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IMPROVED IMAGE-BASED DEFORMATION 1 

MEASUREMENT FOR GEOTECHNICAL APPLICATIONS  2 

S. A. Stanier, J. Blaber, W. A. Take and D. J. White 3 

ABSTRACT 4 

This paper describes and benchmarks a new implementation of image-based deformation 5 

measurement for geotechnical applications. The updated approach combines a range of 6 

advances in image analysis algorithms and techniques best suited to geotechnical 7 

applications. Performance benchmarking of the new approach has used a series of artificial 8 

images subjected to prescribed spatially-varying displacement fields. An improvement by at 9 

least a factor of ten in measurement precision is achieved relative to the most commonly used 10 

particle image velocimetry (PIV) approach for all deformation modes, including rigid body 11 

displacements, rotations and strains (compressive and shear). Lastly, an example analysis of a 12 

centrifuge model test is used to demonstrate the capabilities of the new approach. The strain 13 

field generated by penetration of a flat footing and an entrapped sand plug into an underlying 14 

clay layer is computed and compared for both the current and updated algorithms. This 15 

analysis demonstrates that the enhanced measurement precision improves the clarity of the 16 

interpretation.  17 
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INTRODUCTION 1 

Measurement of soil deformations in geotechnical models using Particle Image Velocimetry 2 

(PIV) techniques (Adrian 1991) – also known as Digital Image Correlation (DIC) (Sutton et 3 

al. 1983, Sutton et al. 2000) – has become routine experimental practice in many geotechnical 4 

research laboratories over the past fifteen years (White et al. 2001, White et al. 2003, 5 

Rechenmacher and Finno 2004, Iskander 2010, Hall 2012, Take 2015). The capabilities of the 6 

algorithms and analysis techniques that underpin PIV/DIC have also significantly improved 7 

over the same timeframe.  8 

Figure 1(a) illustrates the typical setup of a geotechnical PIV/DIC analysis for a shallow 9 

footing experiment. A wide range of deformation levels are present and accurate and precise 10 

displacement data is desired in both the near- and far-field regions of the model. In a typical 11 

PIV/DIC analysis, a Region of Interest (RoI) is first defined within the initial (‘reference’) 12 

image of the model and populated with a mesh of subsets (or ‘patches’) of user-defined size. 13 

The displacements of these subsets in subsequent (‘target’) images are found using one of the 14 

approaches illustrated in Figure 1(b). Most freely available PIV/DIC software used for 15 

geotechnical analyses use some form of cross-correlation to obtain integer pixel 16 

displacements followed by sub-pixel interpolation of the correlation peak (e.g. GeoPIV 17 

(White et al. 2003); MatPIV (Sveen and Cowen, 2004; PIVlab (Thielicke and Stamhuis, 18 

2014) and OpenPIV (Taylor et al. 2010)). In these algorithms the subsets (or ‘patches’) are 19 

generally not allowed to deform (so-called zero-order deformation). 20 

More sophisticated PIV/DIC algorithms exist, and are introduced later in this paper. They 21 

incorporate higher-order subset shape functions (typically first-order, thus allowing 22 

displacement gradients across the subsets), image intensity interpolation and deformation 23 

parameter optimization, (e.g. Pan et al. 2006, 2012, Sutton et al. 2000). Some of these 24 

advances have been incorporated in commercially-available PIV/DIC software (e.g. Vic-2D 25 

Moved (insertion) [1]
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(Correlated Solutions, 2015); LaVision DaVis8 (LaVision, 2015); MI-2D (Match-ID (2015)) 1 

although these are not freely available to the academic community and the specific algorithms 2 

used are often proprietary. For applications in which small strains are of interest, such as 3 

geotechnical modeling and structural monitoring, photogrammetric corrections are often 4 

needed to obtain sufficiently accurate PIV/DIC results and these correction routines are not 5 

usually integrated within either freeware or commercial programs.  6 

The purpose of this paper is to: (i) describe the advantages that the more sophisticated genera 7 

of PIV/DIC algorithms provide for geotechnical applications involving small and large 8 

deformations; and (ii) quantify these advantages via benchmark cases using a freely available 9 

non-commercial algorithm that is well-suited to the analysis of geotechnical model test 10 

images.  11 

The specific software used for the benchmark cases is referred to as GeoPIV-RG and is an 12 

