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Abstract. This paper provides methods to nonparametrically estimate finite mixtures from data
with repeated measurements. We present a constructive identification argument and use it to
develop simple two-step estimators of the component distributions and all their functionals. We
discuss a computationally-efficient method for estimation and derive asymptotic theory. Simulation
experiments suggest that our theory provides confidence intervals with good coverage in small
samples.
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1. Introduction

Finite-mixture models are widely used in statistical analysis. Popular applications include
modeling unobserved heterogeneity in structural behavioral models, learning about individual
behavior from grouped data, and dealing with corrupted data. McLachlan and Peel (2000)
discuss many examples. Mixture models are most often parametrically specified, and
estimation may be done by maximum likelihood or indirect inference in a frequentist setting,
or via MCMC techniques in a Bayesian approach.

There is a growing literature on nonparametric identification of finite mixtures. Univariate
mixtures are generally not identified nonparametrically.1 In contrast, data on multiple
measurements can represent a powerful source of identification. Hettmansperger and Thomas
(2000), Hall and Zhou (2003), and Allman, Matias, and Rhodes (2009) provide identification
results on component distributions and mixing proportions under the assumption that
measurements are conditionally independent and the number of components is known. Hu
(2008) and Kasahara and Shimotsu (2009) establish related results in econometrics.

†Address for correspondence: Sciences Po, Department of Economics, 28 rue des Saints-Pères,
75007 Paris, France. E-mail: koen.jochmans@sciencespo.fr.

1Additional restrictions may lead to identification. Bordes, Mottelet, and Vandekerkhove (2006)
and Hunter, Wang, and Hettmansperger (2007) study two- and three-component mixtures of
symmetric location families. Kitamura (2004) and Henry, Jochmans, and Salanié (2013) study
models with conditioning variables.
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To nonparametrically estimate multivariate mixtures, computational procedures akin
to the EM algorithm (Dempster, Laird, and Rubin 1977) have recently been introduced by
Benaglia, Chauveau, and Hunter (2009) and Levine, Hunter, and Chauveau (2011). These
approaches are applicable more generally than are the earlier proposals of Hettmansperger
and Thomas (2000) and Elmore, Hettmansperger, and Thomas (2004), and of Hall and
Zhou (2003) and Hall, Neeman, Pakyari, and Elmore (2005). Although simulation evidence
suggests that these estimators work well in finite samples, their statistical properties are
currently unknown. Chauveau, Hunter, and Levine (2014) provide an account of these
developments.

The aim of this paper is to contribute to the development of practical procedures to
nonparametrically estimate finite mixtures from data on repeated measurements, and to
advance statistical inference on such models. Like Hettmansperger and Thomas (2000)
and Elmore, Hettmansperger, and Thomas (2004), we will work in a framework where the
measurements are independent and identically distributed conditional on knowing from which
component they have been drawn. Restricting the conditional distributions to be the same
across measurements is not necessary for identification (Allman, Matias, and Rhodes 2009).
However, it facilitates the construction of simple estimators to which standard asymptotic
theory can be applied. In addition, throughout the paper we will assume that the number
of components is known. Determining the number of components nonparametrically is a
difficult issue which we do not address.2

When three or more measurements are available and a rank condition is satisfied,
linear functionals of component distributions are identified as suitably re-weighted versions
of the same functionals of the marginal distribution. Notably, the component-specific
cumulative distribution functions are themselves identified as weighted averages. Given this,
identification of the mixing proportions follows readily from a minimum-distance argument.

Our identification argument is constructive. Moreover, it suggests a convenient two-step
approach to estimate any linear functional of the component distributions. In the first step
the weights are estimated. This step is generic, in the sense that it does not depend on
the particular functional of interest. So, the weights need to be estimated only once; we
discuss a computationally-efficient method for doing so. In the second step it then suffices
to average the data with respect to the estimated weights to obtain an estimator of the
functional of interest.

Under suitable regularity conditions, our estimators are consistent and asymptotically
normal, and asymptotically-valid confidence sets can be constructed using plug-in estimators
of their asymptotic variances. To cover nonlinear functionals and semiparametric estimators,
we also extend our results to deal with minimum-distance estimators of Euclidean parameters.
We also provide consistent estimators of the mixing proportions.

2Kasahara and Shimotsu (2014) present an argument based on the non-negative rank of two-way
contingency tables. Even in parametric models, the problem of inferring the number of components
is non-standard and has not been fully resolved; see, e.g., Leroux (1992), Zhu and Zhang (2004),
and Woo and Sriram (2006).
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Our approach works for both discrete and continuous component distributions. In
the continuous case, a nonparametric density estimator may be of interest. We construct
re-weighted kernel estimators of component densities, using the same weights as before.
The large-sample properties of our density estimators are standard. Furthermore, the
selection of the bandwidth can be done by standard data-driven methods like least-squares
cross-validation (Rudemo 1982; Bowman 1984), for example. We emphasize, however, that
estimation of functionals or other Euclidean parameters of interest can be done without first
estimating these densities.

