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ESTIMATING MULTIVARIATE LATENT-STRUCTURE MODELS
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A constructive proof of identification of multilinear decompositions of
multiway arrays is presented. It can be applied to show identification in a
variety of multivariate latent structures. Examples are finite-mixture models
and hidden Markov models. The key step to show identification is the joint
diagonalization of a set of matrices in the same nonorthogonal basis. An esti-
mator of the latent-structure model may then be based on a sample version of
this joint-diagonalization problem. Algorithms are available for computation
and we derive distribution theory. We further develop asymptotic theory for
orthogonal-series estimators of component densities in mixture models and
emission densities in hidden Markov models.

1. Introduction. Latent structures are a popular tool for modeling the depen-
dency structure in multivariate data. Two important examples are finite-mixture
models [see McLachlan and Peel (2000)] and hidden Markov models [see Cappé,
Moulines and Rydén (2005)]. Although these models arise frequently in applied
work, the question of their nonparametric identifiability has attracted substan-
tial attention only quite recently. Allman, Matias and Rhodes (2009) used al-
gebraic results on the uniqueness of decompositions of multiway arrays due to
Kruskal (1976, 1977) to establish identification in a variety of multivariate latent-
structure models. Their setup covers both finite mixtures and hidden Markov
models, among other models, and their findings substantially generalize the ear-
lier work of Anderson (1954), Green (1951), Petrie (1969), Hettmansperger and
Thomas (2000), Hall and Zhou (2003), and Hall et al. (2005).

Despite these positive identification results, direct application of Kruskal’s
method does not provide an estimator. Taking identification as given, some authors
have developed EM-type approaches to nonparametrically estimate both multi-
variate finite mixtures [Benaglia, Chauveau and Hunter (2009); Levine, Hunter

Received May 2015; revised August 2015.
1Supported by European Research Council Grant ERC-2010-StG-0263107-ENMUH.
2Supported by Sciences Po’s SAB grant “Nonparametric estimation of finite mixtures.”
3Supported by European Research Council Grant ERC-2010-AdG-269693-WASP and by Eco-

nomic and Social Research Council Grant RES-589-28-0001 through the Centre for Microdata Meth-
ods and Practice.

MSC2010 subject classifications. Primary 15A69, 62G05; secondary 15A18, 15A23, 62G20,
62H17, 62H30.

Key words and phrases. Finite mixture model, hidden Markov model, latent structure, multilinear
restrictions, multivariate data, nonparametric estimation, simultaneous matrix diagonalization.

540

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162920174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1376
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


MULTIVARIATE LATENT-STRUCTURE MODELS 541

and Chauveau (2011)] and hidden Markov models [Gassiat, Cleynen and Robin
(2016)]. Numerical studies suggest that these estimators are well behave. How-
ever, their statistical properties—their consistency, convergence rates, and asymp-
totic distribution—are difficult to establish and are currently unknown.4

In this paper, we show that the multilinear structure underlying the results of
Allman, Matias and Rhodes (2009) can be used to obtain a constructive proof of
identification in a broad class of latent-structure models. We show that the problem
of decomposing a multiway array can be reformulated as the problem of simulta-
neously diagonalizing a collection of matrices. This is a least-squares problem
that has received considerable attention in the literature on independent compo-
nent analysis and blind source separation [see Comon and Jutten (2010)]. More-
over, algorithms exist to recover the joint diagonalizer in a computationally effi-
cient manner; see Fu and Gao (2006), Iferroudjene, Abed Meraim and Belouchrani
(2009, 2010) and Luciani and Albera (2010, 2014).

We propose estimating the parameters of the latent-structure model by solving
a sample version of the simultaneous diagonalization problem. We provide dis-
tribution theory for this estimator below. Under weak conditions, it converges at
the parametric rate and is asymptotically normal. Using this result, we obtain es-
timators of finite-mixture models and hidden Markov models that have standard
asymptotic properties. Moreover, the fact that the dependency structure in the data
is latent does not translate into a decrease in the convergence rate of the estimators.
As such, this paper is the first to derive the asymptotic behavior of nonparametric
estimators of multivariate finite-mixture models of the form defined in Hall and
Zhou (2003) for more than two latent classes and of hidden Markov models of the
form in Gassiat, Cleynen and Robin (2016). Furthermore, our approach can be use-
ful in the analysis of random graph models [Allman, Matias and Rhodes (2011)]
and stochastic blockmodels [Snijders and Nowicki (1997); Rohe, Chatterjee and
Yu (2011)], although we do not consider such models in detail in this paper. In a
simulation study, we find that our approach performs well in small samples.

There is a large literature on parallel factor analysis and canonical polyadic de-
compositions of tensors building on the work of Kruskal (1976, 1977); see, for
example, De Lathauwer, De Moor and Vandewalle (2004), De Lathauwer (2006),
Domanov and De Lathauwer (2013a, 2013b, 2014a, 2014b), Anandkumar et al.
(2014) and Chiantini, Ottaviani and Vannieuwenhoven (2014, 2015). Although
our strategy has some similarity with this literature, both our conclusions and our
simultaneous diagonalization problem are different. Most importantly, our simul-

4There are results on inference in semi- and nonparametric finite-mixture models and hidden
Markov models in several more restrictive settings. These include location models [Bordes, Mottelet
and Vandekerkhove (2006); Hunter, Wang and Hettmansperger (2007); and Gassiat and Rousseau
(2014)], multivariate finite mixtures with identically distributed outcome variables [Hettmansperger
and Thomas (2000); Bonhomme, Jochmans and Robin (2014)], and two-component mixtures [Hall
and Zhou (2003); Jochmans, Henry and Salanié (2014)].
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taneous diagonalization formulation can deal with noise, making it useful as a tool
for statistical inference.

In the context of multivariate finite mixtures of identically distributed variables,
Kasahara and Shimotsu (2009) and Bonhomme, Jochmans and Robin (2014) also
used (different) joint-diagonalization arguments to obtain nonparametric identi-
fication results. However, the approaches taken there are different from the one
developed in this paper and cannot be applied as generally.

