A note on sufficiency in binary panel models

Koen Jochmans ${ }^{\dagger}$ and Thierry Magnac ${ }^{\ddagger}$
${ }^{\dagger}$ Sciences Po, Department of Economics, 28 rue des Saints Pères, 75007 Paris, France. E-mail: koen.jochmans@sciencespo.fr
${ }^{\ddagger}$ Toulouse School of Economics, Université de Toulouse, 21 Allée de Brienne, 31000 Toulouse, France.
E-mail: thierry.magnac@tse-fr.eu

First version received: May 2016; final version accepted: March 2017

Abstract

Summary Consider estimating the slope coefficients of a fixed-effect binary-choice model from two-period panel data. Two approaches to semiparametric estimation at the regular parametric rate have been proposed: one is based on a sufficiency requirement, and the other is based on a conditional-median restriction. We show that, under standard assumptions, both conditions are equivalent.

Keywords: Binary choice, Fixed effects, Panel data, Regular estimation, Sufficiency.

1. INTRODUCTION

A classic problem in panel data analysis is the estimation of the vector of slope coefficients, β, in fixed-effect linear models from binary response data on n observations.

In seminal work, Rasch (1960) constructed a conditional maximum-likelihood estimator for the fixed-effect logit model by building on a sufficiency argument. Chamberlain (2010) and Magnac (2004) have shown that sufficiency is necessary for estimation at the $n^{-1 / 2}$ rate to be possible in general.

Manski (1987) proposed a maximum-score estimator of β. His estimator relies on a conditional-median restriction and does not require sufficiency. However, it converges at the slow rate $n^{-1 / 3}$. Horowitz (1992) suggested smoothing the maximum-score criterion function and showed that, by doing so, the convergence rate can be improved, although the $n^{-1 / 2}$-rate remains unattainable. Lee (1999) has given an alternative conditional-median restriction and has derived an $n^{-1 / 2}$-consistent maximum rank-correlation estimator of β. He provided sufficient conditions for this condition to hold that restrict the distribution of the fixed effects and the covariates. It can be shown that these restrictions involve the unknown parameter β through index-sufficiency requirements on the distribution of the covariates, and that these can severely restrict the values that β is allowed to take.

We reconsider the conditional-median restriction of Lee (1999) under standard assumptions and look for conditions that imply that it holds for any β. We find that imposing the conditionalmedian restriction is equivalent to requiring sufficiency.

2. MODEL AND ASSUMPTIONS

Suppose that binary outcomes $y_{i}=\left(y_{i 1}, y_{i 2}\right)$ relate to a set of observable covariates $x_{i}=$ ($x_{i 1}, x_{i 2}$) through the threshold-crossing model

$$
y_{i 1}=1\left\{x_{i 1} \beta+\alpha_{i} \geq u_{i 1}\right\}, \quad y_{i 2}=1\left\{x_{i 2} \beta+\alpha_{i} \geq u_{i 2}\right\}
$$

where $u_{i}=\left(u_{i 1}, u_{i 2}\right)$ are latent disturbances, α_{i} is an unobserved effect and β is a parameter vector of conformable dimension, say k.

The challenge is to construct an estimator of β from a random sample $\left\{\left(y_{i}, x_{i}\right), i=1, \ldots, n\right\}$ that converges at the regular $n^{-1 / 2}$-rate.

Let $\Delta y_{i}=y_{i 2}-y_{i 1}$ and $\Delta x_{i}=x_{i 2}-x_{i 1}$. The following assumption will be maintained throughout.

ASSUMPTION 2.1. (IDENTIFICATION AND REGULARITY) (a) u_{i} is independent of $\left(x_{i}, \alpha_{i}\right)$; (b) Δx_{i} is not contained in a proper linear subspace of \mathcal{R}^{k}; (c) the first component of Δx_{i} continuously varies over the whole real line \mathcal{R} (for almost all values of the other components), and the first component of β is not equal to zero and normalized to one; (d) α_{i} varies continuously over the whole real line \mathcal{R} (for almost all values of x_{i}); (e) the distribution of u_{i} admits a strictly positive, continuous and bounded density function with respect to the Lebesgue measure.