We study the performance of our estimators in a Monte Carlo simulation used in Levine,
Hunter, and Chauveau (2011). The simulations show that our procedure yields estimates
with comparable bias and only slightly higher standard deviations than the parametric
maximum-likelihood estimator and the smoothed nonparametric likelihood estimator of
Levine, Hunter, and Chauveau (2011). The results further show that our asymptotic theory
provides confidence intervals that yield reliable inference in small samples. As an application
we take our methods to a data set from cognitive psychology due to Thomas, Lohaus, and
Brainerd (1993), and obtain similar point estimates as do Elmore, Hettmansperger, and
Thomas (2004), Benaglia, Chauveau, and Hunter (2009), and Levine, Hunter, and Chauveau
(2011).

We proceed as follows. In Section 2 we formally introduce the model and present
a constructive identification argument. In Section 3 we use this argument to construct
estimators, and we derive distribution theory. That section also discusses minimum-distance
estimators of Euclidean parameters and kernel density estimation. In Section 4 we collect
numerical evidence. Technical proofs, some further discussion, and additional simulation
results are available as supplementary material.

2. Identification

Finite mixtures provide a paradigm for analyzing group data when group membership is
unobserved. Let x be the random variable, supported on X ⊆ R, whose distribution is of
interest. The set X need not be countable or finite; we allow for both discrete and continuous
probability distributions. We will work in a framework where repeated measurements
x1, x2, . . . , xM on x have joint cumulative distribution function

F (x1, x2, . . . , xM ) =
K∑
k=1

ωk

M∏
m=1

Fk(xm). (2.1)

The number of groups, K, is taken as known throughout. The parameters of interest in this
multivariate finite mixture are the group-specific distribution functions Fk : X → [0, 1] and
the mixing proportions ωk > 0. Our goal in this section is to provide a method to recover
the Fk and ωk nonparametrically.

To introduce our approach, let χ = (χ1, χ2, . . . , χI)′ be a set of I univariate functions
χi : X → R. Several choices for χi are possible. For example, given I values v1, v2, . . . , vI
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in X , we could set χi(x) = 1{x ≤ vi}. Alternative choices for the χi when x is continuously
distributed include orthogonal polynomials or splines. Consider, then, for all x ∈ X , the
I × I matrix

A(x) ≡ E[χ(xm1)χ(xm2)′|xm3 = x],

for any triple of distinct measurements (m1,m2,m3). Throughout this section, we assume
existence of the relevant expectations. Let Ω ≡ diag[ω1, ω2, . . . , ωK ] denote the diagonal
matrix of mixing proportions. Introduce the vectors

bk ≡ Ek[χ(xm)] =
ˆ
X
χ(x) dFk(x),

and collect them in the I ×K matrix B ≡ (b1, b2, . . . , bK). Then Equation (2.1) implies that

A(x) =
(
BΩ1/2)D(x)

(
BΩ1/2)′, D(x) ≡ diag

[
f1(x)
f(x) ,

f2(x)
f(x) , . . . ,

fK(x)
f(x)

]
,

where f1, f2, . . . , fK and f denote the density functions of the group-specific distributions
and of the marginal distribution, each defined with respect to the appropriate measure,
respectively.

The diagonal entries of D(x) have the important property that

E
[
fk(xm)
f(xm) ϕ(xm)

]
= Ek[ϕ(xm)] (2.2)

for any function ϕ. For example, if we set ϕ(xm) = 1{xm ≤ x} for some x ∈ X , (2.2) gives

E
[
fk(xm)
f(xm) 1{xm ≤ x}

]
= Ek[1{xm ≤ x}] = Fk(x),

the component distributions at x. If the functional forms of fk and f were known, this
would be a standard moment calculation via importance sampling from fk based on f (see,
e.g., Robert and Casella, 2004, Section 3.3). Therefore, knowledge of the diagonal matrix
D(x) implies that the component distributions, and thus also all of their functionals, are
identified.

We now show that the matrix D(x) can be recovered—up to permutation of its diagonal
entries—under the following condition.

Assumption 1 (rank). The matrix B has maximal column rank.

Assumption 1 is similar to the identification condition of Allman, Matias, and Rhodes (2009,
Theorem 8), which requires component distributions to be linearly independent. Indeed,
with χi(xm) = 1{xm ≤ vi} for a set of chosen values v1, . . . , vI , we have Ek[χi(xm)] = Fk(vi)
and Assumption 1 demands linear independence of the component distributions on the grid
v1, . . . , vI . Note that Assumption 1 is testable. Indeed,

A ≡ E[A(xm)] = BΩB′.
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Hence, for given I, Assumption 1 is equivalent to A having rank K, which is a testable
restriction. See the supplementary material for details.

The following lemma establishes that the diagonal entries of D(x) are identified. The
proof will be instrumental for the construction of our estimators in the next section and is
given below.

Lemma 1 (identification). Let Assumption 1 hold. Then D(x) can be recovered up
to permutation of its diagonal entries.