We start out by motivating our approach via a discussion on the algebraic struc-
ture of multivariate finite-mixture models and hidden Markov models. We then
present our identification strategy in a generic setting. After this we turn to estima-
tion and inference, and to the development of asymptotic theory. Next, the theory
is used to set up orthogonal-series estimators of component densities in a finite-
mixture model, and to show that these have the standard univariate convergence
rates of series estimators. Finally, the orthogonal-series density estimator is put
to work in simulation experiments involving finite mixtures and a hidden Markov
model. The supplementary material [Bonhomme, Jochmans and Robin (2015)]
contains some additional results and discussion, as well as all technical proofs.

2. Motivating examples. We start by introducing three examples to motivate
our subsequent developments.

2.1. Finite-mixture models for discrete measurements. Let Y1, Y2, . . . , Yq be
observable random variables that are assumed independent conditional on real-
izations of a latent random variable Z. Suppose that Z has a finite state space
of known cardinality r , which we set to {1,2, . . . , r} without loss of general-
ity. Let π = (π1, π2, . . . , πr)

′ be the probability distribution of Z, so πj > 0 and∑r
j=1 πj = 1. Then the probability distribution of Y1, Y2, . . . , Yq is a multivariate

finite mixture with mixing proportions π1, π2, . . . , πr . The parameters of interest
are the mixing proportions and the distributions of Y1, Y2, . . . , Yq given Z. The
Yi need not be identically distributed, so the model involves qr such conditional
distributions.

Suppose that the scalar random variable Yi can take on a finite number κi of
values. Let pij = (pij1,pij2, . . . , pijκi

)′ denote the probability distribution of Yi

given Z = j . Let
⊗

denote the outer (tensor) product. The joint probability distri-
bution of Y1, Y2, . . . , Yq given Z = j then is the q-way table

q⊗
i=1

pij = p1j ⊗ p2j ⊗ · · · ⊗ pqj ,

which is of dimension κ1 × κ2 × · · · × κq . The outer-product representation fol-
lows from the conditional-independence restriction. Hence, the marginal probabil-
ity distribution of Y1, Y2, . . . , Yq equals

P =
r∑

j=1

πj

q⊗
i=1

pij ,(2.1)
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which is an r-linear decomposition of a q-way array. The parameters of the mix-
ture model are all the vectors making up the outer-product arrays, {pij } and the
coefficients of the linear combination, {πj }, transforming the conditional distribu-
tions into the marginal distribution P.

The r-linear decomposition is not restricted to the contingency table. Indeed,
any linear functional of P admits a decomposition in terms of the same func-
tional of the pij . Moreover, for any collection of vector-valued transformations
y �→ χ i (y) we have

E

[ q⊗
i=1

χ i (Yi)

]
=

r∑
j=1

πj

q⊗
i=1

E
[
χ i (Yi)|Z = j

]
,(2.2)

provided the expectation exists. Of course, identification of linear functionals fol-
lows from identification of the component distributions, but (2.2) can be useful for
the construction of estimators. To illustrate this, we turn to a model with continu-
ous outcomes.

2.2. Finite-mixture models for continuous measurements. Suppose now that
the Yi are continuously distributed random variables. Let fij be the density of Yi

given Z = j . In this case, the q-variate finite-mixture model with r latent classes
states that the joint density function of the outcomes Y1, Y2, . . . , Yq factors as

r∑
j=1

πj

q∏
i=1

fij ,(2.3)

again for mixing proportions π1, π2, . . . , πr . This is an infinite-dimensional ver-
sion of (2.1). Setting χ i in (2.2) to a set of indicators that partition the state space
of Yi yields a decomposition as in (2.1) for a discretized version of the mixture
model. This approach has been used by Allman, Matias and Rhodes (2009) and
Kasahara and Shimotsu (2014) in proving identification.

An alternative approach, which will prove convenient for the construction
of density estimators, is as follows. Suppose that (Y1, Y2, . . . , Yq) lives in the
q-dimensional space Y q ⊆ Rq . Let L2

ρ[Y ] be the space of functions that are
square-integrable with respect to the weight function ρ on Y , endowed with the
inner product

〈h1, h2〉 =
∫
Y

h1(y)h2(y)ρ(y)dy,

and the L2
ρ -norm ‖h‖2 = √〈h,h〉. Let {ϕk, k > 0} be a class of functions that form

a complete orthonormal basis for L2
ρ[Y ]. When Y is compact, polynomials such

as those belonging to the Jacobi class (e.g., Chebychev or Legendre polynomials)
can serve this purpose. When Y = (−∞,+∞), Hermite polynomials are a natural
choice.
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Assume that fij ∈ L2
ρ[Y ]. The projection of fij onto the subspace spanned by

ϕ1, ϕ2, . . . , ϕκ for any integer κ is

Projκfij =
κ∑

k=1

bijkϕk,

where the

bijk = 〈ϕk, fij 〉 = E
[
ϕk(Yi)ρ(Yi)|Z = j

]
are the (generalized) Fourier coefficients of fij . The projection converges to fij

in L2
ρ -norm, that is, ‖Projκfij − fij‖2 → 0 as κ → ∞. Such projections are

commonly-used tools in the approximation of functions and underlie orthogonal-
series estimators of densities.

The Fourier coefficients are not directly observable. For chosen integers
κ1, κ2, . . . , κq , define

bij = E
[
ϕκi

(Yi)ρ(Yi)|Z = j
]
,

where ϕκi
= (ϕ1, ϕ2, . . . , ϕκi

)′, which are linear functionals of the fij . Then (2.2)
yields

B =
r∑

j=1

πj

q⊗
i=1

bij(2.4)

for B = E[⊗q
i=1 ϕκi

(Yi)ρ(Yi)]. The latter expectation is a q-way array that can be
computed directly from the data. It contains the leading Fourier coefficients of the
q-variate density function of the data. Again, the array B factors into a linear com-
bination of multiway arrays. In Section 5, we will use this representation to derive
orthogonal-series density estimators that have standard large-sample properties.

2.3. Hidden Markov models. Let {Yi,Zi}qi=1 be a stationary sequence. Zi is
a latent variable with finite state space {1,2, . . . , r}, for known r , and has first-
order Markov dependence. Let π = (π1, π2, . . . , πr)

′ be the stationary distribution
of Zi . Write K for the r × r matrix of transition probabilities; so K(j1, j2) is the
probability of moving from state j1 to state j2. The observable scalar random vari-
ables Y1, Y2, . . . , Yq are independent conditional on realizations of Z1,Z2, . . . ,Zq ,
and the distribution of Yi only depends on the realization of Zi . This is a hidden
Markov model with r latent states and q observable outcomes.