update of the GeoPIV program (which represents the typical algorithms currently used in 13 

research, and is described by White et al. (2003)). A brief overview of the computational 14 

approach is first given. The comparison is then performed using artificial ‘soil-like’ images 15 

subjected to various modes of deformation. Lastly, an example application is given that 16 

illustrates the impact this improvement in measurement precision can have on the 17 

interpretation of a classical geotechnical problem. 18 

COMPUTATIONAL METHOD 19 

Digital images captured during a geotechnical model test are usually analysed in sequence, 20 

starting with an initial ‘reference’ image.. If the ‘reference’ image is retained as the initial 21 

image (the so-called ‘leapfrog’ scheme; see Figure 2(a)) then zero-order subsets can suffer a 22 

loss of correlation in regions experiencing large deformations (Figure 2(d)) due to a mismatch 23 

between the subset shape and the deformation being observed. Alternatively, if the ‘reference’ 24 

image is updated after every computation (the so-called ‘sequential’ scheme; see Figure 2(b)) 25 
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so as to minimize the distortion that would reduce the correlation in the ‘target’ images, 1 

random walk errors are accumulated (White et al. 2003) because the overall displacement is 2 

being found as the sum of many small displacements, each of which have an associated error 3 

(Figure 2(d)). Random walk errors can become significant in regions of low deformation 4 

when calculating strains from the derivatives of displacement.  5 

The current version of GeoPIV uses a combination of these two schemes to minimise 6 

accumulated random walk errors whilst maintaining tolerable correlations. The number of 7 

increments to be performed using the ‘leapfrog’ scheme prior to updating the ‘reference’ 8 

image (the so-called ‘leapfrog’ parameter) is manually defined by the user by trial and error 9 

guided by the amount of deformation occurring between sequential images. Also, the ‘search 10 

zone’ over which the correlation measure is computed for each subset (szone) is specified by 11 

the user in GeoPIV. Unnecessarily large values of szone lead to computational inefficiency in 12 

regions of images experiencing small displacements so small values are preferred. However, 13 

the value specified must be larger than the maximum displacement expected to occur between 14 

the ‘reference’ and ‘target’ images (see Figure 2(a,b)). Therefore, szone also cannot be 15 

predetermined and requires further trial-and-error refinement to achieve the best balance 16 

between accuracy and computational efficiency.  17 

The new implementation presented in this paper avoids the need for trial-and-error refinement 18 

of either the ‘leapfrog’ value or the ‘search zone’ parameter by following the process 19 

illustrated in Figure 2(c) for each subset. The overarching framework controlling the 20 

computation process is the Reliability-Guided (RG) method proposed by Pan (2009), as 21 

implemented in Matlab by Blaber et al. (2015) (so the software is referred to as GeoPIV-RG). 22 

Each ‘reference’ subset is allowed to deform using a shape (or warp) function describing first-23 

order deformations in conjunction with image intensity interpolation techniques to improve 24 

the correlation between ‘reference’ and ‘target’ subsets via optimisation (Schreier and Sutton 25 

2002). After an initial ‘seed’ subset has been analysed, subsequent computations are 26 
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preconditioned using the results from the previously computed neighbouring subset that has 1 

the highest correlation (the so-called ‘preconditioned optimisation’ scheme; see Figure 2(c)). 2 

This approach leads to the definition of a ‘search zone’ being unnecessary whilst allowing the 3 

effective ‘search zone’ to be the whole image if necessary should the preconditioning process 4 

not yield a close match to the optimised solution for any particular subset. The ‘reference’ 5 

image is updated when the correlation coefficient for either the seed or one of the subsets 6 

contravenes user-defined thresholds, effectively optimising the ‘leapfrog’ parameter. The 7 

first-order subset shape function (which allows for linear gradients of displacement across the 8 

subset) leads to improved precision and reduced random walk errors (see Figure 2(d)) 9 

because correlation is better preserved allowing the ‘reference’ image to be updated less 10 

frequently for image sequences experiencing low deformations. The overall programmatic 11 

structure of the implementation is summarised by the flowchart in Figure 3. 12 

Seed Computation 13 

The computation process begins at a selected subset (circular in shape in this instance) from 14 

part of the RoI that experiences minimal deformation, meaning that the correlation between 15 

the ‘reference’ and ‘target’ subset will be high and thus the chances of an incorrectly 16 

computed seed occurring will be low. This point is used as a ‘seed’ from which the RG 17 

computation process propagates. The displacement of this subset is computed following the 18 

procedure outlined in Figure 4(a). Initially, the displacement of the seed subset is estimated to 19 

the nearest integer pixel value using Normalised Cross Correlation (NCC) (Lewis, 1995). 20 

