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Abstract

We consider an extension of the Holland and Leinhardt (1981) model for directed
network formation that features both node-specific parameters that capture degree
heterogeneity and common parameters that reflect homophily among nodes. The
goal is to perform statistical inference on the homophily parameters while treating
the node-specific parameters as fixed effects. Jointly estimating all the parameters
leads to bias and incorrect inference. As an alternative, we develop an approach
based on a sufficient statistic that separates inference on the homophily parameters
from estimation of the fixed effects. This estimator is easy to compute and is shown
to have desirable asymptotic properties under sequences of growing networks. We
illustrate the improvements over maximum likelihood and bias-corrected estimation
in a series of numerical experiments. The technique is applied to explain the import
and export patterns in a cross-section of countries and to estimate a social network
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1 Introduction

It is well recognized that network connections are important determinants of economic and

social outcomes (Jackson, 2008). Therefore, it is important to understand what drives

network formation. This issue has received quite some attention, not only in economics,

but also in sociology and statistics; Snijders (2011) and de Paula (2016) provide extensive

overviews and many references.

Estimating models of network formation can be subject to a variety of complications.

These range from incompleteness and lack of point identification (see Sheng 2012 and

de Paula et al. 2015) over computational intractability (as in exponential random graph

models; see Robins et al. 2007 and Robins et al. 2009) to the presence of a large number of

parameters to estimate relative to the sample size (as in Holland and Leinhardt 1978, 1981

or Graham 2015). These difficulties explain why there is relatively little statistical theory

available (Goldenberg et al. 2010).

In this paper we study a model that is sufficiently tractable to allow estimation and

hypothesis testing, yet is able to replicate several key features of networks typically observed

in economic data. These features are degree heterogeneity—that is, the observation that

the number of links can differ substantially across nodes—and homophily—the feature

that nodes are more likely to establish a link between them if they are more similar to one

another.

The model under study is a directed Erdős and Rényi (1959, 1960) random-graph model

where the probability of link formation is heterogenous. Moreover, the probability that a

link is established between two nodes is a function of parameters that are specific to each

of the nodes as well as of a set of observable characteristics that are specific to the pair

of nodes. The node-specific parameters capture degree heterogeneity while the presence of

dyad characteristics can be used to study homophily patterns in the data. The model is

an extension of the classic model by Holland and Leinhardt (1981) and is also studied by

Dzemski (2014) and, more recently, Yan et al. (2016). Graham (2015) considers a similar
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model as do we but for undirected random graphs.

The main parameter of interest in our model is the homophily parameter. Our aim is

to perform statistical inference on this parameter from observing a single network, treating

the node-specific parameters as fixed effects. Graham (2015) has illustrated the importance

of controlling for degree heterogeneity in this way when assessing homophily. Inference is

non-standard because the number of parameters grows with the sample size. This results

in an incidental-parameter problem (Neyman and Scott, 1948) that is similar in nature as

in the estimation of two-way models for panel data; see Fernández-Val and Weidner (2016)

for a characterization of the resulting bias and methods to correct for it. Dzemski (2014)

adapts their techniques to perform inference in our network-formation model. A limitation

of this bias-correction approach is that it is not applicable to sparse networks, where the

number of links is small relative to the sample size. Such networks are nonetheless prevalent

in economic settings. Moreover, very few results are available on the accuracy of statistical

inference on fixed-effect models estimated from sparse networks; Jochmans and Weidner

(2016) study the linear model.

As an alternative to the work of Dzemski (2014) we build on the conditioning argument

of Hirji et al. (1987) and Charbonneau (2014) to set up a statistical objective function for

the homophily parameters that does not depend on the node-specific parameters. This

approach can be understood to be a generalization of the celebrated conditional-likelihood

argument of Rasch (1960, 1961) for panel data binary-choice models with fixed effects; see

also Chamberlain (1980). However, standard theory for conditional-likelihood estimators

(Andersen, 1970) does not apply to our case. We use results from Jochmans (2016) to

establish consistency and to derive the limit distribution of our estimator. Importantly,

because the objective function is free of node-specific parameters, these parameters need

not be estimated. This implies that our estimator can be used on sparse networks. A

similar approach is taken in contemporaneous work by Graham (2015) for an undirected

version of our model.
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An example where our model can be useful is in the analysis of trade networks. In

that context, a lot of effort has been made in understanding the drivers behind the import

and export patterns of countries. Typical drivers looked at include geographical distance

as well as a set of indicators of closeness, such as whether or not the countries have a

free trade agreement or whether they share a border. Head and Mayer (2014) survey the

literature. At least since the work of Anderson and van Wincoop (2003) models for trade

flows feature country-specific parameters. Moreover, the estimated equation in Helpman

et al. (2008) is essentially an application of the network-formation model under study here.

However, the statistical methods used there do not properly account for the presence of

the node-specific fixed effects. We estimate such a model as an empirical illustration of our

techniques and find smaller effects (in magnitude) of dyad characteristics on the log-odds

of countries engaging in trade.

As a second empirical application we infer the determinants of a social network in a

corporate law partnership. Here, the dyad covariates measure differences in position in the

firm, location of employment, gender, tenure, and age of the attorneys. In these data we

again find that maximum likelihood tends to overestimate the magnitude of homophily.

Similar analysis could be performed to study risk sharing (Fafchamps and Gubert, 2007)

or microfinance (Banerjee et al., 2013), for example.

An important feature of our setup is that link decisions are conditionally independent.

This can be a reasonable assumption if the dominant drivers behind link creation are

node and dyad characteristics. As such, the model postulated here is not well-suited for

situations where link decisions are influenced by link decisions made by other nodes or for

data where one observes a high degree of transitivity in links. Models for interdependent

network formation typically fail to be point identifying. Achieving (point) identification

while allowing for transitivity will typically require observing the network at multiple time

periods; see, e.g., Graham (2015, 2016).
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2 Network formation

In this section we put forth our probabilistic model of network formation. Introduce a set

of n nodes, N
n

= {1, 2, . . . , n}, and consider the decision of two distinct nodes i and j in

N
n

to form an edge from i to j . Let u
ij

denote the joint surplus of the dyad (i, j) from

creating an edge from i to j. Then the decision takes on the simple threshold-crossing form

y
ij

=

8
<

:
1 if u

ij

� 0

0 if u
ij

< 0
. (2.1)

The surplus decomposes as

u
ij

= x0
ij

✓0 + ↵
i

+ �
j

� ✏
ij

, (2.2)

where x
ij

is a vector of observable attributes of the dyad and ✓0 is a parameter vector of

conformable dimension, ↵
i

and �
j

are unobserved characteristics specific to the nodes, and

✏
ij

is an unobserved idiosyncratic component. Throughout we treat {↵
i

, �
i

}
n

as fixed, that

is, we condition on them. Equations (2.1)–(2.2) state that nodes form links by maximizing

the joint surplus of a link. As such, the model under study is a cooperative model of

network formation. Furthermore, the decision rule is compatible with the direct-transfer

network-formation game studied in Bloch and Jackson (2007).