Suppose that Yi is discrete and that its state space contains κ points of support.
Write pj for the probability vector of Yi given Zi = j , that is, the emission distri-
butions. Let P = (p1,p2, . . . ,pr ) be the κ × r matrix of emission distributions and
write � = diag(π1, π2, . . . , πr). The Markovian assumption implies that Yi and
Zi−1 are independent given Zi . Hence, the columns of the matrix

B = PK′ = (b1,b2, . . . ,br )
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contain the probability distributions of Yi for given values of Zi−1. Likewise, Yi

and Zi+1 are independent given Zi , and so the matrix

A = P�K�−1 = (a1,a2, . . . ,ar )

gives the distributions of Yi for given values of Zi+1. Finally, Yi−1, Yi , and Yi+1
are independent given Zi . Thus, with q = 3 measurements, the hidden Markov
model implies that the contingency table of (Y1, Y2, Y3) factors as

P =
r∑

j=1

πj (aj ⊗ pj ⊗ bj ).(2.5)

A detailed derivation is provided in the supplementary material [Bonhomme,
Jochmans and Robin (2015)]; also see [Gassiat, Cleynen and Robin (2016), The-
orem 2.1] and [Allman, Matias and Rhodes (2009), Section 6.1] for alternative
derivations. When q > 3, we may bin several outcomes together and proceed as
before, by using the unfolding argument in Section 3.1.

Equation (2.5) shows that appropriate conditioning allows viewing the hidden
Markov model as a finite-mixture model, thus casting it into the framework of fi-
nite mixtures with conditionally-independent (although not identically-distributed)
outcomes as in (2.1). Here, the parameters of interest are the emission distributions
{pj }rj=1 and the stationary distribution of the Markov chain π , and also the matrix
of transition probabilities K.

When the Yi are continuously distributed, (2.5) becomes a mixture as in (2.3),
and we may again work with projections of the densities onto an orthogonal basis.

3. Algebraic structure and identification. Our approach can be applied to
q-variate structures that decompose as q-ads, which are defined as follows.

DEFINITION 1. A q-dimensional array X ∈ Rκ1×κ2×···×κq is a q-ad if it can
be decomposed as

X =
r∑

j=1

πj

q⊗
i=1

xij(3.1)

for some integer r , nonzero weights π1, π2, . . . , πr , and vectors xij ∈ Rκi×1.

Our interest lies in nonparametrically recovering {xij } and {πj } from knowledge
of X and r . Clearly, these parameters are not unique, in general. For example, a
permutation of the xij and πj leaves X unaffected, and a common scaling of the xij

combined with an inverse scaling of the πj , too, does not change the q-way array.
However, the work of Kruskal (1976, 1977), Sidiropoulos and Bro (2000), Jiang
and Sidiropoulos (2004) and Domanov and De Lathauwer (2013a, 2013b), among
others, gives simple sufficient conditions for uniqueness of the decomposition up
to these two indeterminacies. These conditions cannot be satisfied when q < 3.
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While permutational equivalence of possible decompositions of X is an inher-
ently unresolvable ambiguity, indeterminacy of the scale of the vectors xij is un-
desirable in many situations. Indeed, in arrays of the general form in (2.2), re-
covering the scale of the xij and the constants πj is fundamental. In some cases,
natural scale restrictions may be present. Indeed, in (2.1) the xij are known to be
probability distributions, and so they have nonnegative entries that sum to one.
Suitably combining these restrictions with Kruskal’s theorem, Allman, Matias and
Rhodes (2009) derived conditions under which the parameters in finite mixtures
and hidden Markov models are uniquely determined up to relabelling of the latent
classes.

We follow a different route to determine q-adic decompositions up to permu-
tational equivalence that does not require knowledge of the scale of the xij . We
require that, apart from the q-way array X, lower-dimensional submodels are also
observable. By lower-dimensional submodels we mean arrays that factor as

r∑
j=1

πj

⊗
i∈Q

xij(3.2)

for sets Q that are subsets of the index set {1,2, . . . , q}. This is not a strong require-
ment in the models we have in mind. For example, in the mixture model in (2.1),
lower-dimensional submodels are just the contingency tables of a subset of the
outcome variables. There, going from a q-way table down to a (q − 1)-table fea-
turing all but the ith outcome boils down to summing the array in the ith direction.
In more general situations, such as (2.2) and in the multilinear equation involving
Fourier coefficients in particular, the advantage of working with submodels over
marginalizations of the model is apparent. Indeed, in contrast to when the array is
a contingency table, here, there is no natural scale constraint on the xij . So, sum-
ming the array in one direction does not yield an array that decomposes as in (3.2).
Nonetheless, expectations concerning any subset of the random variables can still
be computed in (2.2) and so submodels as defined in (3.2) are observable. In the
supplementary material [Bonhomme, Jochmans and Robin (2015)] we adapt our
main identification result (Theorem 1 below) to settings where submodels are not
available and marginalizations are used instead.

Note that, throughout, we take r in (3.1) to be known. This ensures {xij } and
{πj } to be unambiguously defined. For a different r , there may exist a different set
of weights and vectors so that X factors as a q-ad. The rank of X is the smallest
integer r needed to arrive at a decomposition as in Definition 1. For example, in
the multivariate mixture model in Section 2.1, r is the number of fitted mixture
components and the rank is the smallest number of components that would allow
us to write the joint distribution of the variables as a mixture that satisfies the
required conditional-independence restriction as in (2.1). The rank need not be
equal to r . Moreover, besides the factorization of P in terms of π1, π2, . . . , πr

and {pi1,pi2, . . . ,pir} in (2.1), there may exist a different set of, say, r ′ weights
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π ′
1, π

′
2, . . . , π

′
r ′ and distributions {p′

i1,p′
i2, . . . ,p′

ir ′ } that also yield a representation
of P as a mixture. Identifying the number of components is a difficult issue. Recent
work by Kasahara and Shimotsu (2014) shows that a simple lower bound on the
number of components is nonparametrically identified (and estimable).