Next the subset is allowed to deform using a subset shape function (p) that describes a 21 

superposition of the first order subset deformation modes illustrated in Figure 5 (Pan et al. 22 

2006). The Inverse Compositional Gauss-Newton (IC-GN) method described by Pan et al. 23 

(2013) is used, in combination with bi-quintic B-spline interpolation of the deformed subset 24 

pixel intensities (e.g. Cheng et al. 2002) to adjust the subset shape function until the 25 

correlation between the ‘reference’ and ‘target’ subsets is optimised. The exit criterion for the 26 
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optimisation is a user-defined maximum magnitude for the norm of the subset shape function 1 

difference vector (|Δp|max) between successive computations (typically 1 × 10-5) and a 2 

maximum number of iterations (maxiter) per subset (typically 50). The zero-normalised cross-3 

correlation correlation coefficient (CCZNCC) is used to indicate the degree of match where 4 

values of 1, 0 and -1 indicate perfect, zero and inverse correlations respectively (Pan et al. 5 

2010). The seed computation is deemed successful if the CCZNCC is greater than a user-defined 6 

limit, CCZNCC-seed-tol (typically 0.9). 7 

Reliability-Guided Computations 8 

Assuming the ‘seed’ computation was successful, a high-density grid of subsets is processed 9 

using the RG framework outlined in Figure 4(b). Firstly the CCZNCC of the four subsets 10 

surrounding the seed are estimated using the displacement and deformation parameters for the 11 

seed subset as an initial estimate (Zhou and Chen, 2012). These four subsets are then placed 12 

in a queue of descending CCZNCC from which the subset with the optimal correlation 13 

coefficient is selected first. IC-GN and bi-quintic B-spline interpolation is once again used to 14 

optimise the deformation parameters for this subset, then it is removed from the queue. If not 15 

already in the queue, the CCZNCC is computed for the neighboring subsets and those subsets 16 

are added to the queue. This process repeats, calculating the displacement and deformation of 17 

all of the subsets across the entire RoI. The advantage of the RG framework over the usual 18 

processing of subsets across successive rows is three-fold: firstly, the NCC, which is 19 

computationally expensive to determine, is only computed for the seed subset and covers the 20 

entire region of interest. Secondly, the subsets with higher correlation coefficient are 21 

processed first, and the optimised deformation parameters used to precondition the IC-GN 22 

optimisation of the neighbouring subsets. Thirdly, as a result of this approach, the need to 23 

specify the expected maximum displacement within the displacement field is eliminated.  24 
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Reference Image Updating 1 

Compared to conventional PIV/DIC applications, geotechnical model testing can involve 2 

tracking of a larger range of deformations and highly circuitous displacement paths. For 3 

example soil often flows around penetrometers and deeply buried foundations. Unlike fluid 4 

mechanics studies, where constitutive relations are not a focus, geotechnical research is 5 

concerned with both instantaneous flow fields and also the strain path histories, stress-strain 6 

behaviour and the associated constitutive relations. Additional measures are therefore 7 

required to handle the resulting changes in subset appearance, for example due to grain 8 

rearrangement, because these lead to a reduction in the subset correlation and cause erroneous 9 

displacements to be estimated (known as ‘wild’ vectors). To counter this degradation of 10 

correlation the ‘reference’ image can be periodically updated. In earlier versions of GeoPIV 11 

the updating interval was specified manually by the user and refined through trial and error 12 

(White et al. 2003). An automatic ‘reference’ image-updating scheme, similar to that 13 

proposed by Pan et al. (2012), is used in GeoPIV-RG. After completion of the RG 14 

computations for each target image the CCZNCC for each subset is compared to a second, 15 

slightly relaxed, user-defined limit (typically 0.75) denoted CCZNCC-min-tol. Using a relaxed 16 

tolerance on the minimum permissible full field CCZNCC allows large deformations to occur in 17 

certain regions of the model prior to ‘reference’ image updating. If the CCZNCC for any subset 18 

is less than CCZNCC-min-tol then the ‘reference’ image is updated to the target image from the 19 

last successful increment, otherwise the current ‘reference’ image is carried forward. 20 

