimum approach is standard in global climate change mitigation models such as Goulder and

Mathai (2000), although practical policies will need to take account of feasible and probably incomplete global

coalitions.
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depends on the time path of gross investment, It, whose unit cost is ct. From A2 and H, It grows

at rate g until T , so I0 = gK0. At T its share of total demand reaches its maximum. Thereafter

capacity grows at rate m equal to global electricity growth as all existing capacity can continue

to expand to meet the growing local markets and thus expand at the demand growth rate:

Ku = K0e
gu, u ≤ T, Ku = KT e

m(u−T ) = K0e
(g−m)T emu, u > T . (3)

For simplicity, panels are assumed to last indefinitely, so that cumulative capacity, Kt, is equal to

current capacity, kt.
12 Growth will continue until the market is saturated by installed capacity

KT at date T , determined by KT in Assumption A4, so T is determined by g.

3.1 Sequencing investment

Annual output at a specific site depends on h, equivalent full hours output per year. h depends

on location and will not vary with time. As local penetration as a share of the effective market

increases (limited by interconnection capacity) after a period peak PV output will displace all

flexible fossil generation in some hours, resulting in curtailment. The local price decline is

gradual until it becomes necessary to curtail PV output, after which the fall in sharp (Denholm

& Margolis, 2007).13

Once a site has been saturated, investment would shift to the next most favourable site. The

margin of investment can be roughly approximated by K, so the capacity factor at “location”

K can be written h(K).

Assumption A3 (capacity factor) The capacity factor at the location defined by Kt is

h(Kt) = h0

(
Kt

K0

)−ζ
. (4)

If K grows at g, the capacity factor will fall at rate ζg. Global saturation is defined by the

least attractive location that is still socially profitable, when h(Kt) has fallen to to h(KT ) = hT

(defined by “location” KT ):

Assumption A4 (saturation) The date of global saturation, T , is defined by hT , from

hT /h0 = e−ζgT or T = ln(h0/hT )/(ζg), so lower values of g give higher values of T .

12With exponential decay of panels at rate δ, kt = θKt, θ = 1/(1 + δ/g). At plausible decay rates (δ < 1%,

Jordan and Kurtz, 2012) and growth rates (g = 25%) θ ' 1, making this refinement unimportant and so ignored.

After date T degradation will need to be included to avoid implausible indefinite future benefits.
13Hirth (2018) notes that 40% of the drop in German spot prices between 2008 and 2015 was caused by the

increase in renewable energy. In addition to the curtailment modeled in this paper, wholesale prices can fall because

of the merit order effect, which, with very diverse generating plant, can be pronounced (Hirth, 2018; Sensfuß et

al., 2008). The merit order effect is modeled in section 4.1.
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3.2 Determining PV output

Incremental PV output after installing capacity Ku to date u will be determined by investment at

that date, Iu = dKu/du. This gives a vintage model in which cost, cu, and performance, h(Ku),

are locked in at date u, as in Rasmussen (2001), in contrast to simpler models of disembodied

progress. Incremental output from “vintage” Ku will be y(Ku) = h(Ku)dKu/du and from A3,

total output attributable to investment starting at date t when initial capacity is Kt up to the

date u when the capacity has risen to Ku will be Yt,u:

Yt,u =

∫ Ku

Kt

h(Kv)
dKv

dv
dv = h0

∫ Ku

Kt

(
x

K0

)−ζ
dx),

= h0K0(
(Ku/K0)1−ζ − (Kt/K0)1−ζ

1− ζ
). (5)

At date T the growth of capacity reaches the point of market saturation, and thereafter is

constrained by the growth of electricity demand. The assumption is that all existing capacity

now expands with its characteristic capacity factor at this market growth rate m. Although

initially capacity grows at rate g (although output grows less rapidly), after saturation both

output and capacity are constrained to grow at rate m. Output at date u attributable to

investment from date t will be

Yt,u = h0K0(
eg(1−ζ)u − eg(1−ζ)t

1− ζ
), t < u ≤ T, = Yt,T e

m(u−T ), u > T, (6)

where

Yt,T = h0K0(
eg(1−ζ)T − eg(1−ζ)t

1− ζ
).

Total output at date t is incremental output plus initial output, Y0 = h0K0, or Yt =

Y0(eg(1−ζ)t − ζ)/(1 − ζ), and this can be used to determine the penetration at any subsequent

date. Thus if YT1/YT = (eg(1−ζ)T1 − ζ)/(eg(1−ζ)T − ζ) = θ, then

eg(1−ζ)T1 = θeg(1−ζ)T + (1− θ)ζ. (7)

3.3 The social value of PV capacity

Fossil generation cannot be financed by pricing at variable costs alone, requiring the equivalent

of a capacity payment (equivalent to a demand-side scarcity payment) to ensure that enough

capacity is commercially viable to deliver the reliability standard. The capacity payment can

be determined in a Power Purchase Agreement (PPA) specifying the energy price and capacity

payment, or in a decentralized market by a capacity auction or its equivalent, or, in an energy-

only market, by scarcity pricing when capacity is tight. Plant in our model effectively holds a
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PPA with the spot price equalling the System Marginal Cost,14 and capacity paid its equivalent

firm capacity.

The derating factor of PV, τ , is the amount of avoided derated fossil capacity needed to meet

the reliability standard per unit of capacity (typically a percentage). In each summer-peaking

location, as more PV capacity is installed, its marginal capacity contribution falls to zero as more

output is curtailed. However, its average local contribution compared to the counterfactual of

zero PV will be positive. In winter-peaking systems lacking seasonal storage, i.e. in most northern

countries such as the UK, PV offers negligible contribution to reliable capacity, and there τ = 0.

In summer-peaking systems (with high air-conditioning load) and at low local penetration rates,

τ could be as high as 30%.