3.1. Unfolding. We can state our main identification result for three-way ar-
rays without loss of generality. This is so because any q-way array can be unfolded
into a (q − 1)-way array, much like any matrix can be transformed into a vector
using the vec operator. Indeed, in any direction i ∈ {1,2, . . . , q}, a q-way array
of dimension κ1 × κ2 × · · · × κq is a collection of κi (q − 1)-way arrays, each of
dimension κ1 ×κ2 ×· · ·×κi−1 ×κi+1 ×· · ·×κq . This collection can be stacked in
any of i ′ ∈ {1,2, . . . , i − 1, i + 1, . . . , q} directions, that is, (q − 1) different ways,
to yield a (q − 1)-way array whose dimension will be κ1 × κ2 × κiκi′ × · · · × κq .
This unfolding process can be iterated until it yields a three-way array. To write
this compactly, let

⊙
be the Khatri–Rao product. Then, for vectors a1,a2, . . . ,aq ,

q⊙
i=1

ai = a1 � a2 � · · · � aq

is the vector containing all interactions between the elements of the ai . The end
result of iterated unfolding toward direction i, say, is a three-way array of the form

r∑
j=1

πj

( ⊙
i1∈Q1

xi1j ⊗ xij ⊗ ⊙
i2∈Q2

xi2j

)
,

where Q1 and Q2 are two index sets that partition {1,2, . . . , q} \ {i}. We will
illustrate this in the context of density estimation in Section 5.

3.2. Identification via simultaneous diagonalization. We thus focus on a
three-way array X of dimension κ1 × κ2 × κ3 that factors as a tri-ad, that is,

X =
r∑

j=1

πj (x1j ⊗ x2j ⊗ x3j ).

Let Xi = (xi1,xi2, . . . ,xir ) and � = diag(π1, π2, . . . , πr). Also, for each pair
(i1, i2) with i1 < i2 in {1,2,3}2, let

X{i1,i2} =
r∑

j=1

πj (xi1j ⊗ xi2j ).

Note that, from (3.2), X{i1,i2} is the lower-dimension submodel obtained from X

by omitting the index i3.
Our first theorem concerns identification of the Xi as the eigenvalues of a set

of matrices and is the cornerstone of our argument. The proof of this result is
constructive and will be the basis for our estimator in Section 4 below.
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THEOREM 1 (Columns of Xi). If Xi1 and Xi2 both have full column rank and
X{i1,i2} is observable, then Xi3 is identified up to a permutation matrix if all its
columns are different.

PROOF. Without loss of generality, fix (i1, i2, i3) = (1,2,3) throughout the
proof. In each direction i, the three-way array X consists of a collection of κi

matrices. Let A1,A2, . . . ,Aκ3 denote these matrices for i = 3. So, the matrix Ak

is obtained from X by fixing its third index to the value k, that is, Ak = X(:, :, k),
using obvious array-indexing notation. Also, let A0 = X{1,2}. Note that all of A0
and A1,A2, . . . ,Aκ3 are observable matrices of dimension κ1 × κ2.

The lower-dimensional submodel A0 has the structure

A0 = X1�X′
2.(3.3)

Because the matrices X1 and X2 both have rank r and because all πj are nonzero
by definition, the matrix A0, too, has rank r . Therefore, it has a singular-value
decomposition

A0 = USV′

for unitary matrices U and V of dimension κ1 × r and κ2 × r , respectively, and
a nonsingular r × r diagonal matrix S. Now construct W1 = S−1/2U′ and W2 =
S−1/2V′. Then

W1A0W′
2 = (W1X1�

1/2)(W2X2�
1/2)′ = QQ−1 = Ir ,

where Ir denotes the r × r identity matrix and Q = W1X1�
1/2.

Moving on, each of A1,A2, . . . ,Aκ3 has the form

Ak = X1�DkX′
2, Dk = diagk X3,

where diagk X denotes the diagonal matrix whose diagonal equals the kth row of
matrix X. Applying the same transformation to A1,A2, . . . ,Aκ3 yields the collec-
tion of r × r matrices

W1AkW′
2 = QDkQ−1.(3.4)

So, the matrices {W1AkW′
2} are diagonalizable in the same basis, namely, the

columns of matrix Q. The associated eigenvalues {Dk} equal the columns of the
matrix X3. These eigenvalues are unique up to a joint permutation of the eigenvec-
tors and eigenvalues provided there exist no k1 �= k2 so that the vectors of eigenval-
ues of W1Ak1W′

2 and W1Ak2W′
2 are equal [see, e.g., De Lathauwer, De Moor and

Vandewalle (2004), Theorem 6.1]. Now, this is equivalent to demanding that the
columns of X3 are all distinct. As this is true by assumption, the proof is complete.

�

The proof of Theorem 1 shows that access to lower-dimensional submodels
allows to disentangle the scale of the columns of the Xi and the weights on the
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diagonal of �. This is so because the matrix � equally shows up in the lower-
dimensional submodels, and so transforming Ak to W1AkW′

2 absorbs the weights
into the joint diagonalizer Q in (3.4).

Also note that the dimension of the matrices in (3.4) is r × r , independent of
the size of the original matrices Xi . On the other hand, larger matrices Xi could be
beneficial for identification, as it becomes easier for them to satisfy the requirement
of full column rank.

The full-rank condition that underlies Theorem 1 has a simple testable implica-
tion. Indeed, by (3.3), it implies that the matrix A0 has rank r . As this matrix is
observable, so is its rank and, hence, our key identifying assumption is refutable.
In applications, this can be done using any of a number of available rank tests.
We refer to Kasahara and Shimotsu (2014) and Bonhomme, Jochmans and Robin
(2014) for practical details on the implementation of such procedures.

Theorem 1 can be applied to recover the tri-adic decomposition of X up to
an arbitrary joint permutation matrix. We present the result in the form of two
theorems.

THEOREM 2 (Vectors). If X1, X2, and X3 have full column rank and for each
pair (i1, i2) ∈ {i1, i2 ∈ {1,2,3} : i1 < i2} X{i1,i2} is observable, then X1, X2, and
X3 are all identified up to a common permutation of their columns.