The RG method is programmed to compute the displacement of regularly gridded subsets. 21 

Consequently, an interpolation scheme is required to compute the displacement of the user-22 

defined subset locations from the regularly gridded RG output. Bi-cubic spline interpolation 23 

of the output from the RG process achieves this. To safeguard the precision of the 24 

measurements during the interpolation process, the subset spacing used in the RG process is 25 

reduced relative to that given in the user-defined mesh. For the benchmarking analyses 26 

Deleted: 201127 
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presented in this paper halving the grid spacing was sufficient to preserve accuracy of the 1 

measurements. Due to the computational efficiency of the preconditioned IC-GN optimisation 2 

process, the computational cost of this four-fold increase in RG computation grid density is 3 

minimal. The ‘reference’ image updating procedure ensures that the updating interval is 4 

always optimised. The user can control the frequency of ‘reference’ image updating indirectly 5 

by varying the correlation coefficient tolerances, CCZNCC-seed-tol and CCZNCC-min-tol, with stricter 6 

values resulting in more frequent ‘reference’ image updating.  7 

PERFORMANCE COMPARISON  8 

Methodology 9 

The performance of GeoPIV-RG is compared to GeoPIV, (described by White et al. 2003 and 10 

White et al. 2005) which is widely used in geotechnical research and is typical of the many 11 

freely available zero-order algorithms (e.g. MatPIV, PIVlab and OpenPIV). Therefore the 12 

following benchmarking analyses are generally indicative of the improvements in 13 

measurement precision that can be attained by incorporating advances in PIV/DIC including 14 

first-order subset shape functions, image intensity interpolation, deformation parameter 15 

optimisation and automatic ‘reference’ image updating schemes similar to those described 16 

earlier.  17 

Artificial images that represent geomaterials are preferred for such benchmarking as they can 18 

be subjected to precisely prescribed deformations and are unaffected by camera-induced lens 19 

distortions and camera-target movements (Lee et al. 2012). The images were generated in 20 

Matlab by randomly projecting thousands of white dots onto a black background to sub-pixel 21 

positional resolution. Each white dot is defined by a Gaussian brightness peak centered at a 22 

specified location. In this way the location of the dot can be precisely controlled allowing 23 

smooth spatially-varying displacement fields to be prescribed. The ‘reference’ artificial image 24 

used in all of the artificial benchmarking analyses presented herein is shown in Figure 6(a) 25 
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with the 1681 subset locations marked by yellow crosses in a centrally located zone, of 400 × 1 

400 pixels. This subset population is sufficiently large to generate statistically valid 2 

measurements of the error in the image-based displacement measurements. For GeoPIV the 3 

side length of the square subsets, Ls, was 45 pixels, while for GeoPIV-RG the subset 4 

diameter, Ds, was taken as 50 pixels giving comparable total pixels per subset (within ~3%). 5 

The theoretical and measured displacements at the 1681 subset locations were compared for 6 

four deformation modes: (i) rigid body translation, (ii) rigid body rotation, (iii) vertical strain 7 

and (iv) pure shear strain as illustrated in Figure 6 (b-e). For rigid body translation, 8 

displacement was applied in 0.025 pixel increments up to a maximum of 1 pixel. For the 9 

rotation, vertical strain and pure shear strain analyses the deformation magnitude imposed 10 

was increased over 100 logarithmically spaced intervals up to a maximum of 90° of rotation 11 

and 50% strain. The total deformation applied was chosen such that ‘reference’ image 12 

updating was periodically required so the efficacy of the full computational scheme has been 13 

validated. For the analyses performed using the current version of GeoPIV the ‘reference’ 14 

image was updated manually as infrequently as possible to minimise the summation of 15 

random walk errors.  16 

The precision error in the displacement measurements is quantified by the standard error, ρpx, 17 

defined as the standard deviation of the difference between the theoretical and calculated 18 

subset displacement over the 1681 subsets. It is shown later that this error increases as the 19 

deformation of the subset increases. To convert these standard errors to a measure of the 20 

precision with which deformations can be determined, the measurement errors (δ) are defined 21 

as the error in the measured deformation, for a given level of that deformation mode.  An 22 

estimate of the random error δ for each mode (rotation, vertical strain and pure shear strain) 23 

can then be defined as: 24 
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 δθ = tan
−1 2ρpx