Assumption A5 (derating) The initial (zero penetration) derating factor for solar PV

at location Kj is τ j = τ0(Kj/K0)−σin summer peaking systems. With increased penetration in

location j the capacity credit remains constant for the first third of final penetration there, when

it falls linearly to the point where the marginal contribution to peak demand falls to zero.15 The

effective (average) derating factor for investment at location K per unit is

2τ0

3
(
K

K0
)−σ. (8)

4 Social cost-benefit analysis of a PV programme

Any policy proposal, such as subsidizing PV, requires a counterfactual – what would have hap-

pened absent the policy. Given the premise of the Global Apollo Programme (King et al., 2015),

if PV were not considered a potential solution to decarbonizing electricity, some other set of

technologies would have been deployed, e.g. some combination of other low-carbon technologies

such as wind, nuclear power and/or carbon capture and storage applied to fossil generation.

The least favourable assumption for supporting PV is that by some date N these alternatives

could have met any additional decarbonization contribution that PV might have offered at a

comparable cost. In the same spirit, after N , PV investment produces no higher spill-overs than

alternative investments, and so subsequent learning benefits can be ignored. However, it is no

14As in the Single Electricity Market of the island of Ireland – see e.g.

p7 of https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-17-

070%20MMU%20Public%20Report%20Q2%202017 0.pdf
15Ignoring the terms in K, the formula for the capacity factor is y = τ0, 0 ≤ x ≤ 1

3
, y = 3

2
τ0(1− x), 1

3
≤ x ≤ 1,

where y(x) is the capacity factor when a fraction x of the local zone is saturated. The average capacity factor

is then
∫ 1

0
ydx = 2τ0/3. The exact shape of the declining capacity factor caused by curtailment is not critical,

given the modest contribution of the capacity credit; the point is that the average contribution lies between the

uncurtailed and the fully curtailed value.
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longer credible to assume no degradation after N , and as there is no carbon benefit, technical

progress of all new low-carbon technologies is assumed to drive the value of displaced power

down at rate µ.

Assumption A6 (post saturation) After N , KN will decay at rate δ and disappear after

L years, while displaced electricity prices will fall at rate µ.

Assumption A7 (horizon) After N , PV can claim no external benefits, but the installed

capacity at date N will continue to displace generation and earn social profits until it reaches the

end of its life.

4.1 Valuing PV output

The net value of PV will be the System Marginal Cost (SMC) of fossil fuel displaced less the

extra balancing costs required by the PV, which together make up pt, plus the social cost of the

CO2 avoided, γt per unit of displaced fossil generation, to give a total value of pt + γt per MWh.

As with the capacity credit, pt may decline with increasing local PV penetration (the merit-order

effect) and hence will be a function of K. The social value of displaced carbon will increase at

rate i, close to the social discount rate, r.16 If we assume a similar formulation as that in A5,

p(K) = p0(K/K0)−ξ, then pt = p0e
−gξt. It will be convenient to set gξ = π, noting that π is

proportional to g, while p(KT ) = pT is independent of g. The social cost of the CO2 avoided, γt

per unit of displaced fossil generation will depend on the fuel displaced. The case least favourable

to supporting PV is to suppose that an adequate CO2 price has made efficient gas-fired turbines

the marginal flexible fuel displaced by PV.17 If gas-fired combined cycle turbines (CCGTs) are

always at the margin when PV produces, its SRMC sets the price. However, the fraction of

the time that fossil is at the margin will gradually decrease as other low-carbon technologies are

deployed, so the effective average price realized will gradually fall – an effect magnified by any

merit-order effect from diversity in the fossil generation mix.

Assumption A8 (output value) The social cost of carbon per MWhe of fossil generation

displaced at date t is γt per MWhe, rising at rate i to date N , and the PV output-weighted

annual average extra variable fossil cost (fuel + the excess of the fossil variable O&M over the

PV variable O&M less any extra balancing costs required to manage the PV) is pt = p0e
−πt,

16This is a standard result from optimal climate mitigation – see e.g. Goulder and Mathai (2000).
17Subscript e refers to electricity (in contrast to the energy content of fuel, indicated by subscript th). If PV

displaces efficient combined cycle gas turbines the carbon intensity will be roughly 0.4 tonnes CO2/MWhe (Bass

et al. 2011). Thus if the social cost of carbon is $37.5/tonne CO2, γ = $15/MWhe. In many parts of the world

the fuel displaced will be coal, which has twice the emissions factor of gas.
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where π = gξ, and ξ is a constant. At date N its unit value is sN = p0e
−πN + γ0e

iN .18

A social cost-benefit analysis of the trajectory calculates the investment cost to date T ,

after which the rate of growth falls to that of total electricity demand, dramatically lowering the

subsequent learning benefits. For lower rates of growth, T > N , and after N the benefits from

future investment can be ignored. In both cases installed capacity at N will continue to displace

fossil generation.

4.2 The cost of the investment strategy

The total present discounted value (PDV) of investment cost from date t (and its relation to

initial capacity K0), at the social discount rate r is:

Ct
K0

=

∫ Min(T,N)

t
cu
Iu
K0

e−r(u−t)du+
KT

K0

∫ N

Min(T,N)
cu
Iu
KT

e−r(u−t)du. (9)

The integral is evaluated in Appendix B. In terms of the hypothesis that early investment is

cheaper than later
d

dt

(
Ct
K0

)
|t=0 = r

C0

K0
− gc0,

which is typically positive.

4.3 The capacity credit for PV

The derating factor of PV, τ , is only positive in summer-peaking systems, which will eventually

become saturated, after which time investment would relocate to winter-peaking sites. The

assumption is that when all sites are saturated at T , a fraction θ of output will then be supplied

by summer-peaking sites.

Assumption A9 (summer peaking) Under optimal deployment, summer peaking sites

will be developed first, up to KT1, which will occur at date T1 determined by YT1 , itself deter-

mined by the absorptive capacity of summer peaking systems (i.e. when summer peaking sites are

saturated).

18van Bentham et al. (2007) assume that gas prices rise at 1% real p.a., presumably as it is an exhaustible

resource. Countering that, decarbonization puts downward pressure on fossil fuel prices. They also assume that

the carbon price increases over time but that the CO2 released per marginal kilowatt hour of electricity decreases

correspondingly over time, so that the dollar value of the environmental externality remains constant. As the social

cost of CO2 rises at close to the social discount rate, this would require an increasing share of less carbon-intensive

marginal sources over time as coal and/or oil units are retired. The assumed rate of increase of CO2 per MWh of

PV reflects some of these effects, while the fall in the fossil cost at rate π captures the rest of the decarbonization.

