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Empirical models for dyadic interactions between n agents often

feature agent-specific parameters. Fixed-effect estimators of such

models generally have bias of order n−1, which is non-negligible

relative to their standard error. Therefore, confidence sets based

on the asymptotic distribution have incorrect coverage. This paper

looks at models with multiplicative unobservables and fixed effects.

We derive moment conditions that are free of fixed effects and use

them to set up estimators that are n-consistent, asymptotically

normally-distributed, and asymptotically unbiased. We provide

Monte Carlo evidence for a range of models. We estimate a gravity

equation as an empirical illustration.

JEL Classification: C14, C23, F14

Empirical models for dyadic interactions between n agents frequently contain

agent-specific fixed effects. The inclusion of such effects captures unobserved

characteristics that are heterogeneous across agents. One leading example is a

gravity equation for bilateral trade flows between countries; they feature both

importer and exporter fixed effects at least since the work of Harrigan (1996) and

Anderson and van Wincoop (2003). While such two-way models are intuitively
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attractive and their use is widespread, there is little to no theoretical work on the

statistical properties of the corresponding estimators.

This paper considers estimation and inference for nonlinear two-way models

with multiplicative unobservables and fixed effects. Such models are well suited

for studying non-negative outcomes in a variety of contexts. Count data and

duration data are two obvious and important examples. Other examples are

constant-elasticity models, life-cycle models for consumption, and binary-choice

models with multiplicative effects. Our approach is semiparametric in that it

requires a conditional moment restriction only and is sufficiently general to cover

instrumental-variable models although, for conciseness, we do not cover the latter

in detail here. Building on an insight of Charbonneau (2013), we derive moment

conditions that difference-out the fixed effects. Under regularity conditions the

associated generalized method-of-moment (GMM) estimators are consistent and

converge at the rate n−1 to a normal random variable whose variance can be

estimated. Extensive numerical experiments show that our asymptotic theory

provides a good approximation to the small-sample behavior of the estimators.

Furthermore, in experiments with exponential-regression models, they are found

to provide more reliable inference than the Poisson pseudo maximum likelihood

(Gouriéroux, Monfort and Trognon, 1984a). As an empirical application we es-

timate a gravity equation in levels (as advocated by Santos Silva and Tenreyro

2006), controlling for multilateral resistance terms.

There is related work by Fernández-Val and Weidner (2016) on likelihood-based

estimation of two-way models. They show that (under regularity conditions) the

bias of the fixed-effect estimator of two-way models, in general, is O(n−1) and

needs to be corrected for in order to perform asymptotically-valid inference. Our

approach is different as we work with moment conditions that are free of fixed

effects, implying the associated estimators to be asymptotically unbiased. Also,

the class of models considered by Fernández-Val and Weidner (2016) and the one
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under study here are different, and they are not nested.1 In the likelihood setting,

a possible alternative may be to work with a conditional likelihood. Charbonneau

(2013) investigates this possibility for several models for count data.

I. Multiplicative models for dyadic data

We have data on dyadic interactions between n agents. Let (yij , xij) denote the

observation on dyad (i, j). We allow for directed interactions, so that (yij , xij)

need not be equal to (yji, xji), and include self links, that is, (yii, xii).
2 Suppose

that

(1.1) yij = ϕ(xij ;ψ0)uij ,

where ϕ is a function known up to the parameter vector ψ0, and uij is a latent

disturbance. We will assume that

(1.2) uij = αi γj εij ,

where αi and γj represent permanent unobserved effects and εij is an idiosyncratic

disturbance that is independent across both i and j. Independence will only be

used to establish asymptotic normality and can be relaxed, as discussed in more

detail below. Note that, besides controlling for unobserved heterogeneity, this

two-way model gives a simple framework to deal with aggregate shocks. Moreover,

the presence of αi and γj implies that uij is heteroskedastic and correlated across

both i and j. We will treat αi and γj as fixed, that is, throughout, we condition

on them.3

1Our results are applicable to n ×m panel data under asymptotics where n,m → ∞ jointly; see a
previous version of this paper. This can be useful for modelling linked data between two different types
of agents, such as firms and workers or teachers and students. The formulae to follow require only minor
and obvious modification, and the sampling scheme in Assumption 3 needs to be redefined appropriately.

2In the absence of self links it suffices to alter all expressions below by adjusting the range of the
sums and by rescaling appropriately to obtain a degrees-of-freedom correction.