Suppose that the ✏
ij

are independent and identically distributed and follow the standard

logistic distribution F (✏) = (1+ exp(�✏))�1. The logistic distribution has a long history in

the analysis of network formation and arises naturally in several classic models (Zermelo

1929, Bradley and Terry 1952). The probability of observing a link from i to j given the

characteristics of the nodes is

Pr(y
ij

= 1|x
ij

) = F (x0
ij

✓0 + ↵
i

+ �
j

).

Thus, the data generating process of interest yields an Erdős and Rényi (1959, 1960) type

random graph where the probability of link formation between i and j is heterogeneous

across both i and j. Our model is an extension of the classic model of Holland and Leinhardt
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(1981) for network formation. The extension lies in the presence of characteristics at the

dyad level on top of the node-specific parameters. In a typical application, they will be

measures of distance, similarity, or divergence between sender i and receiver j. In our trade

application, they include a measure of geographical distance as well as several indicators

of closeness, such as whether or not countries i and j share a common language and have

established a preferential trade agreement.

Our interest lies in estimation of and inference about the parameter vector ✓0. As the

log-odds ratio is

log

✓
Pr(y

ij

= 1|x
ij

)

Pr(y
ij

= 0|x
ij

)

◆
= x0

ij

✓0 + ↵
i

+ �
j

,

this allows evaluating the importance of dyad characteristics on the probability that the

nodes form a link between them. Knowledge of ✓0 is valuable in learning about homophily,

that is, to what extent nodes with similar characteristics are more likely to establish links

between them (McPherson et al., 2001). Homophily is a common phenomenon and is

well recognized to be important in economic models (see, e.g., Currarini et al. 2009 and

Golub and Jackson 2012). Empirical analysis of homophily has precedent in economics

(see, e.g., De Weerdt 2004, Fafchamps and Gubert 2007, Attanasio et al. 2012). However,

most specifications do not take into account the presence of degree heterogeneity, that

is, the fact that the number of links a node is involved in can vary substantially across

nodes. Such heterogeneity is a very frequent phenomenon, and Graham (2015) shows that

ignoring it will typically lead to erroneous inference. In our model—as in those of Holland

and Leinhardt (1981), Rinaldo et al. (2013), and Graham (2015)—degree heterogeneity is

captured by the node-specific parameters.

Our model differs from that in Graham (2015) in that we look at directed networks.

The appropriate choice of model specification depends on the application at hand. With

directed data it is natural to allow for heterogeneity in the number of links send as well as in

the number of links received. In (2.2), this is done by including two different fixed effects;

↵
i

captures heterogeneity in outgoing links while �
i

reflects heterogeneity in incoming links.
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For example, in our first empirical application we study trade flows between exporters and

importers, which calls for a directed model. In that context, the importer and exporter

fixed effects are typically referred to as multilateral resistance terms, following the seminal

work of Anderson and van Wincoop (2003). In our second application we estimate a social

network from directed data. Other applications where a directed model is suitable are

the study of how information flows through a network (Jackson and López-Pintado 2013)

and in the analysis of risk sharing (Fafchamps and Gubert 2007, Jackson et al. 2012) and

financial contagion (Allen and Gale 2000, Acemoglu et al. 2015).

Dzemski (2014) studies the same model as we do here. Adapting techniques introduced

by Fernández-Val and Weidner (2016) he constructs an estimator for ✓0 that is applicable

to more general specifications of the distribution of the idiosyncratic disturbance than the

logistic distribution. On the other hand, his estimation approach is designed for dense

networks. The estimation strategy developed below is targeted to the logistic specification

but can handle sparse networks, where the probability of link formation shrinks to zero

with the sample size.

Note that, by independence of the idiosyncratic errors in (2.2), conditional on node

and dyad characteristics, links between nodes are formed independently. This means that

any observed dependence across link decisions must come from the presence of the node

and dyad characteristics. Moreover, the model does not reflect clustering phenomena like

transitivity, where two nodes are more likely to be linked if there is more overlap between

the sets of nodes they are already linked to. Transitivity is the subject of a recent literature;

see, for example, Jackson and Rogers (2007) for theoretical work on social networks and

Chaney (2014) and Morales et al. (2015) for work in the context of international trade.

However, it also creates identification challenges when only a single network is observed

(Goldsmith-Pinkham and Imbens 2013, Graham 2016). A specification test for our model

is given by Dzemski (2014) (extending an approach by Holland and Leinhardt 1978), and

our estimator can serve as a useful plug-in estimator to his test statistic. This test statistic,
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however, requires estimates of the node-specific fixed effects, and its asymptotic properties

are only known for dense networks.

3 Conditional likelihood

Treating {↵
i

, �
i

}
n

as parameters and jointly estimating them with the common parameter

✓0 leads to an incidental-parameter problem (Neyman and Scott, 1948). For dense networks,

where the probability of link formation is bounded away from zero and one, Dzemski (2014)

characterizes the asymptotic bias in the maximum-likelihood estimator of ✓0 and develops

bias-reduction methods by building on the work of Fernández-Val and Weidner (2016) on

two-way models for panel data. For the sparse case, where the probability of link formation

is allowed to shrink to zero with n, the behavior of the maximum-likelihood estimator is

more complicated and no results are available. The problem here is that the node-specific

parameters may not be consistently estimable or may be estimable only at a very slow

rate. The statistical properties of the maximum-likelihood estimator in such cases are not

obvious and are currently an open question.

On the other hand, Charbonneau (2014) shows the existence of a sufficient statistic

for the pair (↵
i

, �
j

) in our setting by building on the work of Cox (1958), Rasch (1960,

1961), and Hirji et al. (1987). This allows to bypass estimation of the fixed effects to

infer ✓0. Our aim here is to develop the implied estimator and to derive its statistical

properties. To motivate the estimator we first present the sufficiency result developed by

Charbonneau (2014). We turn to estimation and inference from observed network data in

the next section.