L
⎛

⎝
⎜

⎞

⎠
⎟  1 1 

 δε y
=

2ρpx

L
 2 2 

 δε xy
=

2ρpx

L
 3 3 

where θ, εy and εxy, denote rotation in degrees, vertical strain and pure shear strain respectively 4 

and L is a nominal gauge length in pixels. Each random error δ is estimated for L = 25, 250 5 

and 2500 pixels, which cover the range typically relevant. When viewing a geotechnical 6 

model test, the varying deformation throughout the image is of interest, so the relevant gauge 7 

length is comparable to the spacing of the subsets, i.e. of the order of 25 pixels. Alternatively, 8 

when viewing a geotechnical element test, at a stage when the deformation is uniform, the 9 

gauge length might be significantly larger, i.e. of the order of 2500 pixels. The δ estimates, 10 

combined with a tolerable measurement error, allow the required subset spacing to be 11 

identified. Alternatively, they show the image scale (e.g. pixels/mm) required in a model test 12 

to detect a specific level of deformation. 13 

Results 14 

Rigid body translation 15 

The standard errors, ρpx, in Figure 7(a) are ~0.005 and ~0.0008 pixels for GeoPIV and 16 

GeoPIV-RG respectively, indicating a modest improvement in precision for sub-pixel 17 

displacement measurement for the new methods. Meanwhile, Figure 7(b) presents the mean 18 

bias error, µbias (Schreier et al. 2000), which is the mean discrepancy between the actual and 19 

measured displacement, for the sub-pixel rigid body translation analysis. For GeoPIV, which 20 

uses NCC to obtain the integer pixel displacements prior to sub-pixel interpolation using bi-21 

cubic splines, a significant periodic variation in µbias is evident for non-integer or non-half-22 
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integer displacements. This behaviour is consistent with that reported by Amiot et al. (2013) 1 

for PIV/DIC software incorporating bi-cubic interpolation. In contrast, the bi-quintic B-spline 2 

interpolation process used in the IC-GN optimisation of GeoPIV-RG suffers from mean bias 3 

errors that never exceed 0.0005 pixels. This is comparable to the performance reported by Lee 4 

et al. (2012) for NCC with bi-quintic B-spline sub-pixel interpolation and consistent with the 5 

best performing PIV/DIC software (w.r.t. mean bias errors) reported by Amiot et al. (2013) 6 

that also incorporated bi-quintic b-spline interpolation. Minimising bias errors is particularly 7 

important if strains are to be derived from the derivatives of displacement fields. Periodic bias 8 

can lead to erroneous localizations in strain fields if periodic bias errors are evident. 9 

Rigid body rotation 10 

Figure 8(a) shows the evolution of ρpx with rigid body rotation. GeoPIV accumulates 11 

significant errors with increasing rotation because the ability of NCC to accurately track 12 

subset displacements progressively degrades with rotation (Dutton et al. 2014), causing 13 

accumulating drift in the displacements. The iterative subset deformation optimisation 14 

performed by GeoPIV-RG mitigates the degradation of correlation, resulting in a 15 

comparatively small precision error of ρpx < 1/1000th of a pixel, irrespective of the rotation 16 

magnitude, whilst the mean errors are always less than 1 × 10-4 pixels.  As a result, the 17 

rotation error, δθ, is approximately constant for rotation magnitudes greater than 1° (Figure 18 

8(b)). 19 

The divergence in performance between GeoPIV and GeoPIV-RG observed in Figure 8 has a 20 

profound effect on the abilities of the respective algorithms to measure strain fields because 21 

the magnitude of the error is random and not linked to the magnitude of the displacement of 22 

the subset. To illustrate this an additional analysis was performed using the same analysis 23 

parameters and artificial images for a horizontal row of subsets spaced at 1-pixel intervals at 24 

increasing distance from the origin of rotation (Lo) up to a maximum of 200-pixels. For these 25 

subsets and for all rotation increments, the rotation angle is the same but the displacement 26 
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magnitude increases proportionally with the distance from the origin of rotation, as illustrated 1 

in Figure 9(a). The resultant error magnitudes (δr) were calculated for rotation angles of 0.0°, 2 