3We omit the qualifier ‘almost surely’ from all probabilistic statements.
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Our aim is to estimate the parameter ψ0 under the conditional-mean restriction

(1.3) E[εij |x11, . . . , xnn] = 1.

Everything that follows extends to the setting where E[εij |z11, . . . , znn] = 1 for

instrumental variables z11, . . . , znn, with obvious modification to the formulae and

subject to suitably adjusted regularity conditions. For conciseness, we maintain

(1.3) here.4

To construct an estimator of ψ0 that will have good statistical properties as

n → ∞ we construct moment conditions that are free of fixed effects. This

can be done by extending a recent finding due to Charbonneau (2013) for the

exponential-regression model to the more general framework entertained here.

We do so by following the intuition underlying the work of Chamberlain (1992)

and Wooldridge (1997) for one-way models. First observe that (1.3) implies that

E [uij |x11, . . . , xnn] = αi γj

for any i, j. Furthermore, as E[εijεi′j′ |x11, . . . , xnn] = 1 for different pairs of

indices i, j and i′, j′,

E
[
uij ui′j′

∣∣x11, . . . , xnn
]

= (αi γj) (αi′ γj′) = αiαi′ γjγj′ ,

E
[
uij′ ui′j

∣∣x11, . . . , xnn
]

= (αi γj′) (αi′ γj) = αiαi′ γjγj′ .

By differencing these equations we then obtain the conditional moment condition

(1.4) E[uij ui′j′ − uij′ ui′j |x11, . . . , xnn] = 0,

4A previous version of this paper contains simulation results for an instrumental-variable model.
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which does not involve any of the nuisance parameters, and holds for all
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unique choices for (i, i′) and (j, j′). Equation (1.4) is the two-way counterpart

to Chamberlain (1992) and Wooldridge (1997). It effectively differences-out each

of the fixed effects. As such, the conditional moment condition in (1.4) paves

the way for the construction of GMM estimators of ψ0 set up from unconditional

moments conditions implied by it. Such estimators are the topic of the next

section.

An issue that we do not address here is semiparametrically-efficient estimation.

The classic results of Chamberlain (1987) do not apply to the current framework.

Furthermore, calculations of the moment conditions implied by the formulae in

Chamberlain (1987) for some parametric specifications of (1.1)–(1.3) for 2 × 2

data, such as the Poisson model and negative-binomial model, reveal that these

moments depend on the fixed effects. See the Supplementary Material for detailed

calculations.

II. Estimation

Equation (1.4) implies that the unconditional moment condition

(2.1) E[φ(xij , xij′ , xi′j , xi′j′ ;ψ0)(uij ui′j′ − uij′ ui′j)] = 0,

where φ is a chosen (vector) function, holds for all % choices of i, i′, j, j′. An

intuitive way of obtaining an estimating equation for ψ0 then is to work with

the empirical counterpart of the average of (2.1) over all % choices. By letting

uij(ψ) = yij/ϕ(xij ;ψ), this empirical moment at a given value ψ is the U-statistic

s(ψ) = %−1
n∑
i=1

∑
i<i′

n∑
j=1

∑
j<j′

φ(xij , xij′ , xi′j , xi′j′ ;ψ)(uij(ψ)ui′j′(ψ)−uij′(ψ)ui′j(ψ))
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where, without loss of generality, we have assumed that the kernel function,

φ(xij , xij′ , xi′j , xi′j′ ;ψ)(uij(ψ)ui′j′(ψ) − uij′(ψ)ui′j(ψ)), is permutation invariant

in both (i, i′) and (j, j′). A GMM estimator of ψ0 is

ψn = arg min
ψ∈S

s(ψ)′Ωn s(ψ),

where S is the parameter space searched over and Ωn is a chosen positive-definite

weight matrix. As usual for GMM estimators, Ωn defines a distance metric for

the moment conditions in case of overidentification, that is, when the dimension

of φ exceeds the dimension of ψ.

We now provide distribution theory for this estimator. All proofs are collected

in the Supplementary Material to this paper.

We start by imposing standard regularity conditions.

Assumption 1. The set S is compact and ψ0 is interior to it. The functions ϕ

and φ are continuously-differentiable in ψ with derivatives ϕ′ and φ′. There exists

a positive definite matrix Ω such that Ωn
p→ Ω as n→∞.