For the representative parameters in Table 1 the effects lead to an almost constant net value of renwables, pt + γt.
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If YT1/YT = θ, then from (7), T1 = ln(θeg(1−ζ)T + (1− θ)ζ)/(g(1− ζ)). At any date t < T1

the total present discounted value (PDV) of future capacity credits under steady growth when

the capacity payment is P ($/MWyr) and τ(K) is given by (8) is

Πt

K0
=

2

3
P

∫ T1

t
e−r(u−t)

Iu
K0

τ0e
−σgudu

=
2

3
gτ0Pe

rt (e
((1−σ)g−r)T1 − e((1−σ)g−r)t)

(1− σ)g − r
. (10)

4.4 The social value of post-saturation PV

Given A5-8 the PDV of output after date N , Vt, attributable to investment from date t, is, if

N ≥ T and the unit value of output declines at µ and output Yt,u declines at rate δ after N ,

Vt
K0

= e−r(N−t)sN
Yt,T e

m(N−T )

K0

∫ L

0
e−(µ+δ+r)udu,

= h0sNe
rt

(
eg(1−ζ)T − eg(1−ζ)t

1− ζ

)
e(m−r)N−mT

(
1− e−(r+δ+µ)L

r + δ + µ

)
. (11)

If N < T , T is replaced by N . Note that there is no capacity credit after T1 < N .

4.5 The capacity credit for wind

Wind contributes a positive capacity credit that is typically higher in winter-peaking systems.

In Britain Ofgem cites wind’s Equivalent Firm Capacity (EFC) as 17-24%, when the on-shore

wind capacity factor is 26% and that for off-shore is 37%.19 If the two EFCs are interpreted as

on-shore and off-shore then the EFCs are both 65% of the capacity factor. In the island of Ireland

the EFC is a function of penetration and market size, and falls from 71% of the capacity factor at

zero penetration to about 33% when installed capacity exceeds domestic peak demand.20 Figures

for North America for EFCs range from 3%-30% with California at 24%.21 That suggests taking

an average capacity credit of 50% of the capacity factor, h(K), so the annual credit at location

K is Ph(K)/17, 520, as there are 8, 760 hours for the full capacity credit. The total credit for

the cumulative stock can be written as PY (K)/17, 520, from (5) so the total PDV is

Πwt =
Pert

17, 520

(∫ Min(T,N)

t
e−ruYt,udu+ Yt,T

∫ N

Min(T,N)
em(u−T )e−rudu

)
, (12)

evaluated in Appendix B.

19www.ofgem.gov.uk/ofgem-publications/75232/electricity-capacity-assessment-report-2013.pdf
20http://www.soni.ltd.uk/media/documents/Operations/CapacityStatements/All%20Island%20Generation%

20Capacity%20Statement%202015%20-%202024.pdf
21https://www.bchydro.com/content/dam/hydro/medialib/internet/documents/info/pdf/info iep dependable capacity and firm energy.pdf

13



4.6 Total social benefits

The displaced generation saving benefits from t to the earlier of date N or T are the sum of the

discounted values of the output of PV times the value of the displaced fossil energy (including

its carbon cost) up to the first date when it is expanding at its maximal rate, and a second

discounted sum when output is expanding at rate m:

Ft =

∫ Min(T,N)

t
e−r(u−t)Yt,u(pu + γu)du+ Yt,T e

rt−mT
∫ N

Min(T,N)
e(m−r)u(pu + γu)du. (13)

This is evaluated in Appendix B. Total social benefits are the sum of three elements: St = Ft +

Πt+Vt, and the question is whether St/K0 > Ct/K0. The net (relative) benefit is St/K0−Ct/K0,

sometimes (potentially misleadingly) summarized by the dimensionless benefit-cost ratio, St/Ct.

4.7 Is it desirable to moderate deployment?

The Hypothesis suggested that the optimal policy was to invest at the maximum feasible rate

until saturation, but the benefits of future learning fall as date N approaches, after which by

assumption future learning is no more valuable than for any alternative low-carbon option. The

hypothesis can be tested by increasing g at date 0 by a small increment and comparing the net

relative benefit numerically, and for subsequent dates t > 0, by evaluating St/Kt − Ct/Kt and

repeating this small deviation.

5 The size of the potentially justified subsidy

If supporting PV (or wind) is socially justified, the next question is to determine the maximum

justified learning subsidy to stimulate its adoption. The actual learning subsidy required may

be considerably less, and is likely best determined through a tender auction, for which a ceiling

– this maximum – is needed. (Any carbon credit for displacing fossil fuel is assumed to be

addressed separately.) This maximum subsidy is the value of future cost reductions, discounting

at the social discount rate, r. Future investment costs at date u are cuIu.

The net present discounted cost of future investment at date t, At, is
∫ N
t cuIue

−r(u−t),

assuming that there are no learning benefits after date N . Allowing for the change in the capacity

growth rate at date T (apart from a possible deviation at date t, and with a sudden drop in the

investment required to maintain lower growth at T ), the NPV will be, after substituting for cu

14



from (2), is, for t < T :22

At = c0

∫ Min(T,N)

t
Iu(φ+(1−φ)(

Ku

K0
)−b)e−r(u−t)du+c0

∫ N

Min(T,N)
Iu(φ+(1−φ)(

Ku

K0
)−b)e−r(u−t)du.