THEOREM 3 (Weights). If Xi is identified up to a permutation of its columns
and has full column rank, and if X{i} is observable, then π is identified up to the
same permutation.

PROOF. The one-dimensional submodel X{i} is the vector

X{i} = Xiπ .

Given Xi , the one-dimensional submodel yields linear restrictions on the weight
vector π . Moreover, if Xi is known and has maximal column rank, these equations
can be solved for π , giving

π = (X′
iXi

)−1X′
iX{i},(3.5)

which is the least-squares coefficient of a regression of X{i} on the columns of Xi .
�

In the supplement, we apply Theorems 1–3 to the finite-mixture model and
the hidden Markov model of Section 2 to obtain constructive proofs of identifica-
tion.
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4. Estimation by joint approximate diagonalization. The proof of Theo-
rem 1 shows that the key restrictions underlying our results take the form of a set
of matrices being simultaneously diagonalizable in the same basis. The problem
of joint matrix diagonalization has recently received considerable attention in the
field of independent component analysis, and computationally-efficient algorithms
for it have been developed; see Fu and Gao (2006), Iferroudjene, Abed Meraim and
Belouchrani (2009, 2010) and Luciani and Albera (2010, 2014). Such algorithms
can be exploited here to construct easy-to-implement nonparametric estimators of
multivariate latent-structure models.

Thus, we propose estimating the latent-structure model in (3.1) as follows.
Given an estimate of the array X and of its lower-dimensional submodels, first
estimate all xij by solving a sample version of the joint diagonalization prob-
lem in (3.4), possibly after unfolding if q > 3. Next, back out the weights
π1, π2, . . . , πr by solving the sample analog of the minimum-distance problem
in (3.5). Asymptotic theory for this second step follows readily by the delta
method. If desired, a consistent labelling can be recovered based on the proof of
Theorem 2 (see the supplementary material).

4.1. Estimator. Consider a generic situation in which a set of κr × r matrices
C1,C2, . . . ,Cκ can be jointly diagonalized by an r × r invertible matrix Q0, that
is,

Ck = Q0DkQ−1
0 ,(4.1)

for diagonal matrices D1,D2, . . . ,Dκ . Knowledge of the joint eigenvectors implies
knowledge of the eigenvalues as

Dk = Q−1
0 CkQ0.(4.2)

The matrix Q0 is not unique. Moreover, let off Q = Q − diag Q and let ‖Q‖F =√
trace(Q′Q) denote the Frobenius norm. Then any solution to the least-squares

problem

min
Q

κ∑
k=1

∥∥off
(
Q−1CkQ

)∥∥2
F(4.3)

is a joint diagonalizer in the sense of (4.1). Each of these delivers the same set of
eigenvalues in (4.2) (up to a joint permutation).

The statistical problem of interest in this section is to perform inference on
the D1,D2, . . . ,Dκ when we only observe noisy versions of the input matrices
C1,C2, . . . ,Cκ , say Ĉ1, Ĉ2, . . . , Ĉκ . The sampling noise in the Ĉk prevents them
from sharing the same set of eigenvectors. Indeed, in general, there does not exist a
Q such that Q−1ĈkQ will be exactly diagonal for all k. For this, the least-squares
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formulation in (4.2)–(4.3) is important as it readily suggests using, say Q̂, any
solution to

min
Q∈Q

κ∑
k=1

∥∥off
(
Q−1ĈkQ

)∥∥2
F ,(4.4)

where Q is an appropriately-specified space of matrices to search over; see below.
The estimator Q̂ is that matrix that makes all these matrices as diagonal as pos-
sible, in the sense of minimizing the sum of their squared off-diagonal entries. It
is thus appropriate to call the estimator Q̂ the joint approximate-diagonalizer of
Ĉ1, Ĉ2, . . . , Ĉκ . An estimator of the Dk (up to a joint permutation of their eigen-
values) then is

D̂k = diag
(
Q̂−1ĈkQ̂

)
.(4.5)

Distribution theory for this estimator is not available, however, and so we provide
it here. Throughout, we work under the convention that estimates are computed
from a sample of size n.

4.2. Asymptotic theory. For our problem to be well defined, we assume that
the matrix of joint eigenvectors is bounded. In (4.4), we may therefore restrict
attention to the set of r × r matrices Q = (q1,q2, . . . ,qr ) defined as

Q = {Q : det Q = 1,‖qj‖F = c for j = 1,2, . . . , r and c ≤ m
}

for some m ∈ (0,∞). The restrictions on the determinant and the column norms
are without loss of generality and only reduce the space of matrices to be searched
over when solving (4.4). Let Q∗ be any solution to (4.3) on Q and let Q0 ⊂ Q be
the set of all matrices Q∗�� for permutation matrices � and diagonal matrices
� whose diagonal entries are equal to 1 and −1 and have det� = 1. Then Q0 is
the set of solutions to (4.3) on Q.

Construct the r × rκ matrix C = (C1,C2, . . . ,Cκ) by concatenation and define
Ĉ similarly.

THEOREM 4 (Consistency). If the set Q0 belongs to the interior of Q, Ĉ =
C + op(1), and Q̂ ∈ Q satisfies

κ∑
k=1

∥∥off
(
Q̂−1ĈkQ̂

)∥∥2
F = min

Q∈Q

{
κ∑

k=1

∥∥off
(
Q−1ĈkQ

)∥∥2
F

}
+ op(1),

then limn→∞ Pr(Q̂ ∈ O) = 1 for any open subset O of Q containing Q0.

Each Q ∈ Q0 has associated with it a permutation matrix � and a diagonal
matrix � as just defined so that Q = Q∗��. Theorem 4 states that (up to a sub-

sequence) we have that Q̂
p→ Q∗�0�0 for well-defined �0 and �0. We may then

set Q0 = Q∗�0�0 in (4.1). It then equally follows that

D̂k
p→ Dk = �′

0D∗
k�0,
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where Dk is as in (4.2) and D∗
k = Q−1∗ CkQ∗, both of which are equal up to a

permutation. Thus, the consistency of the eigenvalues (up to a joint permutation)
follows from the consistency of the estimator of the input matrices C.