The next assumption relates to identification of ψ0. We introduce the matrix

Σ = − lim
n→∞

1

n2

n∑
i=1

n∑
j=1

E[wij τij(xij ;ψ0)′],

where we define the random variable wij as

wij =
4

(n− 1)2

∑
i′ 6=i

∑
j′ 6=j

φ(xij , xij′ , xi′j , xi′j′ ;ψ0)αiαi′ γjγj′

and let τ(xij ;ψ) = ϕ′(xij ;ψ)/ϕ(xij ;ψ).

Assumption 2. With s(ψ) = limn→∞ s(ψ), ‖s(ψk)‖ → 0 implies ‖ψk −ψ0‖ → 0

for any sequence of vectors {ψk} from S. The matrix Σ has maximal column

rank.

Sampling is governed by the next assumption.
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Assumption 3. The n observations are sampled independently.

Assumption 3 allows for dependence between dyads that have observations in

common, which is important in applications.

The next assumption collects moment conditions that allow the application of

a law of large numbers. We let σ2
ij = var(εij |x11, . . . , xnn).

Assumption 4. There exist finite constants Cu and Cφ, independent of ψ, such

that E[‖uij(ψ)‖8] < Cu and E[‖φ(xij , xij′ , xi′j , xi′j′ ;ψ)‖8] < Cφ for all ψ in S,

and the constants αi, γi are finite for all i. There exists a finite constant Cσ such

that E[ε4
ij |x11, . . . , xnn] < Cσ, and the conditional variance σ2

ij is positive and has

finite fourth-order moment.

Assumptions 1–4 allow us to derive a consistency result for ψn.

Theorem 1 (Consistency). If Assumptions 1–4 hold, ψn
p→ ψ0 as n→∞.

To see why the dependence between dyads that have observations in common

is not a hinder for consistency, note that var(s(ψ)) is an average over O(n8)

combinations of observations. Of these, O(n7) have at least one observation in

common. Therefore, var(s(ψ)) = O(n−1), from which the convergence result

follows. We note that Theorem 1 continues to go through when the disturbances

εij are dependent across i or j (or both).

Moving on to deriving the convergence rate and asymptotic distribution requires

establishing the large-sample behavior of the empirical moment conditions. This

is not immediate because the data are not identically distributed and can be

strongly correlated across both i and j. We exploit the U-statistic structure of

s(ψ) to show that

(2.2) n s(ψ0) =
1

n

n∑
i=1

n∑
j=1

wij (εij − 1) + op(1).

The dominant right-hand side term is a Hájek projection (van der Vaart 2000,

Section 11.3). The summands in (2.2) are all zero-mean random variables that
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are independent conditional on x11, . . . , xnn. Equation (2.2) states that s(ψ0) is

asymptotically equivalent to its Hájek projection. Thus, var(s(ψ0)) = O(n−2),

and so we get n ‖ψn − ψ0‖ = Op(1). Moreover, a suitable central limit theorem

allows to establish that

n s(ψ0)
d→ N(0, V ), V = lim

n→∞

1

n2

n∑
i=1

n∑
j=1

E[wijw
′
ij σ

2
ij ],

as n→∞.

The last ingredient needed for asymptotic normality is a convergence result for

S(ψ) = ∂s(ψ)/∂ψ′, the Jacobian of the empirical moment conditions. The next

assumption collects sufficient additional conditions to ensure that S(ψn)
p→ Σ as

n→∞.

Assumption 5. There exist finite constants Cu and Cφ, independent of ψ, such

that E[‖τ(xij ;ψ)‖8] < Cτ and E[‖φ′(xij , xij′ , xi′j , xi′j′ ;ψ)‖8] < Cφ′ for all ψ in

S.

An expansion of the first-order conditions of the GMM estimation problem

around ψ0 then yields the following result.

Theorem 2 (Asymptotic normality). If Assumptions 1–5 hold and V is positive

definite, then

n (ψn − ψ0)
d→ N(0, Υ )

as n→∞, where the covariance matrix is Υ = (Σ′ΩΣ)−1(Σ′ΩV ΩΣ)(Σ′ΩΣ)−1.

As usual, the asymptotic variance is minimized by setting Ωn = V −1
n where Vn is

a consistent estimator of V .