Fix a quadruple of distinct nodes {i1, i2; j1, j2} from N
n

and define the random variable

z =
(y

i1j1 � y
i1j2)� (y

i2j1 � y
i2j2)

2
,

and collect x = (x
i1j1 , xi1j2 , xi2j1 , xi2j2). Note that z can take on values from the set

{�1,�1/2, 0, 1/2, 1}. Conditional on x and the event z 2 {�1, 1}, z follows a Bernoulli
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distribution with

Pr(z = 1|x, z 2 {�1, 1}) = Pr(z = 1|x)
Pr(z = 1|x) + Pr(z = �1|x) =

1

1 + Pr(z=�1|x)
Pr(z= 1|x)

.

Equations (2.1)–(2.2) together with the functional form of the logistic distribution imply

that
Pr(z = �1|x)
Pr(z = 1|x) = exp(�r0✓0),

where we introduce r = (x
i1j1 � x

i1j2) � (x
i2j1 � x

i2j2). This yields the following simple

lemma.

Lemma 1 (Sufficiency).

Pr(z = 1|x, z 2 {�1, 1}) = (1 + exp(�r0✓0))
�1 = F (r0✓0).

Proof. See the Appendix or Charbonneau (2014).

Lemma 1 states that, conditional on x and z 2 {�1, 1}, the distribution of z is logistic

and does not depend on the parameters ↵
i1 ,↵i2 and �

j1 , �j2 . The conditional log-likelihood

of the quadruple is

1{z = 1} logF (r0✓0) + 1{z = �1} log(1� F (r0✓0)) (3.3)

and can form the basis for the construction of a (quasi) conditional maximum-likelihood

estimator for ✓0.

The conditioning event z 2 {�1, 1} corresponds to only 2 of the 24 possible realizations

of the quadruple of link decisions. These are
0

@y
i1j1 y

i1j2

y
i2j1 y

i2j2

1

A 2

8
<

:

0

@1 0

0 1

1

A ,

0

@0 1

1 0

1

A

9
=

; ,

and so cover quadruples in which the senders i1, i2 form only one out of two possible links

to j1, j2 and make opposite decisions about the creation of these edges. This is an intuitive
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generalization of the conditional-likelihood approach in the model of Rasch (1960, 1961),

where children answer two tests and only children who get one test right and the other

wrong contribute to the conditional likelihood. This subpopulation of observations in the

Rasch model is also frequently referred to as movers. In the current setting, the movers

are taken in pairs, and only those pairs consisting of movers in opposite directions are

retained for construction of the conditional likelihood. As such, the conditioning is akin to

a difference-in-differences strategy.

The conclusion of Lemma 1 depends crucially on the fact the node-specific heterogeneity

parameters ↵
i

, �
j

enter the surplus u
ij

in an additive manner. A more general specification

of our model would have u
ij

= x0
ij

✓0+d(↵
i

, �
j

)�✏
ij

, where d : R2 ! R is a known function.

For such a specification, Lemma 1 fails to difference-out the node-specific parameters, in

general. The estimation of models with node-specific parameters entering the surplus in

a non-additive manner is the subject of an active literature. Following Fernández-Val

and Weidner (2016), recent work by Chen et al. (2014) looks at the case where we have

d(↵, �) = ↵� in the context of panel data models with two-way fixed effects. Having

access to repeated measurements can offer a solution here. Indeed, suppose we observe the

network for multiple time periods; at time t the surplus is u
ij,t

= x0
ij,t

✓0 + d(↵
i

, �
j

) � ✏
ij,t

.

If the errors are independent across time, we can collapse the data across (i, j) to get

u
�{i,j},t = x0

�{i,j},t✓0 + �
�{i,j} � ✏

�{i,j},t, where � : N
n

⇥ N
n�1 ! N

n(n�1) ranges across all

dyads and �
�{i,j} = d(↵

i

, �
j

). This is a one-way panel data model (albeit with cross-sectional

dependence) to which the conditioning argument of Rasch (1960, 1961) can be applied. On

the other hand, if we wish to allow for time effects, an alternative specification would have

u
ij,t

= x0
ij,t

✓0 + d(↵
i

, �
j

) + ⌘
t

� ✏
ij,t

. Again collapsing the data across all dyads (i, j) gives a

model to which Lemma 1 can be applied.

The sufficiency result in Lemma 1 also uses the logistic specification and independence

of the errors ✏
ij

across both i and j. Relaxing this assumption is possible to a certain

extent, and is the topic of ongoing work.
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4 Estimation and inference

The argument from the previous section suggests estimating ✓0 by maximizing the empirical

counterpart to (3.3) obtained on considering all distinct quadruples {i1, i2; j1, j2} from N
n

.

There are

m
n

=

✓
n

2

◆✓
n� 2

2

◆
=

n(n� 1)(n� 2)(n� 3)

4

such quadruples. It will prove useful to introduce a function � that maps these quadruples

to the index set N
mn = {1, 2, . . . ,m

n

}. Thus, each distinct quadruple of nodes {i1, i2; j1, j2}

corresponds to a unique �{i1, i2; j1, j2} 2 N
mn . We may then extend our notation by

defining the random variables

z(�{i1, i2; j1, j2}) =
(y

i1j1 � y
i1j2)� (y

i2j1 � y
i2j2)

2
,

r(�{i1, i2; j1, j2}) = (x
i1j1 � x

i1j2)� (x
i2j1 � x

i2j2).

When the dependence of these random variables on four nodes can be left implicit we will

use the simpler shorthand notation z
�

, r
�

, where � ranges over the set N
mn .

With this notation at hand, our estimator may be written as

✓
n

= argmax
✓2⇥

L
n

(✓),

where ⇥ is the parameter space searched over and

L
n

(✓) =
X

�2Nmn

1{z
�

= 1} logF (r0
�

✓) + 1{z
�

= �1} log(1� F (r0
�

✓)).

This objective function is a standard logit log-likelihood applied to the

m⇤
n

=
X

�2Nmn

1{z
�

2 {�1, 1}}

quadruples of data for which z
�

2 {�1, 1}. Hence, the estimator can be computed using

standard statistical software. The researcher is only required to construct the variables

{z
�

, r
�

}
mn , which is easy to do.
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Note that L
n

(✓) is a quasi likelihood. It can be shown that the number of incoming

and outgoing links of all nodes forms a sufficient statistic for the node-specific parameters

{↵
i

, �
i

}
n

, in the sense that the conditional-likelihood function does not depend on the

fixed effects. This extends results on the fixed-effect logit model in Chamberlain (1980).