To provide distribution theory, let

Dk1 � Dk2 = (Dk1 ⊗ Idim Dk2
) − (Idim Dk1

⊗ Dk2)

denote the Kronecker difference between the square matrices Dk1 and Dk2 . Con-
struct the r2 × r2κ matrix

T = ((D1 � D1), (D2 � D2), . . . , (Dκ � Dκ)
)

by concatenation and let

G = (Ir ⊗ Q0)

(
κ∑

k=1

(Dk � Dk)
2

)+
T
(
Iκ ⊗ Q′

0 ⊗ Q−1
0

)
,

where Q+ is the Moore–Penrose pseudo inverse of Q. Theorem 5 contains distri-
bution theory for our estimator of the matrix of joint eigenvectors Q̂ in (4.4).

THEOREM 5 (Asymptotic distribution). If ‖Ĉ − C‖F = Op(n−1/2), then
√

nvec(Q̂ − Q0) = G
√

nvec(Ĉ − C) + op(1)

as n → ∞.

If, further,
√

nvec(Ĉ − C)
d→ N (0,V) for some covariance matrix V, Theo-

rem 5 implies that
√

nvec(Q̂ − Q0)
d→ N

(
0,GVG′)

as n → ∞. In our context,
√

n-consistency and asymptotic normality of the input
matrices is not a strong requirement. Indeed, the proof of Theorem 1 showed that
the input matrices are of the form Ck = W1AkW′

2, where W1 and W2 follow from
a singular-value decomposition of A0. An estimator of Ck can thus be constructed
using a sample analog of A0 to estimate W1 and W2, together with a sample
analog of Ak . If the estimators of A0 and Ak are

√
n-consistent and asymptotically

normal and all nonzero singular values of A0 are simple, then
√

nvec(Ĉ − C)
d→

N (0,V) holds. A detailed derivation of V is readily obtained from the argument on
the estimation of eigen-decompositions of normal matrices in the supplementary
material to Bonhomme, Jochmans and Robin [(2014), Lemma S.2].

We next present the asymptotic behavior of D̂ = (D̂1, D̂2, . . . , D̂κ), our estima-
tor of the eigenvalues D = (D1,D2, . . . ,Dκ). To state it, let Sr = diag(vec Ir ) be
an r2 × r2 selection matrix; note that Sr vec Q = vec(diag Q). Let

H = (Iκ ⊗ Sr )
(
Iκ ⊗ Q′

0 ⊗ Q−1
0

)
.

Theorem 6 follows.
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THEOREM 6 (Asymptotic distribution). If ‖Ĉ − C‖F = Op(n−1/2), then
√

nvec(D̂ − D) = H
√

nvec(Ĉ − C) + op(1)

as n → ∞.

Again, if
√

nvec(Ĉ − C)
d→ N (0,V), then

√
nvec(D̂ − D)

d→ N
(
0,HVH′)

as n → ∞.

5. Application to density estimation. With discrete outcomes, both the
finite-mixture model in (2.1) and the hidden Markov model in (2.5) are finite
dimensional. Further, the matrices to be simultaneously diagonalized are contin-
gency tables. These tables can be estimated by simple empirical cell probabilities
and are

√
n-consistent and asymptotically normal. Hence, the theory on the asymp-

totic behavior of the eigenvalues from the previous section (i.e., Theorem 6) can
directly be applied to deduce the large-sample behavior of the parameter estimates.

With continuous outcomes, as in (2.3), the main parameters of the model are
density functions. Such an infinite-dimensional problem is not directly covered
by the arguments from the previous section. Nonetheless, we will show that Theo-
rem 5 can be used to obtain density estimators with standard asymptotic properties.

5.1. Estimator. We provide convergence rates and distribution theory for se-
ries estimators based on (2.4). By the results of Section 2.3, this also covers the
estimation of emission densities in a hidden Markov model with continuous out-
come variables. Recall from above that the projections

Projκi
fij = ϕ′

κi
bij

yield the multilinear restrictions

B= E

[ q⊗
i=1

ϕκi
(Yi)ρ(Yi)

]
=

r∑
j=1

πj

q⊗
i=1

E
[
ϕκi

(Yi)ρ(Yi)|Z = j
]= r∑

j=1

πj

q⊗
i=1

bij ,

where ϕκi
is the vector containing the κi leading polynomials from the orthog-

onal system {ϕk, k > 0}. As we will show, for fixed κ1, κ2, . . . , κq , the array B

provides sufficient information for nonparametric identification of Fourier coeffi-
cients through the associated joint diagonalizer. Moreover, in the asymptotic anal-
ysis, κ1, κ2, . . . , κq are all held fixed.

For the purpose of this section, we may fix attention to a given index i. By
unfolding B toward direction i, we obtain the (equivalent) three-way array

Bi = E
[
φQ1 ⊗ φQ2 ⊗ ϕκi

(Yi)ρ(Yi)
]
,
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where Q1 and Q2 partition the index set {1,2, . . . , q} \ {i} (see Section 3) and we
have introduced the notational shorthand

φQ = ⊙
i′∈Q

ϕκi′ (Yi′)ρ(Yi′).

The array Bi can be analyzed using our diagonalization approach. Following the
notation from the proof of Theorem 1, the two-dimensional submodel associated
with Bi is the matrix

A0 = E
[
φQ1 ⊗ φQ2

]
,

while the array Bi itself consists of the first κi matrices of the set {Ak, k > 0},
where

Ak = E
[(

φQ1 ⊗ φQ2
)
ϕk(Yi)ρ(Yi)

]
.

All these matrices are of dimension
∏

i1∈Q1
κi1 ×∏i2∈Q2

κi2 . A singular-value de-
composition of A0 provides matrices W1 and W2 so that the κi matrices W1AkW′

2
are jointly diagonalizable by, say, Q. From the proof of Theorem 1, the matrix Q
is unique (up to the usual normalizations on the sign and norm of its columns and
a joint permutation of the columns, as discussed before) as soon as the conditions
in Theorem 1 are satisfied.

Given Q, we can compute

Q−1(W1AkW′
2
)
Q = diag(bi1k, bi2k, . . . , birk),

where, recall, bijk = E[ϕk(Yi)ρ(Yi)|Z = j ] for any integer k (including those k

that exceed κi). Equivalently, the kth Fourier coefficient of fij can be written as

bijk = e′
j

(
Q−1(W1AkW′

2
)
Q
)
ej ,(5.1)

where ej is the r × 1 selection vector whose j th entry is equal to one and its other
entries are all equal to zero.