The I × I matrix A is real and symmetric and so admits an eigendecomposition of the form

A = V ΛV ′,

where V is the I × I orthonormal matrix containing the eigenvectors and Λ is the diagonal
matrix containing the corresponding eigenvalues. By Assumption 1, A has rank K. Let ΛK
be the K ×K submatrix of Λ containing the K non-zero eigenvalues of A, and write VK for
the I×K submatrix of V containing the associated eigenvectors. The matrix W ≡ Λ−1/2

K V ′K
is such that, for all x ∈ X ,

WA(x)W ′ = UD(x)U ′, (2.3)

where U ≡WBΩ1/2. Because WAW ′ = UU ′ = IK , where IK denotes the K ×K identity
matrix, U is a full-rank orthonormal matrix. Thus, the matrices WA(x)W ′ share the same
eigenvectors, which are given by the columns of U . Observe that VK and, hence, W are not
unique if the non-zero eigenvalues of A are multiple. Nevertheless, the joint eigendecomposi-
tion in (2.3) holds irrespective of the choice of VK in such a case. Furthermore, because B
and U have full column rank and the eigenvectors are orthonormal, the decomposition is
unique up to relabelling of the eigenvectors and eigenvalues, and up to the directions of the
eigenvectors (see, e.g., De Lathauwer, De Moor, and Vandewalle 2004). We therefore have
established that

D(x) =
(
U ′W

)
A(x)

(
U ′W

)′ (2.4)

is identified up to permutation of its diagonal entries. This concludes the proof of Lemma 1.
Given Lemma 1, identification of component distributions and their functionals follows

immediately from (2.2). Here and in the following, identification is to be understood as to
hold up to label-swapping of the various components. The possibility of relabelling is an
ambiguity that is inherent to mixtures (see McLachlan and Peel 2000, Section 4.9), and we
will henceforth leave it implicit.

An alternative formula that will be particularly useful when turning to estimation is
obtained on recalling that A(x) is a conditional expectation. Let

τk(xm1 , xm2) ≡ u′kW χ(xm1)χ(xm2)′W ′uk, (2.5)

where uk denotes the kth column of matrix U . Then (2.4) implies that the diagonal entries
of D(x) = diag[d1(x), d2(x), . . . , dK(x)] can be written as

dk(x) = fk(x)
f(x) = E[τk(xm1 , xm2)|xm3 = x].
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Iterating expectations then yields Theorem 1.

Theorem 1 (identification). Let Assumption 1 hold. Then

Ek[ϕ(xm)] = E[τk(xm1 , xm2)ϕ(xm3)]

is identified for any function ϕ.

An application of Theorem 1 with ϕ(xm) = 1{xm ≤ x} for chosen x ∈ X leads to the
following important corollary.

Corollary 1 (component distributions). Let Assumption 1 hold. Then

Fk(x) = Ek[1{xm ≤ x}] = E[τk(xm1 , xm2) 1{xm3 ≤ x}]

is identified for all x ∈ X .

Another consequence of Theorem 1 is that the matrix B is identified. Indeed, its kth
column is bk = E[τk(xm1 , xm2)χ(xm3)]. In addition, the mixture model in (2.1) implies that

a ≡ E[χ(xm)] = Bω,

for ω ≡ (ω1, ω2, . . . , ωK)′. By Assumption 1, the matrix B′B has full rank. The mixing
proportions are therefore identified.

Corollary 2 (mixing proportions). Let Assumption 1 hold. Then

ω = (B′B)−1B′a

is identified.

Combined, Corollaries 1 and 2 give identification of all the parameters in the mixture
model in (2.1).

3. Estimation

In this section we construct estimators based on Theorem 1 and derive distribution theory.

3.1. Estimation by joint diagonalization
For a chosen function ϕ with dimϕ components, consider the estimand

θ0 ≡ Ek[ϕ(xm)].

As an example, θ0 = Fk(x) when ϕ(xm) = 1{xm ≤ x}. Let {xnm}n,m denote a sample of N
observations drawn at random from the M -variate mixture in (2.1). Theorem 1 suggests
estimating θ0 based on the empirical analog

θ̂ ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2)ϕ(xnm3), (3.1)
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where
τ̂k(xnm1 , xnm2) ≡ û′kŴ χ(xnm1)χ(xnm2)′ Ŵ ′ûk, (3.2)

is an estimator of τk(xnm1 , xnm2) using estimators Ŵ and Û = (û1, û2, . . . , ûK) of the
transformation matrix W and of the matrix of eigenvectors U , respectively. In (3.1),
(m1,m2,m3) ranges over all ordered triples of distinct elements from the set {1, 2, . . . ,M}.
The averaging across triples is done to exploit the fact that all measurements xm have
identical distributions in model (2.1).

Constructing the weights requires estimating W and U . The matrix W = Λ−1/2
K V ′K can

be estimated by means of an eigendecomposition of

Â ≡ 1
N

(M − 2)!
M !

N∑
n=1

∑
(m1,m2)

χ(xnm1)χ(xnm2)′,

which is the empirical analog of A. In principle, by (2.3), the matrix U could be estimated by
the eigenvectors of an empirical counterpart of WA(x)W ′ for any choice of x. Proceeding in
this way, however, would require a nonparametric estimation step. Moreover, efficiency gains
should arise from imposing the constraint that the same matrix U jointly diagonalizes all
matrices A(x) for all x. We therefore proceed in a different, more constructive, manner, by
averaging the restrictions and performing approximate joint diagonalization of the resulting
matrices.