However, the resulting likelihood function is computationally intractable. This is why we

work with the quasi likelihood for quadruples.

The conditional-logit estimator is consistent under weak conditions.

Assumption 1 (Sampling). The n nodes in N
n

are sampled independently.

This assumption is a natural sampling scheme for network data. It permits dependence of

the covariates across dyads that have nodes in common. Note that we do not require that

nodes are sampled from the same distribution.

The second assumption is conventional for establishing consistency in nonlinear models;

see, for example, Newey and McFadden (1994).

Assumption 2 (Parameter space). ✓0 is interior to ⇥, a compact subset of Rdim ✓.

The third assumption requires the existence of second moments.

Assumption 3 (Moments). For all (i, j) 2 N
n

⇥ N
n

, E(kx
ij

k2) < C, where C is a finite

constant.

The fourth assumption ensures that ✓0 is identified. To state it, note that m⇤
n

is a

random variable; we write

p
n

=
E(m⇤

n

)

m
n

=

P
�2Nmn

Pr(z
�

2 {�1, 1})
m

n

for the expected fraction of quadruples in the data that contribute to the log-likelihood.

We denote the logistic density function by f .

Assumption 4 (Identification). np
n

! 1 as n ! 1 and

rank

8
<

: lim
n!1

(m
n

p
n

)�1
X

�2Nmn

E(r
�

r0
�

f(r0
�

✓0) 1{z� 2 {�1, 1}})

9
=

; = dim ✓.
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The first part of Assumption 4 allows p
n

, the (expected) fraction of informative quadruples,

to shrink to zero as the sample size grows. Note that Pr(z
�

2 {�1, 1}) depends on the

fixed effects involved in the quadruple �. If these parameters become unbounded as n

grows, adding nodes to the network may not provide additional information on ✓0. For

example, if ↵
i

! �1 or �
i

! �1 or both as i grows, Pr(y
ij

= 1|x
ij

) ! 0 for large i

and j. Assumption 4 allows for such sequences and, as such, our approach can be applied

to sparse networks. The requirement that p
n

does not shrink faster than n�1 is needed to

ensure uniform convergence of L
n

(✓). Note that, as m
n

= O(n4), this rate condition implies

that E(m⇤
n

) = m
n

p
n

! 1, so that the accumulation of informative quadruples does not

cease as the sample grows. The second part of Assumption 4 is a standard identification

condition. Together with concavity of L
n

(✓), the rank requirement implies that ✓0 is the

global maximizer of the large-sample conditional likelihood.

Theorem 1 formally states our consistency result.

Theorem 1 (Consistency). Let Assumptions 1–4 hold. Then ✓
n

p! ✓0 as n ! 1.

Proof. See the Appendix.

To perform hypothesis testing on the homophily parameter we move on to deriving

distribution theory for ✓
n

. We note that, although L
n

(✓) has the form of the log-likelihood

for a standard cross-sectional logit model, the conventional standard-error formula is not

valid for ✓
n

. First, a sandwich-form variance estimator will be required; recall that L
n

(✓)

is a quasi log-likelihood, so the information equality will not hold. Second, the score vector

involves a sum over quadruples of nodes, with the same nodes showing up in multiple

quadruples. This induces dependence across the summands in S
n

(✓) that cannot be ignored.

An estimation problem with the same structure arises in Jochmans (2016), and we follow

a similar strategy as taken there in deriving the distribution theory to follow.

To do so we strengthen the moment requirement in Assumption 3 as follows.
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Assumption 5 (Moments, cont’d). For all (i, j) 2 N
n

⇥ N
n

, E(kx
ij

k6) < C, where C is

a finite constant.

Introduce

s(�; ✓) = r
�

{1{z
�

= 1} (1� F (r0
�

✓))� 1{z
�

= �1}F (r0
�

✓)} .

Note that s(�{i1, i2; j1, j2}; ✓) is permutation invariant in both senders (i1, i2) and receivers

(j1, j2). We may then write the score vector as

S
n

(✓) =
@L

n

(✓)

@✓
=
X

i1

X

i1<i2

X

j1 6=i1,i2

X

j1<j2
j2 6=i1,i2

s(�{i1, i2; j1, j2}; ✓).

The key to characterizing the limit distribution of the conditional-logit estimator is the

result that ⌥
n

(✓0)�1/2S
n

(✓0)
d! N(0, I), where

⌥
n

(✓) =
nX

i=1

X

j 6=i

�
ij

(✓) �
ij

(✓)0, �
ij

(✓) =
X

i

0 6=i,j

X

j

0 6=i,j,i

0

s(�{i, i0; j, j0}; ✓),

and I denotes the dim ✓ ⇥ dim ✓ identity matrix. The Hessian matrix, in turn, is given by

H
n

(✓) =
@2L

n

(✓)

@✓@✓0
= �

X

�2Nmn

r
�

r0
�

f(r0
�

✓) 1{z
�

2 {�1, 1}},

and, on defining

⌦
n

= H
n

(✓
n

)�1⌥
n

(✓
n

)H
n

(✓
n

)�1,

we arrive at the following result.

Theorem 2 (Asymptotic distribution). Let Assumptions 1–5 hold. Then k✓
n

� ✓0k =

O
p

(1/
p

n(n� 1)p
n

) and

⌦�1/2
n

(✓
n

� ✓0)
d! N(0, I)

as n ! 1.

Proof. See the Appendix.
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In the dense case, where p
n

is bounded away from zero, k✓
n

� ✓0k = O
p

(n�1) holds, and

so the conditional-logit estimator converges at the parametric rate. In the sparse case p
n

shrinks with n and we have a slower rate depending on how slow the number of informative

quadruples grows. In general, k✓
n

�✓0k = O
p

(n/
p

E(m⇤
n

)). Because Assumption 4 requires

that E(m⇤
n

) grows at least at the rate n3, the convergence rate of the estimator can be

arbitrarily close to, but will be faster than, n�1/2. In the statement of the theorem the

estimator is self-normalized so, in practice, inference proceeds in the same way in the dense

and sparse case.

The result of Theorem 2 is qualitatively similar to that of Graham (2015, Theorem 1)

for his estimator for undirected networks.