Assumptions 2.1(a)-(c) collect sufficient conditions that ensure that β is (semiparametrically) identified while Assumptions 2.1(d) and (e) are conventional regularity conditions that allow the use of differential calculus; see Magnac (2004). In the following, we omit the 'almost surely' qualifier from all conditional statements.

Assumption 2.1 does not parametrize the distribution of u_{i} nor does it restrict the dependence between α_{i} and x_{i}. As such, our approach is semiparametric and we treat α_{i} as fixed effects. This is to be contrasted with a random-effect approach, where the distribution of α_{i} given x_{i} (and the distribution of u_{i}) is parametrized; see, e.g. Chamberlain (1980). In such a case, standard inference can be performed through the (marginal) likelihood. A middle ground would be to impose semiparametric restrictions on the dependence between α_{i} and x_{i}. For example, Honoré and Lewbel (2002) construct an $n^{-1 / 2}$-consistent estimator under the condition that one of the regressors is conditionally independent of the fixed effects and that this special regressor satisfies a large-support condition.

3. CONDITIONS FOR REGULAR ESTIMATION

Magnac (2004, Theorem 1) has shown that, under Assumption 2.1, the semiparametric efficiency bound for β is zero unless $y_{i 1}+y_{i 2}$ is a sufficient statistic for α_{i}. Sufficiency can be stated as follows.

Condition 3.1. (SuFficiency) There exists a real function G, independent of α_{i}, such that

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=G\left(\Delta x_{i} \beta\right)
$$

for all $\alpha_{i} \in \mathcal{R}$.

Condition 3.1 states that data in first differences follow a single-indexed binary-choice model. This yields a variety of estimators of β, such as semiparametric maximum likelihood - see Klein and Spady (1993) - that are $n^{-1 / 2}$-consistent under standard assumptions.

Magnac (2004, Theorem 3) derived conditions on the distributions of u_{i} and Δu_{i} that imply that Condition 3.1 holds.

However, Lee (1999) considered estimation of β based on a sign restriction. We write $\operatorname{med}(x)$ for the median of random variable x and let $\operatorname{sgn}(x)=1\{x \geq 0\}-1\{x<0\}$.

Condition 3.2. (Median restriction) For any two observations i and j,

$$
\operatorname{med}\left(\left.\frac{\Delta y_{i}-\Delta y_{j}}{2} \right\rvert\, x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

holds.
Condition 3.2 suggests a rank estimator for β. Conditions for this estimator to be $n^{-1 / 2}$ _ consistent are stated in Sherman (1993).

Lee (1999, Assumption 1) restricted the joint distribution of α_{i}, x_{i} and $x_{i 1} \beta, x_{i 2} \beta$ to ensure that Condition 3.2 holds. Aside from these restrictions going against the fixed-effect approach, they do not hold uniformly in β, in general. Appendix \mathbf{B} contains additional discussion and an example.

4. EQUIVALENCE

The main result of this note is the equivalence of Conditions 3.1 and 3.2 as requirements for $n^{-1 / 2}$-consistent estimation of any β. Appendix A provides a proof.

Theorem 4.1. (Equivalence) Let Assumption 2.1 hold. Then Condition 3.2 holds for any β and any joint distribution of (α_{i}, x_{i}) if and only if Condition 3.1 holds for any β and any joint distribution of $\left(\alpha_{i}, x_{i}\right)$.

ACKNOWLEDGEMENTS

The authors thank the Co-Editor and two referees for comments. K. Jochmans gratefully acknowledges financial support from the European Research Council through Starting Grant No 715787. T. Magnac gratefully acknowledges financial support from the European Research Council under the European Community's Seventh Framework Programme FP7/2007-2013 grant agreement No 295298.

REFERENCES

Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies 47, 225-38.
Chamberlain, G. (2010). Binary response models for panel data: identification and information. Econometrica 78, 159-68.
Honoré, B. E. and A. Lewbel (2002). Semiparametric binary choice panel data models without strictly exogeneous regressors. Econometrica 70, 2053-63.