Let
Ai ≡ E[A(xm)χi(xm)], Di ≡ E[D(xm)χi(xm)],

define averages of A(x) and D(x) with respect to χi(x) (note that other choices of functions
are possible). Each Ai can be estimated by

Âi ≡
1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

χ(xnm1)χ(xnm2)′ χi(xnm3).

Moreover, (2.3) implies that
WAiW

′ = UDiU
′. (3.3)

While U is the joint diagonalizer of the matrices WAiW
′, their estimates will generally not

share the same eigenvectors due to sampling error. Our estimator Û is that matrix that
makes U ′(Ŵ ÂiŴ

′)U as close to diagonal as possible, in the sense of minimizing the sum of
squares of their off-diagonal entries, that is,

Û ≡ arg min
U∈U

I∑
i=1

∥∥∥offdiag {U ′(Ŵ ÂiŴ
′)U}∥∥∥2

, (3.4)

where U is the set of K × K orthonormal matrices, offdiag(A) = A − diag(A), and ‖·‖
denotes the Frobenius norm.3

3 In principle, the restrictions in (3.3) could also be enforced via a minimum-distance procedure
involving separate estimates of the eigenvectors of each matrix Ai. However, label-swapping issues
make this procedure difficult to implement in practice.
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The first-order conditions to (3.4) are highly nonlinear and difficult to solve using
conventional gradient-based methods. Fortunately, joint diagonalization problems of this
kind have been extensively studied in numerical analysis and several algorithms have been
developed (see, e.g., Bunse-Gerstner, Byers, and Mehrman 1993). Here, we shall use the
JADE algorithm of Cardoso and Souloumiac (1993). This procedure is based on iteratively
applying elementary Jacobi rotations. Its attractive computational properties have made
JADE a workhorse technique in blind source separation (see, e.g., Shi 2011). In extensive
numerical experiments we found this algorithm to be very stable and computationally
extremely fast.

Lastly, estimators of the mixing proportions ωk can be based on Corollary 2; see
the supplementary material for details. Alternatively, given estimates of the component
distribution functions, the ωk could also be estimated via the procedures studied in Hall
(1981) and Titterington (1983).

3.2. Large-sample theory
We next characterize the asymptotic distribution of θ̂ in (3.1). All the proofs for this section
are collected in the supplementary material. We start by noting that θ̂ is a plug-in version of

θ̃ ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τk(xnm1 , xnm2)ϕ(xnm3),

which is constructed using the true weight function τk. Because θ̃ is a sample average,
distribution theory for this estimator is easy to establish. Therefore, in deriving asymptotic
theory for θ̂, the main task is to assess the impact of estimating the weight function. Given
the form of the weight τk, this means establishing the asymptotic behavior of our estimator
of W ′U .

To be able to appeal to a central limit theorem we rely on the following condition.

Assumption 2 (moments). For all i, χ2
i f is integrable.

For example, this condition is trivially satisfied when the functions χi are bounded.
The integrability condition on χ2

i implies that our estimators of A, A1, A2, . . . , AI are
both unbiased and asymptotically linear, with influence functions

υn ≡
(M − 2)!
M !

∑
(m1,m2)

ξ(xnm1 , xnm2)− vec(A),

υin ≡
(M − 3)!
M !

∑
(m1,m2,m3)

ξ(xnm1 , xnm2)χi(xnm3)− vec(Ai),

where ξ(xnm1 , xnm2) ≡ vec χ(xnm1)χ(xnm2)′.
The next condition ensures that the asymptotic properties of Â carry over to the estimator

of W .
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Assumption 3 (eigenvalues). The non-zero eigenvalues of A are all simple.

Assumption 3 is imposed mainly to facilitate the exposition. If it is not satisfied, the
eigenvalues of A are no longer a continuous function of A. This complicates the derivation
of the asymptotic distribution of the eigenvalues of Â, as this distribution depends in a
complicated way on the multiplicity of the eigenvalues (Eaton and Tyler 1991).

Let ⊗ denote the Kronecker product, and let
col
⊗ and

row
⊗ denote the columnwise and

rowwise Kronecker products, respectively. For any collection of matrices M1,M2, . . . ,MI ,
let horzcat(Mi) and vertcat(Mi) denote the matrices obtained by horizontal and vertical
concatenation, respectively. The matrices Ŵ ÂiŴ

′ in (3.4) are jointly asymptotically normal
with influence function

ψn ≡ vertcat(WAi ⊗ IK) JWυn + (II ⊗W ⊗W ) Υn + vertcat(IK ⊗WAi) JW ′υn.

Here, Υn ≡ horzcat(υin), and JW and JW ′ are the Jacobian matrices of the transformations
from A to W and from A to W ′, respectively, namely

JW ≡ −(V ⊗ IK)(Λ	 ΛK)+(V ′ ⊗W )− 1
2(W ′

col
⊗ IK)(W

row
⊗ W ),

JW ′ ≡ (IK ⊗V )(ΛK 	 Λ)+(W ⊗ V ′)− 1
2(IK

col
⊗W ′)(W

row
⊗ W ),

where M1 	M2 ≡M1 ⊗ IdimM2 − IdimM1 ⊗M2 is the Kronecker difference between any two
square matrices M1 and M2, and the + superscript on a matrix indicates its Moore-Penrose
pseudo-inverse. The estimators of W and U , too, are asymptotically linear. The influence
function of Ŵ is JWυn. The influence function of Û is JUψn, for

JU ≡ −(IK ⊗U)
(

I∑
i=1

(Di 	Di)2

)+

horzcat(Di 	Di) (II ⊗U ′ ⊗ U ′).