5 Simulations

We evaluated the small-sample performance of the conditional-logit estimator through a

series of numerical experiments. Here, we present results for designs similar to those in

Dzemski (2014) and Yan et al. (2016). Other designs yielded the same conclusions. We

generate the single regressor as

x
ij

= u
i

u
j

,

where u
i

= v
i

� 1
2 for v

i

⇠ Beta(2, 2). In this way, x
ij

is positive if u
i

and u
j

have the same

sign and is negative otherwise. We set ✓0 = 1, and so our model features homophily. Note

also that the covariate is generated in such a way that it is dependent across both senders

and receivers of links. The fixed effects are set as a deterministic function of the sample

size, as

↵
i

=
n� i

n� 1
C

n

, �
i

= ↵
i

,

for a constant C
n

that depends on n. We will consider sample sizes n 2 {25, 50} and

constants C
n

2 {0, log(log(n)), log(n)1/2, log(n)} in our experiments below.

In Table 1 we provide summary statistics of the degree distributions for the different
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constants C
n

and sample sizes n. Note that the in-degree and out-degree have the same

distribution by symmetry of the data generating process. The table provides the mean,

the quartiles, and the minimum and maximum of the degree distributions (as computed by

simulation). When node heterogeneity is absent (C
n

= 0), the probability of link formation

is bounded away from zero and one and the model specification gives rise to dense networks.

For C
n

> 0 we have that p
n

shrinks to zero as n grows. The larger C
n

, the more the degree

distribution concentrates mass closer to the maximum value of n, and the less variability

in link decisions will be observed in the data. As such, larger values of C
n

yield data sets

that carry features that are associated with sparse networks (after re-coding the outcome

variable).

Table 1: Degree distributions

C
n

mean 1st quartile median 3th quartile minimum maximum

n = 25

0 14.0 12.0 14.0 16.0 4.5 22.8

log(log(n)) 19.8 18.5 19.9 21.2 11.1 24.9

log(n)1/2 21.5 20.5 21.8 22.6 14.3 25.0

log(n) 23.5 22.8 23.7 24.2 18.0 25.0

n = 50

0 28.1 26.0 28.0 30.8 14.4 41.5

log(log(n)) 40.9 39.2 41.0 42.8 29.4 49.1

log(n)1/2 43.9 42.5 44.1 45.5 34.2 49.7

log(n) 47.8 47.1 48.0 48.7 41.6 50.0

We give simulation results for the conditional-likelihood estimator (CMLE), as well as

for the maximum-likelihood estimator (MLE) and its bias-corrected version (BC), obtained

using the formula in Dzemski (2014) and Yan et al. (2016). For each of these estimators

we compute the mean, median, standard deviation (std), and interquartile range (iqr)
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over 1, 000 Monte Carlo replications for all designs. We also give the ratio of the average

estimated standard error to the Monte Carlo standard deviation (se/std) for each of these

estimators. For CMLE the standard error is computed as discussed in the previous section.

For MLE and BC we use the inverse of the Fisher information as estimated by maximum

likelihood

Table 2 contains the simulation results for all designs and sample sizes. The MLE clearly

suffers from upward bias in all designs. Bias correction is effective in recentering the point

estimator when fixed effects are small—that is, in dense networks—but its performance

deteriorates as C
n

increases and the fixed effects become harder to estimate. For example,

for C
n

= log(n), BC is effectively more biased than MLE, both for n = 25 and for n = 50.

CMLE performs similarly as does BC, in terms of both location and spread, in the dense

case. However, it does not suffer from a dramatic increase in bias in the other cases.

Furthermore, the variance estimator of CMLE captures well the small-sample variability in

the point estimator. Consequently, the asymptotic argument of Theorem 2 yields reliable

inference.

6 Empirical applications

6.1 A trade network

As a first empirical application we investigate the determinants of trade from country-level

trade data. The network-formation model we estimate follows closely Helpman et al. (2008),

who provide a theoretical foundation for it. Our data set consists of a cross section of 136

countries. For each country pair (i, j) the outcome variable, trade decision, is a dummy

variable that registers whether or not trade occured from i to j. The data also contain

various dyad characteristics that we use as explanatory variables. All these variables are

measures of closeness between the two countries. Table 4 contains descriptive statistics. log

distance is the (log of the) geographical distance between the capitals of countries i and j.
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Table 2: Simulation results
MLE CMLE BC MLE CMLE BC MLE CMLE BC MLE CMLE BC

n = 25 n = 50

C
n

= 0 C
n

= log(log(n)) C
n

= 0 C
n

= log(log(n))

mean 1.110 1.022 1.021 1.074 0.986 0.970 1.057 1.016 1.015 1.039 0.995 0.991

median 1.097 1.023 1.009 1.067 0.979 0.961 1.054 1.012 1.012 1.043 0.995 0.995

std 0.652 0.604 0.599 0.812 0.756 0.733 0.289 0.277 0.277 0.384 0.368 0.365

iqr 0.835 0.786 0.768 1.024 0.947 0.930 0.398 0.385 0.382 0.513 0.490 0.486

se/std 0.938 1.058 1.020 0.958 1.087 1.061 0.976 1.039 1.017 0.979 1.048 1.028

C
n

= log(n)1/2 C
n

= log(n) C
n

= log(n)1/2 C
n

= log(n)

mean 1.088 0.978 0.948 1.134 0.968 0.817 1.035 0.987 0.976 1.0639 0.9919 0.9134

median 1.120 1.016 0.979 1.118 0.972 0.799 1.050 0.997 0.991 1.0473 0.9831 0.8765

std 1.042 0.956 0.911 1.896 1.702 1.323 0.483 0.462 0.455 0.8675 0.8136 0.7451

iqr 1.331 1.179 1.190 2.161 1.886 1.566 0.659 0.627 0.620 1.0962 1.0116 0.9534

se/std 0.912 1.062 1.044 0.835 1.018 1.197 0.940 1.016 0.997 0.9199 1.0368 1.0709
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common border and common language are dummy variables that take on the value one if i

and j share, respectively, a physical boundary or a common language. colonial ties takes

on the value one if, at some point, i colonized j (or vice versa) and zero otherwise. Finally,

preferential trade agreement is a binary variable that indicates whether i and j take part

in a joint preferential trade agreement. Original data sources and additional details on the

data are available in Santos Silva and Tenreyro (2006).

About 50% of all potential bilateral-trade routes are open. All countries in the data

trade at least with one country. Table 3 provides summary statistics of the out-degree and

in-degree distributions, as well as of their difference and absolute difference. The table

reveals some heterogeneity in the number of export and import partners.