0.5°, 1.0°, 1.5° and 2.0° and are plotted with respect to the distance from the origin of rotation 3 

in Figure 9(b) and (d) for GeoPIV and GeoPIV-RG respectively.  4 

From these results it is clear that the error magnitudes and directions are random and 5 

unrelated to the distance from the origin of rotation. However, the error magnitudes are 6 

clearly linked to the rotation angle as the error magnitude tends to increase with rotation 7 

angle, as is confirmed for GeoPIV in Figure 9(c) and GeoPIV-RG Figure 9(e) where the 8 

evolution of errors are presented with respect to the rotation angle imposed for subsets located 9 

at sections A–A, B–B and C–C.  10 

For a basic PIV/DIC analysis where vector plots are used to illustrate soil flow mechanisms 11 

the poor performance of GeoPIV for rotation is not necessarily problematic as the large 12 

magnitude of the vectors within the soil flow mechanism will mask the errors induced by 13 

rotation. However, if strains are derived from the derivatives of the displacement components 14 

the errors become very significant. For example, for a strain element with length L=25px 15 

positioned either side of subset A–A, similarly to Equations 1-3, a generic estimate of the 16 

strain error (δε) can be taken as follows: 17 

 
  
δε =

2 δ r

L
  4 18 

For a rotation angle of 2°, the strain error for GeoPIV is of the order of ~3%, significantly 19 

limiting the ability to plot meaningful strain fields. On the other hand, the strain errors for 20 

GeoPIV-RG are less than ~0.03%, resulting in a two order of magnitude improvement in 21 

strain measurement resolution as a result of the additional degrees of freedom provided by the 22 

first order subset shape function. The impact of this improvement is significant for 23 

geotechnical research applications where more than simple instantaneous flow mechanisms 24 
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are to be observed, such as when gross element distortions are to be monitored through large 1 

rotations.  2 

Vertical and shear strain 3 

Figures 10(a) and 11(a) illustrate that measurement precision during deformation – either 4 

through vertical strain or shear strain – is similar to rotation (ρpx ~1/1000th pixel) until ~0.01 5 

or 1% strain, beyond which the precision error rises approximately linearly with strain. 6 

When converted to δ estimates (Figures 10(b) and 11(b)), these results allow the practicality 7 

of detecting a given strain level to be assessed. For example, if a model test with a varying 8 

deformation is being viewed, then a subset spacing of typically 25 pixels might apply. In this 9 

case, if zones of the model have undergone strains of 1% or 10% (points M1 and M2 on 10 

Figures 10b and 11b), the resulting strain errors would be ~0.025% and ~0.25% respectively 11 

(equivalent to a signal-to-noise ratio, SNR, of ~40), which is likely to be adequate for 12 

producing detailed and smooth deformation fields (e.g. 20 contours of 0.05% or 0.5% up to 13 

the maximum of 1% or 10% respectively). Alternatively, if the application is an element test 14 

with uniform deformation, so the gauge length is a larger proportion of the image width – 15 

typically 2500 pixels in width – then at a strain of 0.1% (100 microstrain) the strain error is 16 

~5x10-7 (point E on Figures 10(b) and 11(b)) or 0.05 microstrain (equivalent to a signal-to-17 

noise ratio, SNR, of ~2000). 18 

All of these artificial image analyses show that the new approach is at least an order of 19 

magnitude more precise than the combination of NCC and bi-cubic spline interpolation 20 

method employed by GeoPIV (White et al. 2003), for both small and large deformations. 21 

EXAMPLE APPLICATION 22 

To demonstrate the application of the new methodology, images from a model test performed 23 

in the drum centrifuge at UWA are used. The test involved similar techniques to the work 24 
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reported by Hu et al. (2014), investigating punch-through of a 30mm diameter flat footing (at 1 