These results imply that our estimator of W ′U is consistent and asymptotically normal.
Moreover, we have

√
N(θ̂ − θ0) =

√
N(θ̃ − θ0) + 1√

N

N∑
n=1

ϑ0 (e′k ⊗ II) ιn + oP (1),

where we use the notation IK = (e1, e2, . . . , eK), and

ιn ≡ (U ′ ⊗ II) JW ′υn + (IK ⊗W ′) γn, ϑ0 ≡ 2 E[ϕ(xm)u′kWA(xm)].

The function ιn is the influence function of our estimator of W ′U . Premultiplication with
(e′k⊗II) turns this into the influence function of our estimator ofW ′uk. The dimϕ×I matrix
ϑ0, finally, translates estimation uncertainty in τ̂k into an asymptotic-variance contribution
for θ̂.

Theorem 2 follows.
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Theorem 2 (asymptotic distribution). Let Assumptions 1–3 hold and let ϕϕ′f be
integrable. Then √

N(θ̂ − θ0) L→ N (0,V ),

where V is the covariance matrix of

ϑ0 (e′k ⊗ II) ιn + (M − 3)!
M !

∑
(m1,m2,m3)

τk(xnm1 , xnm2)ϕ(xnm3)− θ0,

as N →∞.

Inference on θ0 can be performed by replacing V by a consistent plug-in estimator.
As a notable example, Theorem 2 states that

F̂k(x) ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2) 1{xnm3 ≤ x},

is a consistent and asymptotically-normal estimator of the component distribution Fk(x) for
each x ∈ X . The estimator is further uniformly consistent, that is,

‖F̂k − Fk‖∞ = oP (1),

for ‖·‖∞ the supremum norm, provided the function class {χ(x) : x ∈ X} is Euclidean for
an envelope G(x) such that E[G(xm)] < ∞. This follows from Pakes and Pollard (1989),
who also provide a definition and many examples of Euclidean classes.

3.3. Extensions
3.3.1. Minimum-distance estimation
Consider a Euclidean parameter α0 ∈ A characterized as the unique solution to the moment
equation

µ(α) ≡ Ek[ϕ(xm;α)] = 0,

where ϕ is a known vector-valued function (with dimα ≤ dimϕ). Examples of α0 include
linear or nonlinear functionals of fk, and the solutions to semiparametric Z-estimation
problems. The parameter α0 can be characterized as the unique solution to the minimization
problem

min
α∈A

µ(α)′Σµ(α),

where Σ is a positive-definite matrix that defines the relevant metric when the number of
moment equations exceeds the dimension of α (see Hansen 1982). Theorem 1 suggests a
minimum-distance estimator of α0 that takes the form

α̂ ≡ arg min
α∈A

µ̂(α)′Σ µ̂(α), µ̂(α) ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1.m2.m3 )̂

τk(xnm1 , xnm2)ϕ(xnm3 ;α),

We now use Theorem 2 to derive the asymptotic distribution of α̂ under the following
regularity conditions.
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Assumption 4 (regularity conditions). The parameter α0 is an interior element
of the compact set A ⊂ Rdimα. The function ϕ(x;α) is twice continuously differentiable in
α on A with derivative ϕ′(x;α), and E[supα∈A‖ϕ(xm;α)‖] and E[supα∈A‖ϕ′(xm;α)‖] are
finite.

The conditions in Assumption 4 are conventional. The smoothness requirements on ϕ can
be relaxed (see, e.g., Pakes and Pollard 1989).

Together with Assumption 4, Theorem 2 implies that α̂ is consistent estimator of α0.
Furthermore, √

Nµ̂(α0) L→ N (0,Vµ).

where the covariance matrix Vµ follows from applying Theorem 2 to ϕ(·;α0). Proposition 1
then follows readily.

Proposition 1 (minimum-distance estimation). Let Assumptions 1–4 hold. Then
√
N(α̂− α0) L→ N

(
0, (Q′ΣQ)−1(Q′ΣVµΣQ)(Q′ΣQ)−1),

as N →∞, provided that Q ≡ Ek[ϕ′(xm;α0)] has maximal rank and Vµ is positive definite.

By standard arguments for minimum-distance estimators, the optimally-weighted estimator
of α0 satisfies √

N(α̂− α0) L→ N
(
0, (Q′V −1

µ Q)−1).
This estimator is obtained from Proposition 1 by setting Σ equal to the inverse of a consistent
estimator of Vµ. Consistent plug-in estimators of Q and Vµ, and thus of the asymptotic
variance of α̂ appearing in the proposition, are easily constructed.

3.3.2. Density estimation
When the component distributions are absolutely continuous, and so the fk are proper
density functions, Theorem 2 can be extended to characterize the asymptotic distribution of
nonparametric estimators of the component densities.