The asymptotic variance Υ can be estimated by

Υn = (S′nΩnSn)−1(S′nΩnVnΩnSn)(S′nΩnSn)−1,

where Sn = S(ψn) is the Jacobian of the empirical moment conditions evaluated
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at the point estimator and

Vn =
1

n2

n∑
i=1

n∑
j=1

υ̂ij υ̂
′
ij

for

υ̂ij =
4

(n− 1)2

∑
i′ 6=i

∑
j′ 6=j

φ(xij , xij′ , xi′j , xi′j′ ;ψn)(ûij ûi′j′ − ûij′ ûi′j)

with ûij = uij(ψn). The moment conditions in Assumptions 4–5 imply that

‖Υn−Υ‖ = op(1) as n→∞, operationalizing our estimator as a tool for statistical

inference.

An interesting extension of Theorem 2 would be to allow for the errors εij to

be dependent at the (i, j) level. If left unrestricted, this additional dependence

would slow down the convergence rate of ψn from n−1 to n−1/2 (see Hansen 2007

for a discussion on this in the linear model) and would lead to a more complicated

expression for the variance of the moment conditions V (see Cameron, Gelbach

and Miller 2011). We leave a detailed analysis of two-way clustering in the current

context for future research.

III. Numerical experiments

We consider the performance of our estimator in a series of simulation experiments

centered around exponential-regression models. For such models, the Poisson

pseudo maximum-likelihood estimator can serve as a useful benchmark. We write

µij = ex
′
ijψ0 αi γj .

We consider data generating processes for count data, continuous outcomes, and

mixed continuous/discrete outcomes.

To simulate count data we use the Poisson model and the negative-binomial

(negbin) model. In the former model, the conditional mean and variance both

equal the arrival rate, µij . The negative-binomial model is a mixture model over
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Poisson models, where the arrival rate has a Gamma distribution with positive

shape and scale parameters θ and pij = (1 + µij/θ)
−1, respectively. In this

case var(yij |xij) = µij + θµ2
ij , and the variance exceeds the mean. By setting

θ ∈ {1, 5, 10} we will look at data generating processes with varying degree of

overdispersion.

To generate non-negative continuous outcomes we use an exponential-regression

model with log-normal disturbances. More precisely, we draw yij = µij εij , where

εij ∼ logN

(
−1

2
log(1 + σ2

ij), log(1 + σ2
ij)

)

for σ2
ij > 0. This implies that E[εij |xij ] = 1 and var(εij |xij) = σ2

ij . We will

take σ2
ij ∈ {1, µ

−1
ij , 1 + µ−1

ij , µ
−2
ij }. These cases correspond to var(yij |xij) being in

{µ2
ij , µij , µij(1 + µij), 1}. The first specification has homoskedastic errors. The

second specification has Poisson-type errors, with the conditional mean equaling

the conditional variance, and the third specification gives an overinflated variance

as in a negative-binomial model with θ = 1. The fourth specification, finally, gives

homoskedastic outcomes. In this model, Pr(yij = 0|xij) = 0.

The next model has a mixed discrete/continuous outcome distribution with a

mass point at zero. We follow Santos Silva and Tenreyro (2011) and generate

the outcome yij from a χ2 distribution with dij degrees of freedom, where dij is

drawn from a negative-binomial distribution with shape parameter θ and scale

parameter pij = (1 + µij/θ)
−1. This implies that Pr(yij = 0|xij) = (1 − pij)θ is

non-zero. We will refer to this model as the inflated model and will generate data

with θ ∈ {5, 15}.

Taken together, this yields ten different data generating processes that represent

well the various situations where exponential-regression models have been used

in empirical work.

The conditional mean is set as follows. We first draw (logαi, log γi) from a

bivariate normal distribution with zero mean and unit variances and correlation ρ.
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We then generate a bivariate regressor xij = (xij1, xij2)′ from a distribution that

depends on the fixed effects. To do this we proceed sequentially. We first draw

the binary variable xij2 = vivj = xji2, where vi = 1{logαi − log γi ≥ tρ} and the

threshold tρ is set such that Pr(vi = 1) =
√

1/2, so Pr(xij2 = 1) = 1/2. We then

draw the second regressor, xij1, from a mixture of two skew-normal distributions

(Azzalini 1985). Moreover, we draw xij1 from a normal distribution with mean 1

and variance 1 when xij2 = 0 and from a right-skewed normal distribution (with

noncentrality parameter set to 3) with mean −1 and variance 1 when xij2 = 1.