(14)

Ku = K0e
gu until T , and thereafter Ku = K0e

(g−m)T emu. A change in current investment, dIt,

will change all future values of Ku by dIt, so dKu/dIt = 1, u > t, but Iu for u > t remains

unchanged. Differentiating (14):

dAt
dIt

= ct − c0b(1− φ)ert

 ∫Min(T (K),N)
t (Ku

K0
)−b−1( I0e

gu

K0
)e−rudu

+
∫ N
Min(T (K),N)(

Ku
K0

)−b−1)( IuK0
)e−rudu

 . (15)

The two last terms are the spill-over benefits, Bt. Note that the integral limit T is a function of

KT and hence I0 from Assumption 4. The proportional benefit Bt/c0 is, after substituting for

Iu = dKu/du from (3),

Bt
c0

= b(1− φ)ert

(
g

∫ Min(T (K),N)

t
e−(bg+r)udu+me−b(g−m)T

∫ N

Min(T (K),N)
e−(bm+r)udu

)
,

as the derivatives w.r.t. the integral terms T cancel. Note that if there is no learning, then b = 0,

and there is no justified subsidy, as expected. The spill-over benefit in (15) is thus:

Bt
c0

= (1− φ)ert

(
e−(bg+r)t − e−(bg+r)T

1 + r/(bg)
+ e−b(g−m)T e

−(bm+r)T − e−(bm+r)N

1 + r/(bm)

)
. (16)

As Bt is decreasing in t, the absolute size of the spill-over benefit is larger in earlier periods.

Although the spill-over benefits were higher at earlier dates, the cost net of the spill-over benefit

at date t is ct − Bt and ct was also higher in the past, as figure 2 shows (the base case has

cm/c0 = 25%). Appendix B shows that at some time in the past the spill-over benefits more

than covered the up-front investment costs, but this could have been so far ago as to be irrelevant.

Table 1 shows that over the period of significant investment, the net cost was still falling, using

the results of the next section.

5.1 Calculations

Table 1 presents the results for varying parameter values based on the calibrations set out in

Appendix A (and giving a variety of values reflecting the uncertainties surrounding many of these

parameter values). All the calculations assume that c0 for PV is $1,050/kWp and for wind is

$1,560/kW in 2015 (t = 0), the rate of ultimate post-saturation growth in (3), m = 1.75%, the

de-rating values in (8) are σ = 0.4 and the initial de-rating factor for PV, τ0 = 30%. The capacity

22If N > t > T , the first term is zero and the lower limit of the second integral is t, and T is replaced by t in

(16).
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Figure 2: Cost and subsidy per KWp

payment in (10), P = $75, 000/MWyr, the A6 post-saturation rate of fall in value, µ = 1% and

the degradation rate δ = 2%. The 2015 social cost of carbon, SCC, γ0, is $15/MWhe growing at

i = 1.0% p.a.,23 the discount rate r = 3%, and the 2015 SRMC p0 = $35/MWh, while the value

of ξ = 0.4, so π = gξ, as in A8. The highlighted cells indicate which parameters have changed

with the consequential parameter changes. The top lines give the technology, showing wind with

a lower λ that PV. ITRPV (2016) gives the learning rate for PV as 22% but Rubin et al. (2015)

reduce this to 18% in the two-factor model,24 so both values are tested. IRENA (2016) gives

on-shore wind investment cost learning rates as 7 − 12% but Rubin et al. (2015) give slightly

higher values (see Appendix C).

The first point to note is that the fourth line up from the bottom allows a test of whether

raising the rate of growth, g, by 1% is beneficial. The correct test is whether it raises the net

social benefit, which involves comparing the fourth and fifth lines from the bottom. Raising the

growth rate is beneficial in the PV cases except for Col F (with a lower g and λ than the base

case in Col A, although it can be directly compared with Col E with the same λ). For the wind

cases, Cols H-J, only Col I, with high g and λ, benefits from a higher g, while Col J shows that

23This is taking a pessimistically low value of both the SCC and its growth rate.
24The other factor is R&D, although much of that will be stimulated by the growth in demand, so including

R&D as a separate explanatory factor likely understates the benefit of expanding cumulative capacity.
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continuing at g = 12% with a lower learning rate, λ, is socially unprofitable. Comparing Cols

J and K, it is clear that lowering g from 12% to 8% raises the net social benefit (to a positive

level), and there is an intermediate optimal rate of (steady) growth.

The evidence thus refutes the Hypothesis that the optimal rate is always the

maximal rate. This raises the question of why the Hypothesis appears to hold in most cases

for PV but not for wind. In the case of PV the initial installed capacity is modest, so the cost

of expansion is not so high. High rates of learning and high rates of expansion mean that the

future costs are driven down more rapidly and can be secured sooner than in the converse case,

lowering the current cost of delivering future benefits. In the case of wind the initial installed

base is now so large that the cost of doubling installed capacity becomes very large while the

cost reduction (with the lower learning rate) is smaller, and so delaying until the social cost of

carbon has risen sufficiently to overcome the higher cost of wind has higher value.

Comparing across Columns, we find, unsurprisingly, Col B shows that lowering the minimum

cost cm raises the justified subsidy and the net social benefit per MW of initial capacity (in 2015).

Again unsurprisingly, extending the time before there are no external benefits, N , increases the

net social benefit, while lowering the learning rate λ, (Col E vs. Col A) lowers net social benefit.

Lowering the post saturation lifetime, L, reduces the net social benefit. Col G vs Col A shows

that increasing the capacity decline exponent ζ lowers the net social benefit by reducing the

time to saturation (and the eventual saturation shown in the penultimate line), while Col H

holds ζ at the same level as col G but reduces the saturation capacity factor from 900 hrs to

700 hrs, increasing the net social benefit slightly as it takes longer to reach saturation, by which

time the penetration at saturation (the penultimate line) has risen from 11% to 16%. Evidently,

calibrating the model’s parameters is a delicate matter and needs careful thought but it is simple

to vary each parameter to assess its effect.

The last line shows the effect of starting on the expansion plan later to find the date, t,

at which it is no longer desirable to raise the rate of growth (or to find the date at which the

net social benefit from then on falls to zero). In most cases there is a later date at which the

growth rate should be lowered. Together with evidence on the effects of increasing g, it is more

plausible that the optimal investment path may have an initial growth rate at or below the

maximal rate, with gradually falling growth rate as the learning externalities become lower and

the costs of achieving them at higher scales becomes larger. Ignoring this refinement means that

the estimated net social benefits are under-estimated, as an optimal path would improve on this

suboptimal constant growth path.