Our orthogonal-series estimator of fij is based on sample analogs of the bijk

in (5.1). We estimate the array B as

B̂= n−1
n∑

m=1

q⊗
i=1

ϕκi
(Yim)ρ(Yim),

where {Y1m,Y2m, . . . , Yqm}nm=1 is a size-n sample drawn at random from the mix-
ture model. From this we estimate bijk for any k as

b̂ijk = e′
j

(
Q̂−1(Ŵ1ÂkŴ′

2
)
Q̂
)
ej = n−1

n∑
m=1

e′
j 	̂mejϕk(Yim)ρ(Yim),

using obvious notation to denote sample counterparts in the first expression and
introducing the matrix

	̂m = Q̂−1(Ŵ1
(
φQ1

m ⊗ φQ2
m

)
Ŵ′

2
)
Q̂
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in the second expression; here, we let φQ
m =⊙i′∈Q ϕκi′ (Yi′m)ρ(Yi′m). The associ-

ated orthogonal-series estimator of fij (y) for some chosen integer κ is

f̂ij (y) =
κ∑

k=1

b̂ijkϕk(y)

(5.2)

= n−1
n∑

m=1

e′
j 	̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim).

Note that, in the absence of e′
j 	̂mej , this expression collapses to a standard series

estimator of the marginal density of Yi . Hence, the term e′
j 	̂mej can be understood

as a weight that transforms this estimator into one of the conditional density of
Yi given Z = j . Equation (5.2) generalizes the kernel estimator of Bonhomme,
Jochmans and Robin (2014). The term e′

j 	̂mej plays the same role as the posterior
classification probability (normalized to sum up to one across observations) in
the EM algorithm as well as in its nonparametric version [Levine, Hunter and
Chauveau (2011), equations (15)–(17)]. A computational advantage here is that
the series estimator is available in closed form once e′

j 	̂mej has been computed
while EM requires iterative computation of density estimates and classification
probabilities until convergence.

A natural way of choosing the number of series terms in (5.2) would be by
minimizing the squared L2

ρ -loss,

‖f̂ij − fij‖2
2,

as a function of κ. In the supplement we show that an empirical counterpart of this
criterion (up to terms that do not involve κ) is

κ∑
k=1

b̂2
ijk − 2n−1

n − 1

n∑
m=1

∑
o �=m

e′
j 	̂mej e′

j 	̂oej

κ∑
k=1

ϕk(Yio)ϕk(Yim)ρ(Yio)ρ(Yim).

Apart from the weight functions, this is the usual cross-validation objective for
orthogonal-series estimators [Hall (1987)].

Before turning to the statistical properties of f̂ij we note that, although we
maintain a hard thresholding procedure in (5.2), our approach can equally be com-
bined with other popular smoothing policies that shrink the impact of higher-order
Fourier coefficients; see Efromovich [(1999), Chapter 3] for a discussion on such
policies.

5.2. Asymptotic theory. Under mild conditions, the series estimator in (5.2)
exhibits standard large-sample behavior. The precise conditions depend on the
choice of orthogonal system, that is, {ϕk, k > 0}. We give two sets of conditions
that cover the most popular choices.
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When the component densities are supported on compact intervals, we can re-
strict attention to [−1,1] without loss of generality; translation to generic compact
sets is straightforward. In this case, we will allow for polynomial systems that sat-
isfy the following general requirements. Here and later, we let ‖ · ‖∞ denote the
supremum norm.

A.1 The sequence {ϕk, k > 0} is dominated by a function ψ , which is con-
tinuous on (−1,1) and positive almost everywhere on [−1,1]. ρ, ψρ, and ψ2ρ

are integrable, and there exists a sequence of constants {ζκ,κ > 0} so that
‖√ϕ′

κ
ϕκ‖∞ ≤ ζκ .

These conditions are rather weak. They are satisfied for the popular class of Jacobi
polynomials, for example, which includes Chebyshev polynomials of the first kind,
Chebyshev polynomials of the second kind, and Legendre polynomials.

In this case, we will need the following regularity from the component densi-
ties.

A.2 The (ψρ)4fij are integrable.

The weaker requirement that the (ψρ)2fij are integrable will suffice to obtain
the convergence rates in Theorem 7 below, but A.2 will be needed to obtain the
pointwise asymptotic-normality result in Theorem 8.

When the component densities are supported on the whole real line, we will
take {ϕk, k > 0} to be the orthonormalized system of Hermite functions.

B.1 The sequence {ϕk, k > 0} has members

ϕk(y) = 2−(k−1)/2((k − 1)!)−1/2
π−1/4e−y2/2hk−1(y),

where {hk, k ≥ 0} is the system of the Hermite polynomials, in which case
‖√ϕ′

κ
ϕκ‖∞ ≤ ζκ for ζκ ∝ √

κ.

We will also impose the following regularity and smoothness conditions.

C.1 The fij are continuous.
C.2 ‖Projκfij − fij‖∞ = O(κ−β) for some constant β ≥ 1.
C.3 The singular values of A0 are all simple.

Convergence in L2
ρ -norm implies that limκ→∞

∑
κ

k=1 b2
ijk is finite, and so that the

Fourier coefficient associated with ϕk shrinks to zero as k → ∞. The constant β

is a measure of how fast the Fourier coefficients shrink. In general, β is larger
the smoother the underlying function that is being approximated. Simplicity of the
singular values of A0 holds generically and is used here to ensure that the matrices
W1,W2 are continuous transformations of A0. This is a technical requirement
used to derive the convergence rates of their plug-in estimators.
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Under these assumptions, we obtain standard integrated squared-error and uni-
form convergence rates.

THEOREM 7 (Convergence rates). Let either A.1–A.2 and C.1–C.3 or B.1 and
C.1–C.3 hold. Then

‖f̂ij − fij‖2
2 = Op

(
κ/n +κ

−2β), ‖f̂ij − fij‖∞ = Op

(
ζκ
√
κ/n +κ

−β),
for all i, j .

The rates in Theorem 7 equal the conventional univariate rates of series estima-
tors; see, for example, Newey (1997). Thus, the fact that Z is latent does not affect
the convergence speed of the density estimates.