In this way we introduce dependence between both regressors and between the

regressors and the fixed effects. Furthermore, xij and xi′j′ are dependent unless

{i, j} and {i′, j′} are disjoint. Below we report simulation results for ρ = −1/4.

Throughout we fix ψ0 = (ψ1, ψ2)′ = (−1, 1)′.

We present results for two just-identified GMM estimators. The first estimator

(GMM1) has φ(xij , xij′ , xi′j , xi′j′ ;ψ) set equal to

(xij − xij′)− (xi′j − xi′j′),

while the second estimator (GMM2) uses

{
(xij − xij′)− (xi′j − xi′j′)

}
× ϕ(xij , ψ)ϕ(xi′j′ , ψ)ϕ(xi′j , ψ)ϕ(xij′ , ψ).

Apart from being intuitive and obvious choices, they can be motivated through

moment calculations using the formulae in Chamberlain (1987) for one-quad data.

In our context, these moment conditions depend on the fixed effects, in general.

GMM1 uses Chamberlain’s moments obtained under the assumption that errors

are homoskedastic and no fixed effects are present. Similarly, GMM2 uses an

approximation to his moments under the assumption that the data are Poisson

distributed and no fixed effects are present. Detailed calculations are collected in

the Supplementary Material.

We also report results for the Poisson pseudo maximum-likelihood estimator
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(PMLE), which is widely used in applied work but whose sampling properties

in two-way models have not been well studied (see Gouriéroux, Monfort and

Trognon 1984a,b and Santos Silva and Tenreyro 2006).5 The PMLE estimator

can be slow to compute in large samples as the number of parameters to estimate

grows with n and the (2n + dimψ) × (2n + dimψ) Hessian matrix is not block

diagonal; see Guimarães and Portugal (2010), for example. Although the number

of moment conditions for GMM does not depend on n, brute-force evaluation

of s(ψ) requires O(n4) operations. In large samples, such an approach may be

infeasible. Fortunately, brute-force evaluation can be avoided, and the GMM

estimators can be computed quite rapidly. A more detailed discussion on this is

provided in the Supplementary Material. Here we just note that the average time

required to compute the point estimate and the standard error in our designs

with n = 25 was broadly 1.00 seconds for PMLE, 0.05 seconds for GMM1, and

0.25 seconds for GMM2. For n = 100 the average computational time was 110

seconds for PMLE, 4.25 seconds for GMM1, and 21 seconds for GMM2. So,

GMM1 and GMM2 are roughly 20 times and 5 times faster to compute than

PMLE, respectively. MATLAB code for point estimation and inference based on

GMM1 and GMM2 is available as supplementary material to this paper.

In Table 1 we present results for n = 25 while in Table 2 we provide results for

n = 100. Each table contains the median bias, the interquartile range, and the

actual coverage rate of 95% confidence intervals for the all three estimators and

for all ten designs considered. Also reported are L-estimates (Hosking 1990) of

the standard deviation of each estimator based on the interdecile range and the

presumption of normality.6 These are robust estimates with a high breakdown

5Theoretical results for the Poisson maximum-likelihood estimator in n × m panel models under
asymptotics where n and m grow at the same rate follow from Fernández-Val and Weidner (2016). The
behavior of the estimator under more general asymptotics is currently unknown. The PMLE estimator
has received a substantial amount of attention in the trade literature. However, to the best of my
knowledge, the numerical evaluations in that literature do not look at dyadic data and do not consider
data generating processes that include fixed effects.

6Denote the interdecile range across the Monte Carlo replications by IDR and let erf(a) be the error
function at a. Then the L-estimator of the standard error of a normal random variable equals the ratio
IDR/(2

√
2 erf−1(.80)).
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point. All simulation results were obtained over 10, 000 Monte Carlo replications.

All the regressors, disturbances, and fixed effects are redrawn in each Monte Carlo

replication.