We focus on a kernel estimator. Let κ denote a kernel function and let h > 0 be a
bandwidth. A nonparametric density estimator of fk(x) is

f̂k(x) ≡ 1
N

(M − 3)!
M !

N∑
n=1

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2) 1
h
κ

(
xnm3 − x

h

)
.

Besides the introduction of the weights, this estimator has the conventional form of a
nonparametric density estimator.

We will work with standard kernel functions.

Assumption 5. κ : R → R is a bounded function that is symmetric around zero,
integrates to one, and satisfies

´ +∞
−∞ u2 κ(u) dx <∞.
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Some smoothness and moment requirements are needed to derive asymptotic theory. We
use the notation

qk(x) ≡ E
[(∑

(m1,m2)τk(xm1 , xm2)
)2 ∣∣xm3 = x

]
in the following assumption.

Assumption 6 (regularity conditions). fk is twice continuously differentiable on
its support. f is bounded and χ4

i f is integrable. qkf is bounded and continuous on its
support.

Proposition 2 summarizes the asymptotic properties of the density estimator.

Proposition 2. Let Assumptions 1–3 and 5–6 hold. Then |f̂k(x)− fk(x)| = oP (1) and
√
Nh
[
f̂k(x)− fk(x)

] L→ N (
√
c µf ,Vf ),

as N →∞, where c ≥ 0 is a finite constant,

µf ≡
1
2 f
′′
k (x)

ˆ +∞

−∞
u2κ(u) du, Vf ≡M

(
(M − 3)!
M !

)2
qk(x)f(x)

ˆ +∞

−∞
κ(u)2 du,

provided that Nh→∞ and Nh5 → c.

In Proposition 2 we allow the bandwidth to vanish at the optimal rate of N−1/5. In this
case, the density estimator is asymptotically biased. Undersmoothing the estimator, that is,
setting h ∝ N−r for some 1

5 < r < 1 yields

N (1−r)/2[f̂k(x)− fk(x)
] L→ N (0,Vf ).

Note that Vf is a tilted version of the asymptotic variance of a conventional kernel estimator
of the marginal density function f(x). The sample variance of

(M − 3)!
M !

∑
(m1,m2,m3)

τ̂k(xnm1 , xnm2)√
h

κ

(
xnm3 − x

h

)

provides a consistent estimator of Vf .
Bandwidth choice is important for the small-sample performance of kernel estimators.

As emphasized by Benaglia, Chauveau, and Hunter (2011), in mixture models it is crucial
to allow the bandwidth to be component specific, as the component distributions may be
very different. In the current context, automated bandwidth selection can be achieved
quite easily. For example, least-squares cross-validation (Rudemo 1982; Bowman 1984) is
readily applicable to our estimator. The supplementary material contains a discussion of
the implementation of this approach.
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4. Numerical experiments

4.1. Implementation
Our approach requires choosing the number I of functions χ1, χ2, . . . , χI , as well as their
functional form. These choices should be consistent with Assumptions 1 and 2, but are
otherwise free to be decided. For example, one could set χi(xm) = 1{xm ∈ Ii} for {Ii}i
any collection of intervals that forms a partition of X (as in Kasahara and Shimotsu 2014).
Another choice would be χi(xm) = 1{xm ≤ vi} for a set of values v1, v2, . . . , vI . In the
continuous case, another interesting option would be the leading I members of a class
of orthonormal polynomials, such as Jacobi polynomials or Hermite polynomials. We
experiment with both indicator functions and orthogonal polynomials in our simulations
below.4

Although the τ̂k(xnm1 , xnm2), averaged over observations, sum up to one by construction,
these weights can be negative. This implies that our estimator of cumulative distribution
functions is not necessarily monotonic, and that our kernel estimator needs not be bona
fide. It is not straightforward to modify (3.4) in order to impose those restrictions. We
therefore suggest to adjust the estimates ex post if a bona fide estimate is desired. Estimated
cumulative distribution functions can be adjusted via the re-arrangement procedure of
Chernozhukov, Fernández-Val, and Galichon (2009). Density estimates can be made to be
bona fide by means of the correction procedure of Gajek (1986). The numerical results in
this section were obtained without applying such corrections.

In all our numerical exercises we implemented our density estimator using a standard
normal kernel, and we selected the bandwidth by least-squares cross-validation.

4.2. Simulations
We present Monte Carlo results for a design from Levine, Hunter, and Chauveau (2011).
Additional results are available in the supplementary material. Data are generated from a
two-component mixture of normal location models,

f1(x) = φ(x), f2(x) = φ(x− 3), ω = (.30, .70)′.

In each of 1, 000 Monte Carlo replications we draw three measurements on 500 observations
and estimate the component means µ1 = 1 and µ2 = 3, the component distributions
F1(x) = Φ(x) and F2(x) = Φ(x − 3), and the component densities. To deal with label
swapping in our simulation study we proceed as follows. In each replication we first estimate
the mean of each component. We then label the estimated component with the smallest
estimated mean as the first mixture component. We carefully checked for label-swapping,
and found no mix up. We note that, although it must be taken care of in our simulations,
label swapping does not cause any complications for estimation and inference based on our

4Because the χi affect the asymptotic variance of θ̂, their choice could, in principle, also be guided
by asymptotic-efficiency considerations. We postpone a detailed analysis to future work.