Although the value of the discount rate, r, was held constant in Table 1, it is clearly im-

portant, and if r is raised from 3% to 5%, the net social benefit for Col A data falls from $7.3
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million to $3.3 m, and at r = 8% to $0.8 m. with a Benefit-Cost Ratio (BCR) of 1.02 (as would

be expected). The rate of escalation of the carbon price, i, was also held constant at 1%, but

raising it to 2.9% (close to the social discount rate) increases the net social benefit in the Col A

case to $10.1 m. with a BCR of 1.8. Similarly, raising γ0 (but keeping i = 1%) to $25/MWhe

raises the net social benefit of Col A to $12.3 m. (again in the expected direction).

The final three columns (H to K) give results for wind (based on values given in Appendix

C). As learning and growth rates are lower so are the BCRs, although higher capacity factors

and capacity credits alleviate the impact. At low learning and a lower growth rate, g, of 8%, the

net benefits become negative (although raising the rate of growth has a beneficial impact as Col

K shows).

To give a sense of the fraction of the cost that could be justified as a subsidy at date t = 0,

Table 1 gives the justified subsidy rate in 2015, so in Col A B0/c0 = 45%. At g = 15%, (Col

D) T = 21.7 yrs which is greater than N at 20 years, so learning and other benefits cease before

full saturation. As a result, the subsidy falls to 39% of the cost. As the learning rate falls, so

does the subsidy, so if λ = 18%, (Col E vs Col A) B0/c0 = 39%. The results are also sensitive to

the existence of a minimum feasible unit cost, cm, in (2), and figure 2 shows the subsidy rates

and the unit costs for two values of cm/c0. The two alternative unit cost curves cross at the

calibration date, t = 0 (2015). Note that for N > t > T the first term in (16) is zero and the

second term has t in place of T , with a sharp decrease in the rate of fall of unit costs after T .

5.2 Individual country contributions to the public good

It is possible to compute the value of each country’s contribution to reducing future costs by its

current and previous investment, either roughly or more accurately. The rough estimate takes

the estimated unit cost ct from (2) and the amount of capacity added in that year, using (17)

to estimate the spill-over benefit, using the assumed growth rate, g and learning rate, λ of Col

A. That underestimates the growth rates up to 2015 and hence underestimates the present value

of the spill-over benefit. Recent cost declines have if anything been faster than average, judging

from Figure 1, which might suggest a higher learning rate. However, some of that cost fall may

be competitive shading of margins rather than genuine cost reductions, so there is as yet no

compelling evidence that learning is accelerating. Working back from the current cost to earlier

costs using (2) might undervalue those costs and hence the learning benefits, again erring on

the conservative side. A more accurate estimate would track the actual evolution of cumulative

capacity instead of assuming a constant global growth rate.

Under the approximate constant growth rate approach, the spill-over benefit per kWp in-
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stalled in year t from (15) is st ≡ ct − dAt/dIt or

st = (c0 − cm)ert

(
e−(bg+r)t − e−(bg+r)T

1 + r/(bg)
+ e−b(g−m)T e

−(bm+r)T − e−(bm+r)N

1 + r/(bm)

)
. (17)

With the base assumptions that c0− cm = $788, date T = 2028, bg = 8.96%, N = 2035, r = 3%,

m = 1.75% and t includes the five years from 2010 (accounting for over 80% of cumulative

capacity), we can calculate the spill-over value each year and, given the cumulative capacity

installed in each country shown in Table 2, the total spill-over by country is given in Table 3

(calculated from the spill-over per kWp in Table 2 and the annual increments to capacity).

Table 2: Installed capacity (GWp) and spillover ($/kWp) of Solar PV

Country 2010 2011 2012 2013 2014 2015 shares

China 0.8 3.3 6.8 19.7 28.2 43.5 19%

Germany 17.4 24.9 32.5 35.8 38.2 39.8 17%

Japan 3.6 4.9 6.6 13.6 23.3 34.2 15%

USA 2.5 4.4 7.3 12.1 18.3 25.6 11%

Italy 3.5 12.8 16.5 18.1 18.5 18.9 8%

UK 0.1 0.9 1.9 3.4 5.1 8.9 4%

France 1.2 3 4.1 4.7 5.7 6.6 3%

subtotal 29.1 54.1 75.6 107.3 137.2 177.5 76%

Global cumulative capacity 47 78 110 144 184 234 100%

spillover per kWp $822 $740 $664 $595 $531 $472

range of spillover +/− % 31% 28% 26% 24% 21% 19%

Sources: Wikipedia at https://en.wikipedia.org/wiki/Growth of photovoltaics. Detailed

notes on sources are provided there. Global figures 2012-15 are taken from ITRPV (2016)

and for 2010-2011 extrapolated backwards from (incomplete) country totals.

The range of values of the spillover is the range shown from Table 1 exhibited by B0/c0, so the

cumulative contribution that these countries have made to global learning benefits ranges from

$83-138 billion (without attributing previous contributions and excluding interest – including

interest at r = 3% would increase the cumulative contribution by $9 billion).

5.3 Funding a global Apollo Programme

The spill-overs calculated in Table 3 are substantial and unequally divided, with the top three

countries contributing over half the global contribution. It is interesting to ask how this total sum

might have been made available for subsidy support globally under some international agreement
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Table 3: Spillover value of Solar PV by country, year, and cumulative value, 2010-2015 $millions

Country 2010 2011 2012 2013 2014 2015 cumulative share

Germany $14,276 $5,536 $5,049 $1,964 $1,292 $737 $28,855 21%

China $657 $1,849 $2,324 $7,681 $4,499 $7,234 $24,245 18%

Japan $2,973 $958 $1,141 $4,142 $5,148 $5,120 $19,482 14%

USA $2,078 $1,372 $1,918 $2,858 $3,291 $3,454 $14,970 11%

Italy $2,878 $6,883 $2,420 $963 $205 $219 $13,568 10%

UK $63 $612 $662 $878 $916 $1,799 $4,930 4%

France $989 $1,309 $741 $382 $492 $438 $4,352 3%

subtotal $23,915 $18,519 $14,255 $18,869 $15,842 $19,001 $110,402 80%

range +/− $7,323 $5,266 $3,727 $4,480 $3,360 $3,522 $27,678

along the lines of the Global Apollo Project. Table 4 shows cumulative emissions for countries

accounting for 80% of CO2 emissions since 1950, and their share in the global total over that

period.