All estimators perform well in terms of bias and interquartile range. Across all

models and designs, none uniformly dominates. This is not surprising given the

large differences between the various designs. Turning to inference we see that our

asymptotics provide a rather good approximation to the small-sample behavior of

both GMM estimators for both samples sizes considered. Moreover, the observed

coverage rates are close to their theoretical level of .95. The coverage rates of

PMLE are more volatile. Inn several of the designs, and especially for n = 25,

they are quite a bit smaller than their theoretical values. Analogously, the t-test

based on PMLE heavily overrejects under the null. Consequently, inference based

on this estimator is less reliable.7

Finally, to assess the sensitivity of the estimators to measurement error in the

outcome variable, we also investigate their performance in the log-normal model

from above when we only observe yij rounded to the nearest integer value, as

in Santos Silva and Tenreyro (2006). The results, for n = 25, are in Table 3.

Note that all estimators lose their theoretical validity and so none of them is

guaranteed to be consistent in this case. All estimators are now more biased,

notably for ψ2. Regarding ψ1, PMLE and GMM2 continue to perform well and

behave very similarly. The GMM1 estimator of ψ1 suffers from larger bias. With

regard to inference, the coverage rates for PMLE are broadly unaffected by the

rounding errors and continue to be too low. Those of GMM1 worsen somewhat

due to the presence of bias, while those of GMM2 continue to provide very reliable

inference throughout.

Our simulation study suggests that our GMM estimators present a viable option

for inference in exponential-regression models with two-way fixed effects. Like

7Due to the estimation of the fixed effects, the score contributions of PMLE are strongly correlated
across observations. The variance estimator fails to capture this and so delivers standard errors that
tend to be too small. This implies that confidence bounds are too narrow.
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Table 1—Simulation results for n = 25

Model PMLE GMM1 GMM2 PMLE GMM1 GMM2
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

median bias interquartile range
Poisson -.0004 -.0003 -.0095 -.0106 -.0006 .0010 .0329 .3539 .0974 .5373 .0395 .3841
Negbin

1 .0033 .0057 -.0056 .0138 .0117 .0136 .1877 .7100 .1710 .7650 .2396 .8067
5 .0020 .0050 -.0074 .0026 .0035 .0089 .0911 .4664 .1206 .6031 .1173 .5134

10 .0001 -.0012 -.0076 -.0097 .0004 .0009 .0689 .4105 .1088 .5747 .0891 .4480
Normal

1 .0060 -.0030 .0024 -.0054 .0130 -.0010 .1748 .5545 .1229 .4811 .2200 .6184
µ−1 -.0005 -.0003 -.0115 -.0158 -.0002 .0017 .0326 .3413 .0782 .4345 .0379 .3631

1 + µ−1 .0056 .0019 -.0071 -.0148 .0128 .0131 .1792 .6531 .1468 .6333 .2285 .7260
µ−2 -.0011 .0238 -.0238 .0130 -.0003 .0301 .0152 .3478 .0851 .5611 .0132 .3598

Inflated
5 .0006 -.0027 -.0196 -.0218 .0027 .0042 .1031 .6847 .1721 .9213 .1271 .7526

15 -.0014 .0118 -.0189 -.0095 -.0001 .0142 .0756 .6366 .1627 .8896 .0950 .7015
standard deviation (L-estimates) coverage rate (95%)

Poisson .0248 .2746 .0757 .4244 .0294 .2971 .9213 .9156 .9480 .9511 .9544 .9394
Negbin

1 .1399 .5455 .1315 .5915 .1789 .6183 .8518 .8761 .9476 .9361 .9380 .9398
5 .0683 .3535 .0912 .4720 .0879 .3968 .8691 .9016 .9504 .9466 .9450 .9009

10 .0516 .3184 .0829 .4453 .0665 .3523 .8728 .9039 .9510 .9487 .9406 .8956
Normal

1 .1310 .4205 .0949 .3577 .1673 .4771 .8360 .8571 .9470 .9297 .9313 .9518
µ−1 .0241 .2680 .0605 .3432 .0287 .2855 .9263 .8859 .9305 .9334 .9549 .9080

1 + µ−1 .1340 .4973 .1106 .4867 .1715 .5611 .8376 .8571 .9373 .9197 .9307 .9418
µ−2 .0125 .2976 .0688 .4569 .0107 .3034 .9396 .8963 .8820 .9224 .9636 .9221

Inflated
5 .0771 .5433 .1368 .7143 .0985 .5945 .8772 .8772 .9244 .9179 .9440 .8857

15 .0572 .5080 .1274 .7029 .0713 .5512 .8947 .8842 .9294 .9175 .9460 .8909
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Table 2—Simulation results for n = 100