14 S. Bonhomme, K. Jochmans, and J.-M. Robin

Table 1. Results for component means. Design from Levine, Hunter, and Chauveau (2011).
N = 500,M = 3. Statistics obtained over 1, 000 replications.
ESTIMATOR I BIAS SD SE/SD CR(95%)

µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2
Two-step estimation

indicators 5 .0039 .0031 .0595 .0669 1.0080 .9768 .9470 .9470
polynomials 5 −.0024 .0017 .0688 .0345 .9954 1.0274 .9470 .9560
indicators 10 .0038 .0021 .0567 .0414 1.0114 1.0176 .9530 .9570
polynomials 10 .0021 .0011 .0554 .0360 1.0268 .9893 .9490 .9530

EM estimation
parametric .0028 .0003 .0501 .0323 — — — —
nonparametric .0033 .0006 .0501 .0322 — — — —

approach. Label swapping does present an important challenge for inference methods based
on resampling algorithms such as bootstrap or jackknife, and on MCMC procedures (see,
e.g., Stephens 2000).

The top panel in Table 1 contains the bias and the standard deviation (SD) of our point
estimates of the component means µ1 and µ2. We also compute the average across simulations
of estimated standard errors (SE), and report the ratio of SE to the standard deviation
(SE/SD), as well as the coverage rate of 95% confidence intervals (CR(95%)). Standard errors
and coverage rates are based on the plug-in estimator of V in Theorem 2. We provide results
for two choices of functions χi, namely indicator functions 1{xm ≤ vi} for I equidistant
points vi on [−4, 4], and the I leading normalized Chebychev polynomials of the first kind
cos{(i− 1) arccos(t{xm})}/21{i=1}, where t{x} ≡ (x− (xmin + xmax)/2)/((xmax − xmin)/2)
for xmin and xmax the minimum and maximum value of xnm observed in the sample. For
each of these choices, we provide results for both I = 5 and I = 10.

Table 1 shows that point estimates have negligible biases relative to their standard
deviations. The table also shows that no choice for χi uniformly outperforms the other.
Furthermore, the plug-in estimator of the asymptotic variance closely mimics the Monte
Carlo variability of the point estimates. As a consequence, the confidence intervals have
near perfect coverage. The adequacy of the large-sample approximation is further confirmed
by inspecting the empirical distribution of the point estimates. Figure 1 plots the smoothed
density of the Studentized point estimates (full line) of the component means constructed
using I = 5 Chebychev polynomials, together with the reference standard-normal density
(dashed line). For both component means, the approximation is very close.

The lower panel in Table 1 is reproduced from Levine, Hunter, and Chauveau (2011). It
provides the mean and the standard deviation (over 300 Monte Carlo replications) of the
parametric maximum-likelihood estimator and of the nonparametric smoothed likelihood
estimator of Levine, Hunter, and Chauveau (2011) of the component means. In the latter case,
the component means are estimated as the mean of a kernel density estimator. Levine, Hunter,
and Chauveau (2011) used a standard-normal density as kernel and set the bandwidth
according to Silverman’s rule of thumb (Silverman 1998, Section 3.4). Note that the
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Figure 1. Normal approximation to the sampling distribution of estimated component means. Design
from Levine, Hunter, and Chauveau (2011). N = 500,M = 3. Statistics obtained over 1, 000
replications.
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Table 2. Results for component distributions. Design from Levine, Hunter, and
Chauveau (2011). N = 500,M = 3. Statistics obtained over 1, 000 replications.

BIAS SD SE/SD CR(95%)
x F1(x) F2(x) F1(x) F2(x) F1(x) F2(x) F1(x) F2(x)
−1 .0000 .0000 .0199 .0036 .9953 1.0030 .9360 .9570

0 .0000 .0000 .0284 .0078 1.0310 1.0161 .9600 .9600
1 .0000 .0000 .0207 .0106 1.0092 1.0456 .9550 .9540
2 .0000 .0000 .0094 .0206 .9997 .9998 .9390 .9500
3 .0000 .0000 .0039 .0306 .9807 1.0166 .9260 .9420

parametric maximum-likelihood estimator rests on the knowledge of the functional form of
the component densities, in contrast with both our approach and the one of Levine, Hunter,
and Chauveau (2011). The results show that our procedure produces similar bias as the
smoothed likelihood estimator of Levine, Hunter, and Chauveau (2011), but that it is slightly
less efficient. A formal comparison of the relative efficiency of the two approaches would
require distribution theory for the smoothed likelihood estimator, which is currently not
available.

In Table 2 we provide estimation and inference results for the component cumulative
distribution functions at a grid of evaluation points x. Biases are again very small relative
to standard deviations, and confidence intervals provide excellent coverage. The left plot in
Figure 2 summarizes the Monte Carlo results over the whole support. It contains the mean
of the point estimates (full lines) and pointwise 95% confidence bands, together with the
true distribution functions (dashed lines) and the .025 and .975 quantiles of the empirical
distribution of the point estimates (dotted lines). Dashed and dotted lines are virtually
identical, reflecting accurate coverage.