Table 3: Degree distributions

mean 1st quartile median 3th quartile minimum maximum

out degree 70.68 47 65.5 86.5 21 135

in degree 70.68 39 59.5 106 12 135

difference 0 -8.5 0 9 -35 33

abs. difference 11.46 4 9 18 0 35

Table 4: Descriptive statistics

mean standard deviation

trade decision 0.5236 0.4995

log distance 8.7855 0.7418

common border 0.0196 0.1387

common language 0.2097 0.4071

colonial ties 0.1705 0.3761

preferential trade agreement 0.0155 0.1234
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Table 5: Trade estimates

MLE CMLE

log distance �1.3490 �1.0920

(0.0504) (0.0573)

common border �1.2070 �0.8220

(0.2089) (0.2668)

common language 0.5851 0.4672

(0.0906) (0.1031)

colonial ties 0.5206 0.5925

(0.0962) (0.1047)

preferential trade agreement 2.0444 1.3038

(0.3056) (0.2913)

We estimated the parameters of this model by maximum likelihood and by conditional

logit. The point estimates, along with their standard errors (stated in parentheses below

the point estimates), are collected in Table 5. The signs of all parameter estimates agree

with those of Helpman et al. (2008). Geographical distance decreases the propensity to

trade while homophily tends to increase the likelihood of trade. Indeed, speaking a common

language and having a colonial history positively affect the probability of trading. Trade

agreements have a large positive impact on trade decisions.

A, perhaps, surprising finding is the negative point estimate on common border. It

should be noted that, when not controlling for preferential trade agreements, the sign of

this coefficient changes. Also, of the 136⇥135 = 18, 360 country dyads in the data, relatively

few (360 dyads) share a border and even less (285 dyads) have established preferential trade

agreements; see Table 4. In the raw data, the dyads that allow to discriminate between

the impact of common border and preferential trade agreement have the following pattern.

Of the country pairs that do not have a common border but have established a preferential
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trade agreement, 85% are engaged in trade. On the other hand, of the country pairs that

do have a common border but have not established a preferential trade agreement, only

58% trade.

On comparing the maximum-likelihood estimates with those obtained by conditional

logit we see that the latter tend to be smaller (in absolute value), with similar standard

errors. These findings are in line with the Monte Carlo results reported on above. The one

exception is colonial ties, where the difference is nonetheless very small and statistically

insignificant at conventional significance levels. The ratio of the other conditional estimates

to their maximum-likelihood counterparts ranges from 63% to 81%. Thus the difference is

quite sizeable. This confirms the importance of appropriately controlling for the presence

of country fixed effects in trade applications.

6.2 A social network

As a second empirical illustration we estimate a friendship network among 71 attorneys

employed in a Northeastern U.S. law firm, with o�ces in Boston, Hartford, and Providence.

The data are a survey taken from Lazega (2001). These data have also been analyzed by

Snijders et al. (2006) and Yan et al. (2016). For dyad (i, j), the outcome variable, friendship,

is a binary indicator that takes the value one if i has indicated that he or she socializes

with j outside work. Interestingly, this variable is not permutation invariant in (i, j). The

degree distributions summarized in Table 6 show there are differences in the number of

incoming and outgoing links.

The data set contains information on the status of the attorneys in the firm (whether

they are a partner or associate) and which of the three offices (either Boston, Hartford,

or Providence) they work in, as well as their gender, tenure in the firm, and their age.

From this we construct the regressors same status, same gender, same office , difference in

tenure, and difference in age at the dyad level. The definition of each of these regressors

is obvious. Note that, for the last two of these variables, we take the absolute value of the
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difference in tenure and age, respectively. As such, the dyad characteristics are symmetric

in (i, j). Table 7 contains descriptive statistics for each of the variables.

Table 6: Degree distributions

mean 1st quartile median 3th quartile minimum maximum

out degree 8.10 4.0 7 11.75 0 25

in degree 8.10 4.0 7 11.75 0 22

di↵erence 0 -3 0 2 -13 14

abs. di↵erence 3.75 1 3 5 0 14

Table 7: Descriptive statistics

mean standard deviation

friendship 0.1157 0.3199

same status 0.4930 0.5000

same gender 0.6161 0.4864

same o�ce 0.5252 0.4994

difference in tenure 10.4773 8.6519

difference in age 11.6821 8.5912

We again estimated the parameters of this model by maximum likelihood and by the

conditional-likelihood approach developed here. Table 8 contains the point estimates and

standard errors. The estimated signs are all in line with what would be expected and

confirm the presence of homophily among the attorneys. Moreover, in order of estimated

importance, two attorneys are more likely to see each other socially if they work in the

same regional office, if they have the same status, and if they are of the same gender.

They are less likely to interact outside the work environment the larger their tenure and

age differences, with tenure being the more dominant of the two by a factor of about three
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Table 8: Friendship estimates

MLE CMLE

same status 1.0116 0.8649

(0.1491) (0.1724)

same gender 0.5676 0.4959

(0.1396) (0.1465)

same office 2.5484 2.1998

(0.1688) (0.2142)

difference in tenure �0.0976 �0.1045

(0.0132) (0.0210)

difference in age �0.0469 �0.0328

(0.0106) (0.0111)

according to conditional logit. The relative size of the point estimates is the same for both

maximum likelihood and for conditional logit. However, again, the former point estimates

tend to be larger in magnitude. All the coefficient estimates are significantly di↵erent from

zero at conventional significance levels.
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Appendix

Proof of Lemma 1. Equations (2.1)–(2.2) together with the functional form of the logistic

distribution imply that

Pr(z = 1|x) = 1

1 + exp(�↵
i1 � �

j1 � x0
i1j1

✓0)

exp(�↵
i1 � �

j2 � x0
i1j2

✓0)

1 + exp(�↵
i1 � �

j2 � x0
i1j2

✓0)

⇥
exp(�↵

i2 � �
j1 � x0

i2j1
✓0)

1 + exp(�↵
i2 � �

j1 � x0
i2j1

✓0)

1

1 + exp(�↵
i2 � �

j2 � x0
i2j2

✓0)

and, similarly, that

Pr(z = �1|x) =
exp(�↵

i1 � �
j1 � x0

i1j1
✓0)

1 + exp(�↵
i1 � �

j1 � x0
i1j1

✓0)

1

1 + exp(�↵
i1 � �

j2 � x0
i1j2

✓0)

⇥ 1

1 + exp(�↵
i2 � �

j1 � x0
i2j1

✓0)

exp(�↵
i2 � �

j2 � x0
i2j2

✓0)

1 + exp(�↵
i2 � �

j2 � x0
i2j2

✓0)
.