200g, so equivalent to 6m diameter at prototype scale) on a 20mm deep (4m prototype) sand 2 

layer overlying clay. In the experiment ~550 images were recorded at a frequency of 5Hz 3 

using the apparatus described by Stanier and White (2013). Artificial texture was applied to 4 

the exposed face of the model at the optimal Artificial Seeding Ratio (ASR) following the 5 

procedure proposed by Stanier and White (2013) to maximise the precision of the image-6 

based deformation measurements.  7 

Analyses were performed on the series of images for the underlying clay layer only, using 8 

both GeoPIV and GeoPIV-RG with the analysis settings summarised in Table 1. The time 9 

taken by each of the algorithms to perform an analysis is dependent upon a number of factors, 10 

including: the subset spacing, deformation magnitude, image texture quality and available 11 

processing power. For this particular analysis GeoPIV-RG performed the computations in 12 

~20% of the time taken by GeoPIV. The total maximum shear strain ξ (i.e. Δε1 – Δε2 summed 13 

through the deformation) was calculated from the displacement fields following the large 14 

strain procedure of White and Bolton (2004). 15 

Figure 12 presents the distributions of ξ after 1D of footing penetration. Significant noise is 16 

evident in the results from GeoPIV from summed random walk errors and degradation of 17 

correlation due to subset rotation and deformation. In contrast the analysis generated by 18 

GeoPIV-RG has lower noise, as is evident in the regions experiencing small strains. Figure 13 19 

shows a horizontal cross section through both analyses at an initial normalised depth, z/D of 20 

1.5, presented in terms of both the normalised displacement magnitude and total maximum 21 

shear strain. The first-order deformation algorithm of GeoPIV-RG results in smoother spatial 22 

variation of both the displacements and strains across the model, compared to the stepped 23 

cross-section resulting from the zero-order deformation algorithm of GeoPIV. 24 

These enhancements result from the subset deformation optimisation capability of GeoPIV-25 

RG as it preserves correlation and precision in regions of large deformation. The ‘reference’ 26 

Page 15 of 35

https://mc06.manuscriptcentral.com/cgj-pubs

Canadian Geotechnical Journal



Draft

 S. A. Stanier, J. Blaber, W. A. Take and D. J. White  
 

‘Improved image-based deformation measurement for geotechnical applications’ 
Submitted to ‘Canadian Geotechnical Journal’ 

 

  

image also requires updating less frequently (see Table 1), which in turn minimises random 1 

walk errors. These advances create more precise deformation measurements, which unlocks 2 

additional potential applications. For example, more detailed verification of constitutive 3 

models by extracting element-level responses within model tests, and the quantification of 4 

geomaterial behavior at both smaller strains and higher levels of rotation and deformation 5 

than was possible using previous image analysis methods. 6 

CONCLUSIONS 7 

This paper has shown that recent advances in PIV/DIC algorithms coupled with 8 

photogrammetric correction routines allow improved deformation measurements for 9 

geotechnical applications. The algorithms have been incorporated in an update of a 10 

commonly-used freeware PIV/DIC program. The prior version has been used as a benchmark 11 

representing the approaches commonly used in geotechnical physical modelling. The 12 

benchmarking used a series of artificial soil-like images subjected to prescribed 13 

displacements and deformations. The advanced algorithms are faster and more precise than 14 

the simpler zero-order PIV/DIC approach that is widely used and freely available to the 15 

research community. Rigid-body displacements can be detected to a precision of ~0.001 16 

pixels. There is a modest reduction in precision when the tracked soil is deforming. The effect 17 

of the gauge length (i.e. the separation of the measurement points) and the level of 18 

deformation or rotation on the precision of deformation measurements is quantified. For 19 

example, it is shown that when soil elements at close spacing experience rotation in a model 20 

test, the new implementation is approximately two orders of magnitude more precise than the 21 

existing approach, resulting in significantly less noise in strain fields derived from the 22 

derivatives of the displacements. At the other end of the scale, in an element test in which 23 

digital images are used to monitor the overall response of the sample (i.e. the gauge length is 24 

significantly larger and taken here as 2500 pixels), the standard error is ~0.05 microstrain at a 25 

strain of 0.1%.  26 
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An example analysis illustrates the value of the new approach by showing improved 1 

measurement of deformations during punch-through of a flat footing on a sand-over-clay 2 

stratigraphy. These results demonstrate the benefits of the enhanced measurement precision 3 

provided by this software, which is freely available to the geotechnical research community. 4 
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NOMENCLATURE 