Model PMLE GMM1 GMM2 PMLE GMM1 GMM2
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

median bias interquartile range
Poisson -.0002 -.0028 -.0017 -.0065 -.0001 -.0028 .0073 .0787 .0246 .1326 .0082 .0806
Negbin

1 .0023 .0141 -.0006 .0048 .0023 .0173 .0528 .1951 .0465 .1965 .0680 .2180
5 .0000 .0005 -.0006 -.0019 .0005 -.0004 .0259 .1153 .0314 .1448 .0322 .1241

10 .0001 .0013 -.0004 -.0001 .0006 .0023 .0191 .0991 .0285 .1378 .0239 .1057
Normal

1 .0000 .0005 -.0006 -.0019 .0005 -.0004 .0259 .1153 .0314 .1448 .0322 .1241
µ−1 -.0001 -.0009 -.0017 -.0060 .0001 -.0008 .0070 .0797 .0225 .1206 .0087 .0810

1 + µ−1 .0021 -.0040 -.0021 -.0050 .0034 -.0030 .0533 .1895 .0430 .1869 .0665 .2086
µ−2 -.0001 .0042 -.0057 .0049 .0000 .0040 .0035 .0938 .0291 .1918 .0028 .0916

Inflated
5 .0007 -.0009 -.0019 -.0048 .0008 -.0015 .0286 .1617 .0467 .2342 .0352 .1717

15 .0001 .0039 -.0019 -.0015 .0006 .0029 .0194 .1437 .0424 .2274 .0235 .1550
standard deviation (L-estimates) coverage rate (95%)

Poisson .0054 .0605 .0183 .1004 .0060 .0616 .9428 .9408 .9500 .9472 .9608 .9584
Negbin

1 .0409 .1468 .0340 .1466 .0518 .1615 .9068 .9248 .9604 .9532 .9420 .9040
5 .0195 .0859 .0229 .1086 .0239 .0932 .9152 .9332 .9588 .9568 .9568 .9128

10 .0145 .0754 .0205 .1048 .0175 .0792 .9172 .9308 .9496 .9480 .9588 .9376
Normal

1 .0195 .0859 .0229 .1086 .0239 .0932 .9152 .9332 .9588 .9568 .9568 .9128
µ−1 .0053 .0596 .0173 .0930 .0062 .0621 .9452 .9428 .9380 .9572 .9652 .9560

1 + µ−1 .0402 .1415 .0332 .1401 .0500 .1550 .9212 .9224 .9500 .9448 .9524 .9136
µ−2 .0027 .0698 .0231 .1509 .0021 .0715 .9500 .9472 .8948 .9560 .9600 .9536

Inflated
5 .0210 .1229 .0356 .1785 .0257 .1298 .9148 .9336 .9392 .9456 .9520 .9284

15 .0146 .1106 .0320 .1730 .0174 .1146 .9248 .9420 .9408 .9484 .9564 .9560
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Table 3—Simulation results with rounding error for n = 25

PMLE GMM1 GMM2 PMLE GMM1 GMM2
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

median bias interquartile range
1 -.0060 .2259 -.0963 .3296 .0122 .2415 .1765 .6632 .1775 .7596 .2174 .7471

µ−1 -.0083 .1375 -.0648 .1592 -.0019 .1524 .0336 .4095 .1177 .6866 .0382 .4561
1 + µ−1 -.0067 .1421 -.0685 .1597 .0075 .1632 .1789 .7278 .1899 .8634 .2269 .8125

µ−2 -.0069 .1095 -.0619 .1001 -.0019 .1209 .0169 .4187 .1186 .7777 .0137 .4397
standard deviation (L-estimates) coverage rate (95%)

1 .1299 .5111 .1347 .5808 .1672 .5843 .8436 .8171 .8719 .8657 .9359 .9414
µ−1 .0255 .3297 .0941 .5345 .0291 .3583 .9012 .8604 .8576 .9114 .9545 .9131

1 + µ−1 .1352 .5594 .1463 .6608 .1730 .6260 .8378 .8460 .9045 .9138 .9336 .9382
µ−2 .0136 .3449 .0961 .6192 .0112 .3674 .8691 .8745 .8285 .9037 .9606 .9183
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PMLE they have small bias in a broad range of data generating processes. At

the same time, where the quality of inference based on PMLE tends to vary

with the particular data generating process at hand, the observed coverage rates

induced by GMM are consistently close to their theoretical rates across all designs

considered, and this so even in relatively small samples. Furthermore, the GMM

estimators, and GMM2 in particular, appear to be fairly robust to rounding

errors in the outcome variable, much as PMLE (Santos Silva and Tenreyro 2006),

and continue to provide excellent inference. This may be an issue in empirical

applications. Of course, the optimal choice of GMM estimator depends on the

application at hand. Moment calculations as those described above can be of use

here.