If, plausibly, countries were asked to contribute on the basis of their past contributions

to the stock of CO2, then the US might be asked to contribute 25% whereas of the subset of

countries in Table 3, it contributed 11% of the global spill-over benefits (the table accounts for

80% of cumulative investment). China over-contributes (18% compared to a 14% CO2 share)

as does Germany (21% compared to 5%) and Italy (10% compared to 2%). The other countries

contribute roughly twice as much as their share in global emissions.

A proper global programme would collect funds according to some criterion such as cumula-

tive contributions to the current CO2 stock (perhaps progressive with GDP/head and cumulative

emissions per head as part of the formula) and allocate them efficiently. That would be achieved

by an annual auction for the least subsidy needed to deliver the annual target, payable per MWh

delivered up to some total per MWp installed (e.g. 20,000MWh/MWp, equivalent to 20,000

equivalent full operating hours,
∑
ht) in addition to the wholesale price. That would encourage

delivery (i.e. proper installation, connection and maintenance) and allocation to places of high

insolation or wind and high avoidable fossil costs. An additional requirement might be an explicit

carbon tax or equivalent subsidy to zero-carbon generation.

The decision on the annual amount to auction will need to balance the supply of suitable

sites with the manufacturing capacity of the PV industry, and would ideally provide credible

commitments for sufficiently far into the future to justify building new PV manufacturing ca-

pacity. As PV prices fall, the amount of subsidy required will fall below the future value of the

spill-overs, although as better sites are used up, the time taken to earn back the installation costs
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Table 4: Emissions of CO2 by country and share of total emis-

sions from 1950-2013

cum CO2, m tonnes share cum

country 1950-2013 share

United States 280,249 25% 25%

China 156,643 14% 39%

Russian Federation 97,243 9% 47%

Germany 56,844 5% 52%

United Kingdom 35,789 3% 55%

Japan 51,470 5% 60%

India 35,049 3% 63%

France 22,941 2% 65%

Canada 24,185 2% 67%

Ukraine 25,591 2% 70%

Poland 19,312 2% 71%

Italy 19,884 2% 73%

Mexico 14,334 1% 74%

South Africa 14,099 1% 76%

Australia 13,968 1% 77%

Korea, Rep. (South) 13,557 1% 78%

Iran 11,856 1% 79%

Spain 11,424 1% 80%

Source: CAIT Climate Data Explorer. 2017. Washington, DC:

World Resources Institute, at: http://cait.wri.org

will rise and tend to offset the fall in installation costs.

6 Conclusions and Policy Implications

The models demonstrate how to judge whether a given rate of expansion of PV or wind is

justified, given assumptions about the future prices of fossil fuel and carbon displaced, as well

as, critically, the learning rate and discount rate, and on the asumption that high resource areas

are exploited in the most cost-effective sequence. The method here has been applied to constant

growth cases as they allow closed form solutions and hence simple and transparent sensitivity

analysis, at the cost of understating the benefits of an optimal trajectory. The approach can be
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readily extended to any projected trajectory using the relevant formulae for each period’s cost

of new investment and its capacity factor, and spreadsheets to evaluate the annual values.

The results suggest that subsidizing solar PV appears justified, and the justified subsidy

rates are substantial – in 2015 $470 +/-$90/kWp. If this were allocated as a supplement per

MWh for the first 20,000 MWh/MWp, the amount would be $23.5/MWh, to which should also

be added the shortfall in the CO2 price times the CO2 intensity of displaced MWh. For example,

if the shortfall were $15/tonne CO2 and the generation displaced were gas-fired, an additional

$6.5/MWh could be justified, to give a total maximum of $30/MWh (£23/MWh at $1.3=£1).

With forward summer 2018 baseload prices in GB around £47/MWh (Dec 2017)25 and the 2015

auction for solar PV clearing at £79/MWh the implied subsidy was about £32 ($42)/MWh,

somewhat higher than the level justified for a much sunnier country than the UK.

The story for on-shore wind is less promising - whether continued support is justified appears

somewhat marginal, although if it were justified the subsidy rates might be 14-22% (but could

be lower). On the assumption (not tested as data are not very reliable) that CCS is justified

(and it is difficult to see how we can meet our carbon targets without putting a lot of carbon

back underground) Appendix D suggests that capacity subsidies of 14-20% might be justified,

but given the limited evidence on learning rates these are more speculative.

Given a more fully reasoned model of how learning disseminates and the role of induced

(or planned) R&D, it might be possible to compute the optimal trajectory, which would almost

certainly start with higher rates of investment, falling over time as the costs of subsidizing an ever

larger investment rise while the future cost reductions decline. The resulting justified subsidy

rates would differ, perhaps not substantially, from those estimated here. In this simplified model,

the main conclusion is that accelerating the current rate of investment appears socially attractive

under a wide range of assumptions for PV, less so for on-shore wind (which, fortunately, is

approaching viability without subsidy, given a sensible carbon price). The case for supporting

Mission Innovation is therefore compelling.
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A Calibrating the model for solar PV

A.1 Unit costs

ITRPV (2016) gives the 2015 global average module price as US$ 0.58/Wp, with an installed base

at end-2015 of 234 GWp.
26 Module for large (>100kW systems) in the US and Europe represent

only 55% of the total system cost (excluding “soft costs”), making the assumed system price

US$ 1,090/kWp. NREL (2016) gives US cost estimates for the total installed cost of utility-scale

installations for Q1, 2016, including all the installation, permitting and grid connection costs

and (expensive) US labour costs, as US$ 1.14/Wp for a fixed-tilt 100 MW array in Oklahoma

(the cheapest state, with non-unionised labour). The cost of a one-axis tracking unit there

would be US$ 1.19/Wp, and tracking is cost-effective given the resulting higher capacity factor.