ASR  artificial seeding ratio 

CCZNCC  zero normalised cross-correlation correlation coefficient 

CCZNCC-min-tol full field correlation coefficient tolerance 

CCZNCC-seed-tol seed correlation coefficient tolerance 

d  displacement 

δε   strain error 

δε xy
  shear strain error 

δε y
  vertical strain error 

δr  resultant error 

δθ  rotation error 

D  diameter 

Ds  diameter of GeoPIV-RG subset 

ε1  major principal strain 

ε2  minor principal strain 

εxy  pure shear strain 

εy  vertical strain 

L  gauge length 

Ls  length of GeoPIV subset 

maxiter  maximum number of iterations per subset 

NCC  normalised cross correlation 

p  subset deformation shape function 

|Δp|max  maximum norm of the shape function difference vector 

px  pixel 

ρ  undrained shear strength gradient 
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  standard error of displacement measurement in pixels 

r  radius 

RoI  region of interest 

s  subset spacing 

SNR  signal-to-noise-ratio 

szone  search zone parameter 

u  horizontal displacement 

v  vertical displacement 

x  horizontal position 

xf  final horizontal position 

xi  initial horizontal position 

y  vertical position 

yf  final vertical position 

yi  initial vertical position 

z  depth 

ZNCC  zero normalised cross correlation 

ξ  total maximum shear strain 

 

ρpx
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FIGURES 

 

Figure 1: PIV/DIC analysis overview: (a) typical PIV/DIC scenario with associated causes of 

error, (b) general overview of the PIV/DIC method. 

  

V, δ
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   - Low strains and rotations
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Figure 2: Overview of (a) ‘leapfrog’, (b)’sequential’, and  (c) ‘preconditioned optimisation’ 

computation schemes alongside (d) schematic plots of the expected evolution of correlation 

coefficient and random walk errors. 
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Figure 3: Flowchart for GeoPIV-RG computations. 
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Figure 4: Flowcharts for seed subset (a) and RG subset computation sub-routines (b). 
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Figure 5: Subset deformation modes considered by the first-order shape function p: (a, b) 

displacements and (c-f) displacement gradients. Note: subsets are represented as squares for 

clarity but subset shape is arbitrary. 
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Figure 6: Artificial images and imposed deformations: (a) example image and subset 

locations (b) rigid body translation (c) rigid body rotation (d) vertical strain (e) pure shear 

strain. 
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Figure 7: Rigid-body translation performance: (a) standard error, ρpx, and (b) mean bias error, 

µbias, for GeoPIV and GeoPIV-RG. 

Figure 8: Rotation performance: (a) standard error for GeoPIV and GeoPIV-RG (b) effect of 

gauge length on rotation error, δθ, for GeoPIV-RG. 
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Figure 9: Randomness of rotation performance: (a) artificial image and a row of subset 

displacements (magnitudes amplified) illustrating the rotation imposed; (b,c) resultant error, 

δr, as a function of distance from the origin of rotation and rotation angle for GeoPIV; and 

(d,e) GeoPIV-RG. Note: Vertical scales are different between (a,b) and (c,d) for clarity.  
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Figure 10: Vertical strain performance: (a) standard error for GeoPIV and GeoPIV-RG (b) 

effect of gauge length on vertical strain error, δε y
, for GeoPIV-RG. 

Figure 11: Shear strain performance: (a) standard error for GeoPIV and GeoPIV-RG (b) 

effect of gauge length on shear strain error, δε xy
, for GeoPIV-RG. 
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Figure 12: Example application: flat footing on sand-over-clay, total shear strain at 1D penetration using GeoPIV (a) and GeoPIV-RG (b). 
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Figure 13: Normalised displacement, δ/D (a) and total maximum shear strain, ζ (b) along 

the cross-sections in Figures 12 (a, b) at an initial normalised depth, z/D of 1.5. 
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TABLES 

Table 1: Computation parameters for example analysis. 

GeoPIV parameters 

Ls 45pxa 

s 25px 

szone 15px 

Ref. image 
updating 
interval 

10 

GeoPIV-RG parameters 

Ds 50pxa 

s 25px 

maxiter 50 

|Δp|max 1x10-5 

CCZNCC-seed-tol 0.9 

CCZNCC-min-tol 0.75 

Ref. image 
updating 
interval 

~20 

a Subset sizes chosen to have equivalent area (within ~3%). 
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