To present distribution theory for the orthogonal-series estimator at a fixed
point y, let

σ̂ij (y) =
√√√√√n−1

n∑
m=1

(
e′
j 	̂mej

κ∑
k=1

ϕk(Yim)ϕk(y)ρ(Yim) − f̂ij (y)

)2

,

which is a sample standard deviation, and denote fi =∑r
j=1 πjfij in the following

theorem.

THEOREM 8 (Asymptotic distribution). Suppose that n,κ → ∞ so that
κ

2/n → 0 and nκ−2β → 0. Then

f̂ij (y) − fij (y)

σ̂ij (y)/
√

n

d→ N (0,1),

for each y ∈ Y that lies in an interval on which fi is of bounded variation.

Under A.1–A.2, σ̂ij (y) grows like ‖ϕκ(y)‖F , and this depends on the polyno-
mial system used. Because A.1 states that ‖√ϕ′

κ
ϕκ‖∞ = O(ζκ), a weak bound

on the convergence rate that holds for all y is Op(ζκ/
√

n). With Legendre poly-
nomials, for example, the orthogonal-series estimator has a variance of order κ/n,
which is the same as that of an estimator based on a random sample from fij [Hall
(1987)]. Likewise, under B.1 we have that σ̂ij (y) grows like κ

1/4 and so the vari-
ance of the estimator is of the order

√
κ/n. This is again the standard convergence

rate for conventional Hermite series estimators [Liebscher (1990)].

6. Monte Carlo illustrations. We evaluated the performance of the ortho-
gonal-series estimator via simulation. We report root mean integrated squared er-
ror (RMISE) calculations for designs taken from Levine, Hunter and Chauveau
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(2011). This allows us to compare our estimator to the EM-like approaches pro-
posed in the literature. We also investigate the accuracy of the pointwise asymp-
totic approximation of the density estimator in Theorem 8 in a Monte Carlo exper-
iment based on a hidden Markov model. Throughout this section, we use Hermite
polynomials as basis functions, set κi = 10 for all i, and use the cross-validation
technique introduced above to select the number of series terms. Joint approximate
diagonalization was done using the algorithm of Luciani and Albera (2010, 2014).
We also computed the estimator using the algorithms of Fu and Gao (2006) and
Iferroudjene, Abed Meraim and Belouchrani (2009, 2010) and found very similar
results to the ones reported below.

6.1. RMISE comparisons. We evaluate the RMISE of the estimator f̂ij ,√
E‖f̂ij − fij‖2

2,

as approximated by 500 Monte Carlo replications. The first set of designs involves
mixtures of normals, where

fij (y) = φ(y − μij ).

The second set of designs deals with mixtures of central and noncentral t-distri-
butions, that is,

fij (y) = t10(y;μij ),

where we let td(y;μ) denote a t-distribution with d degrees of freedom and non-
centrality parameter μ. We set q = 3, r = 2, so the data is drawn from a three-
variate two-component mixture. The parameters of the component densities are
set to (μ11,μ21,μ31) = (0,0,0) for the first component and (μ12,μ22,μ32) =
(3,4,5) for the second component. We consider various choices for the mixing
proportions π = (π1, π2)

′.
Figure 1 plots the RMISE as a function of the mixing proportion π1 for samples

of size n = 500. The results for the first and second component for each outcome
variable are labelled consecutively as ◦,�,� and as •, �, �, respectively.

The patterns of the RMISE are comparable to those for the EM-like estimators
in Levine, Hunter and Chauveau [(2011), Figure 1], although the magnitudes are
larger here. The latter observation agrees with the intuition that joint estimation
of classification probabilities and component densities (as in EM) should be more
efficient than sequential estimation (as here). However, a precise comparison be-
tween the methods is complicated by the fact that the EM approaches are kernel
based while we work with orthogonal series, and because the tuning parameters
(the bandwidths for EM and the number of series terms here) were selected in a
different manner.

Our least-squares estimator of the mixing proportions was also evaluated in
these designs and was found to perform well. The Monte Carlo results are provided
in the supplementary material [Bonhomme, Jochmans and Robin (2015)].
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FIG. 1. RMISE of the orthogonal-series density estimator.

6.2. Inference in a hidden Markov model. We next consider inference in a
hidden Markov model with r = 2 latent states and q = 3 outcome variables. The
latent Markov chain has transition matrix and stationary distribution equal to

K =
(

0.8 0.2
0.2 0.8

)
, π =

(
0.5
0.5

)
,

respectively. The emission densities f1 and f2 are skew-normal densities [Azzalini
(1985)],

fj (y) = 2φ(y − μj)�
(
αj (y − μj)

)
,

with μ1 = −2, α1 = 5 and μ2 = −μ1, α2 = −α1. The sign of the skewness pa-
rameters α1, α2 implies that f1 is skewed to the right while f2 is skewed to the
left.

In each of 500 Monte Carlo replications, we estimated the two emission den-
sities f1 and f2 using our orthogonal-series estimator and constructed 95% con-
fidence intervals at the percentiles of f1 and f2. We present results for n = 500
(left plot) and n = 5000 (right plot) graphically in Figure 2. Results for additional
sample sizes are available in the supplementary material [Bonhomme, Jochmans
and Robin (2015)].

Each plot in Figure 2 contains the true functions f1 and f2 (solid lines), and
the mean (across the Monte Carlo replications) of our orthogonal-series estimator
(dashed lines) as well as of an infeasible kernel-density estimator (dashed–dotted
lines) computed from the subsample of observations that are in the respective latent
state (see the supplementary material for more detail). The plots show that, even
in small samples, our estimator essentially coincides with the infeasible estimator,
on average.
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FIG. 2. Emission densities in the hidden Markov model.

Figure 2 also contains average 95% confidence intervals (−◦), based on the
pointwise distributional result in Theorem 8, for the emission densities at their
respective percentiles. To assess the adequacy of our asymptotic approximation,
the plots in the figure also provide 95% confidence intervals at the percentiles
constructed using the empirical standard deviation of the point estimates across
the Monte Carlo replications (−∗). Figure 2 shows that our estimated standard
error captures well the small-sample variability of the orthogonal-series estima-
tor.
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