Installation costs should be lower in countries with lower labour costs as the US labour element

is US$ 0.16/Wp. The average module price (rather than the US figure) with half the US labour

cost for a tracking system is US$ $1,050/kWp for the start date of 2015.

26Prices may be above or below costs. The US data discussed below are built up from cost components and will

be higher than costs in China. The average 2015 cost relates to a level of cumulative production lower than the

end of the year value, so future cost reductions are slightly under-estimated.
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A.2 Calibrating penetration

The point at which solar PV penetration reaches its limit at date T is determined by the global

pattern of solar insolation, and the number of equivalent operating hours below which PV is not

competitive with other low carbon generation, hT . If h0 = 2, 500 hrs (exceeded in favoured

locations, see http://geosun.co.za/services-products/prospect-evaluate/solar-maps-and-layers/),

and hT = 900 hrs (roughly North Denmark and northern Canada) then hT /h0 = e−ζgT so

ζgT = 1.022. If it takes 13 years to move from 2, 500 hrs to 900 hrs when PV investment grows

at g = 25%, then KT /K0 = 25.8 and ζ = 0.314. Saturation penetration would be YKT
/Y0 = 13.1.

PV generation in 2016 is estimated at 1.8% of global generation, with Honduras producing 12.5%

of its demand from PV (IEA, 2017). Our reference data are mostly from 2015, when the share

was closer to 1.5%, so, allowing for total electricity growth of 2.25% p.a. until 2020 and thereafter

1.75%,27 global saturation would be 15%, which seems plausible, given current highest levels of

penetration. Saturation is defined by hT (i.e. by KT ) and if ζ is a physical parameter, but g

and hence T varies so that if g = 20%, then T = 16.3 yrs, with final penetration at 14.5%. If

g = 15%, T = 21.7 yrs and the higher total generation then would lower PV penetration to 13%.

B Integration formulae

Many of the derivations involve solving
∫M
t eαtdt = (eαM − eαt)/α ≡ Ψ(α, t,M), where Ψ is an

operator (and a useful spreadsheet function). The formula for the PDV of costs at date t, Ct0,

on the investment trajectory on which cm = 0, (in eq. (1)) and (9) is, after substituting for

It = dKt/dt from (3),

Ct0
K0

= c0e
rt

(∫ Min(T,N)

t
ge((1−b)g−r)udu+me(1−b)(g−m)T/N

∫ N

Min(T,N)
e((1−b)m−r)udu

)
= c0e

rt
(
gΨ((1− b)g − r), t, T/N) +me((1−b)(g−m)TΨ((1− b)m− r), T/N,N)

)
,

where T/N is short for Min(T,N). In the more plausible case where φ > 0 as in (2),

Ct
K0

= (1− φ)
Ct0
K0

+ φc0e
rt

(
g

∫ Min(T,N)

t
e(g−r)udu+me(g−m)T/N

∫ N

Min(T,N)
e(m−r)udu

)
,

Ct
K0

= (1− φ)
Ct0
K0

+ φc0e
rt
(
g(Ψ(g − r, t, T/N) +me(g−m)T/NΨ(m− r, T/N,N)

)
, (18)

where Ct0 is the PDV to date t of cost when cm = 0 = φ.

27https://www.eia.gov/outlooks/ieo/electricity.php
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B.1 The pre-saturation benefit

The pre-saturation benefit attributable to post-t investment is, from (11)

Ft =
h0K0e

rt

1− ζ

 ∫Min(T,N)
t e−ru(e(1−ζ)gu − e(1−ζ)gt)(p0e

−πu + γ0e
iu)du

+(eg(1−ζ)T − e(1−ζ)gt)e−mT
∫ N
Min(T,N)(p0e

−πu + γ0e
iu)e(m−r)udu

 ,

=
h0K0e

rt

1− ζ


p0{Ψ((1− ζ)g − r − π, t, T/N)− e(1−ζ)gtΨ(−r − π, t, T/N)}+

γo{Ψ((1− ζ)g + i− r, t, T/N)− e(1−ζ)gtΨ(i− r, t, T/N)}+

(eg(1−ζ)T − e(1−ζ)gt)e−mT [p0Ψ(m− r − π, T/N,N)

+γ0Ψ(m+ i− r, T/N,N)]

 . (19)

B.2 The capacity credit for wind

The capacity credit for wind from (12) is

Πwt

K0
=

Ph0e
rt

17, 520(1− ζ)

 ∫Min(T,N)
t (e(1−ζ)gu − e(1−ζ)gt)e−rudu+

(e(1−ζ)gT/N − e(1−ζ)gt)e−mT/N
∫ N
Min(T,N) e

(m−r)udu

 ,

Πw0

K0
=

Ph0e
rt

17, 520(1− ζ)

 Ψ((1− ζ)g − r, t− T/N)− e(1−ζ)gt(Ψ(−r, t− T/N)

+(e(1−ζ)gT/N − e(1−ζ)gt)e−mT/NΨ(m− r, T/N −N)

 .

B.3 The evolution of the subsidy

The evolution of the subsidy can be rearranged from (16) as

Bt
c0

= (1− φ)
e−bgt − ert

1 + r/(bg)
+ ert

B0

c0
,

so the net (relative) cost at date t is

nt =
Bt − ct
c0

= (1− φ)
e−bgt − ert

1 + r/(bg)
+ ert

B0

c0
− φ− (1− φ)e−bgt

= ert
(
B0

c0
− 1− φ

1 + r/(bg)

)
− φ− (1− φ)

e−bgt

1 + bg/r
,

where

B0

c0
= (1− φ)

(
1− e−(bg+r)T

1 + r/(bg)
+
e−(bg+r)T − e−(bm+r)N−b(g−m)T

1 + r/(bm)

)
,

nt = (1− φ)ert

(
e−(bg+r)T − e−(bm+r)N−b(g−m)T

1 + r/(bm)
− e−(bg+r)T

1 + r/(bg)
− e−(bg+r)t

1 + bg/r

)
− φ.