Therefore,

Pr(z = �1|x)
Pr(z = 1|x) =

exp(�↵
i1 � �

j1 � x0
i1j1

✓0) exp(�↵
i2 � �

j2 � x0
i2j2

✓0)

exp(�↵
i1 � �

j2 � x0
i1j2

✓0) exp(�↵
i2 � �

j1 � x0
i2j1

✓0)
= exp(�r0✓0),

from which Lemma 1 follows.

Proof of Theorem 1. By virtue of Assumption 4, ✓0 is the unique global maximizer of the

limit quantity lim
n!1(m

n

p
n

)�1E(L
n

(✓)) on ⇥. Because this function is concave, ✓
n

p!

✓0 will follow from pointwise convergence in probability of (m⇤
n

)�1L
n

(✓) (the normalized

objective function) to (m
n

p
n

)�1E(L
n

(✓)) (Newey and McFadden, 1994, Theorem 2.7). We

proceed by showing that this is the case.

Write

L
n

(✓) =
X

�2Nmn

`
�

(✓),

where `
�

(✓) denotes the log-likelihood contribution of quadruple �. Then

L
n

(✓)

m⇤
n

� E(L
n

(✓))

E(m⇤
n

)
=

P
�2Nmn

`
�

(✓)� E(`
�

(✓))

E(m⇤
n

)
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P
�2Nmn

`
�

(✓)

E(m⇤
n

)

✓
E(m⇤

n

)

m⇤
n

� 1

◆
(A.1)
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and it suffices to show that each of the right-hand side terms in this expression converges

to zero in probability.

For the first right-hand side term in (A.1), note that |`
�

(✓)|  log 2+2kr
�

k k✓k. Because

E(kr
�

k2) is finite and ⇥ is compact, it follows that the variance of `
�

(✓) exists and is

uniformly bounded in �. Therefore, by Chebychev’s inequality, it holds that, for any ✏ > 0,

Pr

 �����

P
�2Nmn

`
�

(✓)� E(`
�
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E(m⇤
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)

����� > ✏

!
 1

✏2
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�2Nmn
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)2
,
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1
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1
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1

A

and a pair of quadruples � = �{i1, i2, j1, j2} and �0 = �{i01, i02, j01, j02} can deliver a non-zero

contribution to this covariance as long as � and �0 have at least one node in common.

Quadruples involving only distinct nodes are independent by Assumption 1. There are

O(n7) terms with at least one node in common. By using the Cauchy-Schwarz inequality

and Jensen’s inequality their contribution to the total variance is found to be bounded by

a multiple of

n3
X

�2Nmn

E((`
�

(✓)� E(`
�

(✓)))2) = O(n3m
n

p
n

),

where the last equality follows because E((`
�

(✓) � E(`
�

(✓)))2) = O(Pr(z
�

2 {�1, 1})) for

each ✓ 2 ⇥ and all � 2 N
mn . As E(m⇤

n

) = m
n

p
n

and m
n

= O(n4) we find that
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which converges to zero by Assumption 4. Therefore,

lim
n!1

Pr

 �����

P
�2Nmn

`
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E(m⇤
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)

����� > ✏
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for any ✏ and all ✓ 2 ⇥.
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For the second right-hand side term in (A.1), recall that

m⇤
n

=
X

�2Nmn

1{z
�

2 {�1, 1}}.

The summands are bounded uniformly in � and do not depend on ✓. Following the same

argument as in the previous paragraph it is readily verified that (m⇤
n

/m
n

�p
n

)
p! 0, and so

m⇤
n

/E(m⇤
n

)
p! 1. By (A.1) we have lim

n!1 Pr(|(m⇤
n

)�1L
n

(✓)�(m
n

p
n

)�1E(L
n

(✓))| > ✏) = 0

for any ✏ > 0 and all ✓ 2 ⇥, so that ✓
n

p! ✓0 as n ! 1. The proof is complete.

Proof of Theorem 2. The proof of the theorem proceeds in four main steps. First we show

that the score vector, evaluated at the true parameter value and properly normalized, is

asymptotically equivalent to its Hájek projection (conditional on the covariates). Second

we establish the limit distribution of this projection and show that the matrix ⌥
n

(✓
n

) is

a consistent estimator of its variance. Third we prove that the Hessian of the conditional

likelihood, normalized by m⇤
n

, converges to a well-behaved limit uniformly on ⇥. Finally,

we collect these results and combine them with a mean-value expansion of the first-order

condition around the true value in the usual manner to arrive at the limit distribution given

in Theorem 2.

(i) Projection of the score vector. The Hájek projection of S
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(✓0), conditional on the
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Here, we abuse notation slightly by denoting by x
�

the collection of covariates for the nodes

in the quadruple �. This result follows from a small calculation and uses the fact that

Pr(z
�

= 1|x
�

) = F (r0
�

✓0) Pr(z
�

2 {�1, 1}| x
�

),

Pr(z
�

= �1|x
�

) =
�
1� F (r0

�

✓0)
�
Pr(z

�

2 {�1, 1}| x
�

),
(A.2)

which follows from Lemma 1. By iterating expectations, we find E(v
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) = 0, and so
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Below we show that ⌥�1/2V
n

d! N(0, I). Here we show that ⌥�1/2V
n
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n

(✓0) are

asymptotically equivalent.

To establish asymptotic equivalence we show that
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The main step in doing so is calculating the variance of the score vector, E(S
n

(✓0)Sn

(✓0)0).

Because E[s(�; ✓0)|x�

] = 0 for all � 2 N
mn and link decisions are conditionally independent,
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one dyad in common. The number of terms with more than one dyad in common is o(n6).

Therefore the leading term of E(S
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(✓0)0) is comprised of correlations between s(�; ✓0),

and s(�0; ✓0) for which the quadruples �, �0 have exactly one dyad in common. Note that,

by symmetry of s(�, ✓) in the sender and receiver nodes, we can fix this to be the first
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where we have exploiting symmetry of s(�; ✓) in senders and receivers once again to expand

the sums. Fix � = �{i, i0; j, j0} and �0 = �{i, i00; j, j00}. Then

s(�; ✓0) s(�
0; ✓0)

0 = r
�

r0
�

0 1{z
�

= 1, z
�

0 = 1} (1� F (r0
�

✓0)) (1� F (r0
�

0✓0))

+ r
�

r0
�

0 1{z
�

= �1, z
�

0 = �1} F (r0
�

✓0) F (r0
�

0✓0)

� r
�

r0
�

0 1{z
�

= 1, z
�

0 = �1} (1� F (r0
�

✓0)) F (r0
�

0✓0)

� r
�

r0
�

0 1{z
�

= �1, z
�

0 = 1} F (r0
�

✓0) (1� F (r0
�

0✓0)).