IV. Empirical application

We use data of Santos Silva and Tenreyro (2006) to estimate a gravity equation

with multilateral resistance terms (Anderson and van Wincoop, 2003) in levels.

These data contain information on 136 countries, giving 136 × 135 = 18, 360

directed trade flows. About 52% of these flows are positive. As outcome variable

we use bilateral trade, measured in 1, 000 U.S. dollars. As distance measures we

use (the logarithm of) actual geographical distance together with a set of dummies

that aim to capture other factors of relatedness. Moreover, we include dummies

that indicate whether or not countries i and j share a common border, speak

the same language, have a colonial history, and take part in a common free-trade

agreement. Table 4 provides summary statistics for all variables in the full sample

and in the subsample of positive trade flows.

Table 5 provides point estimates and standard errors (in parentheses) for GMM

(GMM2 from the simulations8,9) and PMLE, both when using the full sample

8GMM1 as defined above is not well suited for these data. As all regressors are non-negative we
have that ‖s(ψ)‖ → 0 and ‖S(ψ)‖ → 0 as (one or more of) the elements of ψ grow large. A similar issue
arises in the one-way model and is discussed in Wooldridge (1997, Endnote 2). One possible adjustment
to the moment condition is to transform xij into xij − x, where x is the overall mean of the regressors,
and premultiply (xij − xi′j′ )− (xi′j − xij′ ) by ϕ(x, ψ).

9Another reason to prefer GMM2 in the context of the empirical application is its relatively good
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Table 4—Summary statistics

full sample positive-trade sample
mean std mean std

trade decision 0.5236 0.4995 — —

trade volume 172130 1829058 328752 2517607
log distance 8.7855 0.7418 8.6950 0.7728

common border 0.0196 0.1387 0.0236 0.1519

common language 0.2097 0.4071 0.2128 0.4093
colonial past 0.1705 0.3761 0.1689 0.3747

free trade agreement 0.0251 0.1563 0.0445 0.2063
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(trade ≥ 0) and when using the subsample of positive trade flows (trade > 0).

We also provide results for the fixed-effect ordinary least-squares (OLS) estimator

of the log-linearized gravity equation.

Overall, GMM and PMLE provide similar point estimates, taking into account

standard errors. This is the case both for the full sample and for the subsample

of positive trade flows. Both estimators find that geographical distance tends

to decrease trade while sharing a common language tends to increase trade.

The estimated elasticities range between −.75 and −.77; and between .38 and

.50, respectively. PMLE additionally finds sharing a common border to be a

statistically-significant driver behind the magnitude of trade flows. The GMM

estimate of the common-border effect is smaller and the associated standard error

does not allow to distinguish it from zero at conventional significance levels. The

difference between the two estimates is not unreasonably large when taking into

account estimation noise. These findings are in line with the simulation results

reported on in the previous section. The OLS point estimates differ most greatly

on geographical distance and the importance of colonial ties, with both point

estimates being larger in magnitude. The remaining point estimates are similar,

again taking into account standard errors. For discussion on the appropriateness

of working with a log-linearized estimating equation in the gravity context, see

Santos Silva and Tenreyro (2006).

performance in the simulations with measurement error in the outcome variable.
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Table 5—Gravity estimates

outcome variable: trade volume (in 1, 000 U. S. dollars)

GMM PMLE OLS
trade ≥ 0 trade > 0 trade ≥ 0 trade > 0 trade > 0

log distance -.751 -.767 -.750 -.770 -1.347

(.057) (.059) (.041) (.042) (.031)
common border .149 .135 .370 .352 .174

(.077) (.078) (.091) (.090) (.130)
common language .491 .500 .383 .418 .406

(.093) (.092) (.093) (.094) (.068)

colonial past .213 .198 .079 .038 .666
(.121) (.121) (.134) (.134) (.070)

free trade agreement .330 .335 .376 .374 .310

(.125) (.125) (.077) (.076) (.098)
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