As t becomes large and negative (going back into the past) this expression will tend to− (1−φ)
1+bg/re

−bgt−

φ and hence to a negative net cost, but this seems to involve an extremely distant past, after

which the net cost remains positive.
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C Wind

Mean learning rates for on-shore wind are given as 12% (one-factor model) or 9% (two-factor) in

Rubin et al. (2015) and 7% (investment costs) or 12% (levelised costs of electricity) by IRENA

(2016). Capacity factor data is available from OpenEI’s Transparent Cost Database,28 which

suggests a maximum on-shore CF of 50% or 4,380 hrs. The average US CF was 34.7% or just

over 3,000 hrs.29 The global average cost of on-shore wind in 2015 was $1,560 projected to fall to

$1,370 by 2025 (IRENA, 2016), but increasing hub height increases both the capital cost and also

the capacity factor, with the combination lowering levelised costs. Installed capacity at the end

of 2016 was 486 GW (of which about 12 GW was off-shore), growing by 12% in 2016 (GWEC,

2017). World Energy Council (2017) notes that “A technical and economic potential exists to

accelerate deployment and reach 1879-2318 GW in 2030” although this includes a large share of

off-shore wind.

The wind power penetration in world electric power generation in 2015 was 3.5% but is over

40% in Denmark (which exports surplus wind) and is planned to reach nearly 40% in the island

of Ireland by 2020 (with limited export capacity). More relevant, the plan is to develop flexible

services to accommodate System Non-Synchronous Penetration (effectively the share of variable

renewables) of up to 75% by 2020. This might be delivered under conditions of high wind and low

demand, suggesting that 40% average wind share is challenging without strong interconnection

with other regions experiencing relatively uncorrelated wind output.

D Carbon capture and storage

The model above applies directly to solar PV, wind, tidal or wave power in that it assumes that

resource availability is location specific. Carbon capture and storage (CCS) in contrast is less

constrained by location (primarily needing access to underground CO2 storage but pipelines can

access distant sites), so that (4) no longer determines saturation and market output. In addition

CCS is dispatchable and has a higher capacity credit than its nominal capacity provided it can

by-pass the capture plant, temporarily raising its output by about 25 − 30%. The other major

difference is that the installed base is currently tiny – IEA reports that “The 17 operational

large-scale projects have a total potential capture rate of over 30 MtCO2 per year”.30 Many

of these are industrial plant, but to give some perspective, if 1 tonne CO2/MWhe are captured

(based on coal-firing), this is only equivalent to 4.5 GW of generation (Rubin et al., 2015b).

28at https://openei.org/apps/TCDB/
29see https://www.eia.gov/electricity/monthly/epm table grapher.php?t=epmt 6 07 b
30https://www.iea.org/etp/tracking2017/carboncaptureandstorage/ accessed 14 Dec 2017.
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In contrast China has been commissioning 50+ GW of coal plant per year recently, while

globally some 900 GW of new coal capacity has been commissioned since 2000 with an additional

400 GW expected by 2040.31 Current global installed capacity of coal-fired generatiion is nearly

2,000 GW,32 generating about 40% of total electricity or 10,000 TWh.33 Clearly the global rate

of additions of coal capacity can reach 60-100 GW/yr, so CCS has a potentially large market (at

40% of projected 2040 generation, some 15,000 TWh, or 3,000-4,000 GW (at the same capacity

factor as coal, and allowing for the lower efficiency of CCS). If storage sites can be accessed

suitably rapidly and extensively, CCS could sustain a high maximum rate of capacity additions

for many years – 100 GW/yr would only deliver 2,500 GW by 2040.

Modeling CCS growth is complicated by the lack of much past evidence, and the barriers to

mass deployment are far higher than for wind and PV, as CCS units are large and very costly

while wind and PV are relatively small and modular. One approach is to assume a very high

rate of growth g until date T when IT reaches some plausible limit (80-100 GW/yr) and then

assume the same rate of growth of It as that of demand, m. Then

Kt = K0 +

∫ Min(t,T )

0
I0e

gudu+ I0e
(g−m)Min(t,T )

∫ Min(t,N)

Min(t,T )
emudu.

Over the period to 2040 all CCS plants should remain operational, thereafter they can be

treated as before post-N . If I0 = 1.25 GW,34 g = 25%, K0 = I0/g = 5 GW, and T = 12 yrs,

then KT = 100 GW, which is not impossible. With these adjustments, the subsidy formula (16)

still applies, although the parameters will differ. There is little data from which to estimate the

learning rate. Earlier estimates suggested λ = 5%, a somewhat optimistic median value,35 for

which b = 0.074. As to the long-run minimum cost, cm, Rubin et al., (2015b, p14) cites estimated

reductions for the levelised cost of electricity based on the component parts of combustion CCS

of 15% and 20% for gasification CCS after 100 GW capacity. Taking all these data at face value,

the 20-fold increase in K with b = 0.074 and cT /c0 = 0.85 gives φ = 25%, the base case value

assumed for solar PV, but perhaps implausibly low for a technology many of whose component

parts have been extensively deployed in other industries. Taking these numbers at face value

(T = 12 yrs, N = 25 yrs, r = 3%) equation (16) gives = B0/c0 = 12.7%. If λ = 3%, φ = 50%

31IEA World Energy Outlook 2017
32https://www.worldcoal.org/installed-coal-generation-capacity-countryregion-1
33https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-

energy/electricity.html
34Boundary Dam, the first operational plant at scale, has 110 MW from just one retrofitted unit, and there are

many stations of above 2 GW size.
35Rubin et al. (2015) cite a small number of studies suggesting a projected range of values of λ mostly 1-10%.

Rubin (2014) gives median values for the more mature technolgies of just over 2%. IGCC+CCS has a median

estimated at 5%, oxyfuel at 3%, but they are not based on historical data, only similar technologies or components.
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then B0/c0 = 5.2%. If 100 GW exhausts all the learning benefits, N = T = 12, then (16) gives

B0/c0 = (1−φ)bgΨ(−(bg+ r), T ) and B0/c0 = 5.2% as the second term in the bracket in (16) is

tiny. If λ = 4%, N = T = 12, and φ = 0% then B0/c0 = 13.7%. Thus the results are relatively

insensitive to N , but directly sensitive to 1− φ.
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