(A.4)

Take expectations given covariates. The last two terms on the right-hand side of (A.4)

drop out, while the expectations of the first and second right-hand side term are equal to

r
�

r0
�

0
F (r0

�

✓0) (1� F (r0
�

✓0))F (r0
�

0✓0) (1� F (r0
�

0✓0))

Pr(y
ij

= 1|x
ij

)
Pr(z

�

2 {�1, 1}) Pr(z
�

0 2 {�1, 1})

and

r
�

r0
�

0
F (r0

�

✓0) (1� F (r0
�

✓0))F (r0
�

0✓0) (1� F (r0
�

0✓0))

Pr(y
ij

= 0|x
ij

)
Pr(z

�

2 {�1, 1}) Pr(z
�

0 2 {�1, 1}),

respectively. By (A.2), and recalling that

q(�) =
Pr(z

�

= 1| x
�

) Pr(z
�

= �1| x
�

)

Pr(z
�

2 {�1, 1}| x
�

)
,

we therefore have

E(s(�; ✓0) s(�
0; ✓0)

0 | x
�

, x
�

0) = r
�

r0
�

0
q(�) q(�0)

Pr(y
ij

= 1|x
ij

) Pr(y
ij

= 0|x
ij

)
.

Averaging across all quadruples and using the definition of w
ij

given earlier in the proof

we find

A =
nX

i=1

X

j 6=i

E

✓
w

ij

w0
ij

Pr(y
ij

= 1|x
ij

) Pr(y
ij

= 0|x
ij

)

◆
= ⌥.

Thus, ⌥�1/2E(S
n

(✓0)Sn

(✓0)0)⌥�1/2 = I + o(1). Making use of the above calculations, it

is readily deduced that we equally have that ⌥�1/2E(V
n

S
n

(✓0)0)⌥�1/2 = I + o(1), that is,

that the asymptotic covariance between V
n

and S
n

(✓0) equals their variance. Put together,

these results imply (A.3).
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(ii) Limit distribution of the projection. Recall that the v
ij

are zero mean and independent

conditional on {x
ij

}
n,n

. Let

⌥
X

=
nX

i=1

X

j 6=i

E(v
ij

v0
ij

|{x
ij

}
n,n

) =
nX

i=1

X

j 6=i

w
ij

w0
ij

Pr(y
ij

= 1|x
ij

) Pr(y
ij

= 0|x
ij

)
.

By a conditional version of Lyapunov’s central limit theorem (see, e.g., Prakasa Rao 2009),

⌥�1/2
X

V
n

d! N(0, I) (A.5)

conditional on the covariates. Now, using Assumption 5, it is easy to see that k⌥
X

�⌥k p! 0

as n ! 1. Hence, the limit result is independent of the covariate values, and (A.5)

continues to hold unconditionally, with ⌥ replacing ⌥
X

.

The matrix ⌥
n

(✓
n

) as defined in the main text is a plug-in estimator of ⌥ based on the

matrix A given above. Using the same arguments as those used to establish convergence of

the normalized Hessian in the next section it is straightforward to show that this estimator

is consistent. Therefore,

⌥
n

(✓
n

)�1/2V
n

d! N(0, I)

as n ! 1 by an application of Slutsky’s theorem.

(iii) Convergence of the Hessian. Recall that the Hessian is

H
n

(✓) =
X

�2Nmn

r
�

r0
�

f(r0
�

✓) 1{z
�

2 {�1, 1}}.

We need to show that

sup
✓2⇥

����
H

n

(✓)

m⇤
n

� E(H
n

(✓))

m
n

p
n

����
p! 0

as n ! 1. The matrix lim
n!1(m

n

p
n

)�1E(H
n

(✓0)) is the matrix given in Assumption 4.

Because we have shown in the proof of Theorem 1 that (m⇤
n

/m
n

� p
n

)
p! 0 as n ! 1 it

suffices to show
sup

✓2⇥ kH
n

(✓)� E(H
n

(✓))k
m

n

p
n

p! 0
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as n ! 1. To show this we verify the conditions of Lemma 2.9 of Newey and McFadden

(1994). First, a Taylor expansion gives

kH
n

(✓1)�H
n

(✓2)k
m

n

p
n



0

@(m
n

p
n

)�1
X

�2Nmn

kr
�

k3 1{z
�

2 {�1, 1}}

1

A sup
✏2R

����
@f(✏)

@✏

���� k✓1 � ✓2k

for any ✓1, ✓2 2 ⇥. Next, using the same arguments as those used to establish Theorem 1

we find that

(m
n

p
n

)�1
X

�2Nmn

kr
�

k3 1{z
�

2 {�1, 1}} = O
p

(1),

where we use the moment condition in Assumption 5. Because the derivative of f is

bounded uniformly on R we obtain

kH
n

(✓1)�H
n

(✓2)k
m

n

p
n

= O
p

(1) k✓1 � ✓2k

for any ✓1, ✓2 2 ⇥. Thus, the Hessian matrix is stochastically equicontinuous. This implies

that uniform convergence follows from pointwise convergence on ⇥. Assumption 5 implies

that E(kr
�

k4|z
�

2 {�1, 1}) is uniformly bounded in � while f is bounded uniformly on R.

Therefore, the same arguments as those used to establish Theorem 1 yield the convergence

result
kH

n

(✓)� E(H
n

(✓))k
m

n

p
n

p! 0

for all ✓ 2 ⇥. Uniform convergence has been shown.

(iv) Limit distribution of the estimator. An expansion of the first-order condition to the

log-likelihood optimization problem around ✓0 together with the results obtained above

yields

⌦�1/2
n

(✓
n

� ✓0) = �⌦�1/2
n

H
n

(✓⇤)
�1S

n

(✓0)
d! N(0, I)

as n ! 1 by an application of Slutsky’s theorem. Here, ✓⇤ 2 ⇥ is a value that lies between

✓
n

and ✓0. This conclusion is the limit result stated in Theorem 2. The statement on the

convergence rate in the theorem is implied by the fact that ⌥ = O(n(n� 1)p
n

). This rate
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result follows from the same argument as the convergence rate of (m
n

p
n

)�1L
n

(✓) to its

expectation in the proof of Theorem 1 given above and can readily be deduced from the

expression for A given above. The proof of Theorem 2 is thus complete.
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