The right panel in Figure 2 contains the corresponding results for the density estimator.
The estimator is biased downwards around the mode, in line with Proposition 2. At the same
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Figure 2. Component distributions and densities. Design from Levine, Hunter, and Chauveau (2011).
N = 500,M = 3. Statistics obtained over 1, 000 replications.
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time, the confidence bands based on a normal asymptotic approximation are comparable to,
though slightly wider than, the quantiles of the finite-sample distributions.

4.3. Empirical illustration
We applied our methods to a data set from an experiment in cognitive psychology. These data
have also been used by Elmore, Hettmansperger, and Thomas (2004), Benaglia, Chauveau,
and Hunter (2009), and Levine, Hunter, and Chauveau (2011) to illustrate their respective
approaches. Hence, they provide a useful means of comparison.

The experiment involved 405 children aged between 11 and 16 years that aims to assess
childrens’ understanding of the physical world. The water-level task they were given is
as follows. Each child is presented with rectangular shaped two-dimensional vessels on a
sheet of paper, each tilted to a clock-hour orientation. The child is then asked to draw a
line representing the surface of still liquid in each of these vessels. The outcome variable
is the deviation of the child’s line from a horizontal line, in degrees. Drawn lines with a
positive slope are recorded as positive deviations and negative slopes are recorded as negative
deviations.

We work with four measurements, each corresponding to a clock-hour orientation of
the vessel. We use clock orientations one, four, seven, and ten. Histograms of each of the
measurements are provided in the supplementary material. Although these plots suggest that
our assumption that the four measurements have identical distributions is not unreasonable,
there might be a concern that the component distributions corresponding to clock-hour
orientations one and seven are different from those associated with clock-hour orientations
four and ten. Benaglia, Chauveau, and Hunter (2009) and Levine, Hunter, and Chauveau
(2011) fitted a mixture model to these data that allows for the distribution of these two
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Table 3. Component means of a three-component mixture
fitted to the water-level data of Thomas, Lohaus, and
Brainerd (1993).
component mean estimate s.e. p-value
first −.3336 .6509 .6083
second 6.2642 2.7267 .0216
third −4.4121 12.8515 .7314

blocks of measurements to be different. Below we discuss similarities and differences between
our findings and theirs.

The discussion in Elmore, Hettmansperger, and Thomas (2004) suggests that children
can be broadly classified into three latent groups. Therefore, we fit a three-component
mixture to these data. We use seven indicator functions for the χi. Experimentation with a
different number of indicator functions gave qualitatively similar results. Moreover, we set
χi(xm) = 1{xm ≤ vi} where the vi are Chebychev nodes that have been translated to cover
the support of the measurements. The p-value of the Kleibergen and Paap (2006) rank test
is .9539, giving strong support in favor of our Assumption 1.

The upper left plot in Figure 3 presents our estimates of the component distributions.
The upper right plot contains the corresponding estimates of the component densities, as
well as the histogram of the measurements. The estimated distributions are similar to those
reported in Elmore, Hettmansperger, and Thomas (2004). One component density is almost
degenerate at zero. This first component captures the children who understand that the
orientation of water is independent of the orientation of the vessel. A second component
has larger variance and is centered slightly above zero. This component seems to capture
the children who have a grasp that water has surface and mass, but have some difficulty
in consistently getting its orientation right. Finally, the third component distribution is
close to a uniform distribution on the whole interval. This last component corresponds to
children who do not comprehend the behavior of liquid in a vessel and randomly draw lines
at all possible angles.

Compared to Elmore, Hettmansperger, and Thomas (2004), our results allow us to
go beyond point estimation and consider inference. The remaining plots in Figure 4.3
contain the point estimates of one of the components (full lines), together with a pointwise
95% confidence band (dashed lines). The confidence bands associated with the first two
components indicate that they are fairly accurately estimated. The last component has a
somewhat wider confidence band.

In Table 3 we also provide point estimates and standard errors of the mean of each of
the fitted component distributions, along with the p-value for the null hypothesis that the
mean equals zero, that is, that the orientation of the lines is correct on average. The t-test
for the null hypothesis that the second distribution is centered at zero has a p-value of .0216,
giving some statistical evidence for an upward bias. We do not reject the null for the other
two distributions at any conventional significance level.
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Figure 3. A three-component mixture fitted to the water-level data of Thomas, Lohaus, and Brainerd
(1993).
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Our estimation results differ from those of Benaglia, Chauveau, and Hunter (2009) and
Levine, Hunter, and Chauveau (2011) mostly with respect to the third component. Their
estimation routine does not impose that the blocks of clock-hour orientations one and seven,
and four and ten have the same distribution. They are thus able to estimate a different
component for each block. In particular, they find a left-skewed and an antisymmetric
right-skewed distribution for the third component of these two blocks (see Panels 2 and
4 in Figure 2 of Levine, Hunter, and Chauveau 2011). Our procedure enforces that all
four measurements have the same distribution, which, as a result, seems to bundle up the
two distributions corresponding to the third component into one flat one. Extending our
approach to allow the measurements to have different distributions is an interesting next
step for research.
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