Horowitz, J. L. (1992). A smoothed maximum score estimator for the binary response model. Econometrica 60, 505-31.
Klein, R. W. and R. H. Spady (1993). An efficient semiparametric estimator for binary choice models. Econometrica 61, 387-421.
Lee, M-J. (1999). A root- n consistent semiparametric estimator for related-effects binary response panel data. Econometrica 67, 427-33.
Magnac, T. (2004). Panel binary variables and sufficiency: generalizing conditional logit. Econometrica 72, 1859-76.
Manski, C. F. (1987). Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55, 357-62.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Working paper, Danish Institute of Educational Research, Copenhagen.
Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica 61, 123-37.

APPENDIX A

We start with two lemmata that are instrumental in showing Theorem 4.1. We routinely make use of the fact that, for events A, B and C,

$$
\frac{\operatorname{Pr}(A \mid C)}{\operatorname{Pr}(B \mid C)}=\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

if $A \subset C$ and $B \subset C$.
Lemma A.1. Condition 3.1 is equivalent to the existence of a continuously differentiable, strictly decreasing function c, independent of α_{i}, such that

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=c\left(\Delta x_{i} \beta\right)
$$

for all $\alpha_{i} \in \mathcal{R}$.
Proof: Conditional on $\Delta y_{i} \neq 0$ and on α_{i}, x_{i}, the random variable Δy_{i} is Bernoulli with success probability

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\frac{1}{1+\left(\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right) / \operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)\right)}
$$

Rearranging this expression and enforcing Condition 3.1 shows that

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{1-G\left(\Delta x_{i} \beta\right)}{G\left(\Delta x_{i} \beta\right)}
$$

which is a function of $\Delta x_{i} \beta$ only. Monotonicity and differentiability of this function follow easily, as in Magnac (2004, Proof of Theorem 2). This completes the proof of Lemma A.1.

Lemma A.2. Let

$$
\tilde{c}\left(x_{i}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)}
$$

Condition 3.2 is equivalent to the sign restriction

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

holding for any two observations i and j.
Proof: Conditional on $\Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}$ (and the covariates),

$$
\frac{\Delta y_{i}-\Delta y_{j}}{2}=\left\{\begin{array}{rl}
1 & \text { if } \Delta y_{i}=1 \text { and } \Delta y_{j}=-1 \\
-1 & \text { if } \Delta y_{j}=1 \text { and } \Delta y_{i}=-1
\end{array} .\right.
$$

Therefore, it is Bernoulli with success probability

$$
\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)=\frac{1}{1+r\left(x_{i}, x_{j}\right)}
$$

where

$$
r\left(x_{i}, x_{j}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1, \Delta y_{j}=1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right)}
$$

Note that

$$
\begin{aligned}
\operatorname{med} & \left(\left.\frac{\Delta y_{i}-\Delta y_{j}}{2} \right\rvert\, x_{i}, x_{j}, \Delta y_{i} \neq 0, \Delta y_{j} \neq 0, \Delta y_{i} \neq \Delta y_{j}\right) \\
& =\operatorname{sgn}\left(\frac{1}{1+r\left(x_{i}, x_{j}\right)}-\frac{r\left(x_{i}, x_{j}\right)}{1+r\left(x_{i}, x_{j}\right)}\right) .
\end{aligned}
$$

By the Bernoulli nature of the outcomes in the first step and random sampling of the observations in the second step, we find that

$$
r\left(x_{i}, x_{j}\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1, \Delta y_{j}=1 \mid x_{i}, x_{j}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1, \Delta y_{j}=-1 \mid x_{i}, x_{j}\right)}=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)} \frac{\operatorname{Pr}\left(\Delta y_{j}=1 \mid x_{j}\right)}{\operatorname{Pr}\left(\Delta y_{j}=-1 \mid x_{j}\right)}=\frac{\tilde{c}\left(x_{i}\right)}{\tilde{c}\left(x_{j}\right)}
$$

Thus, Condition 3.2 can be written as

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right) .
$$

This completes the proof of Lemma A.2.
Proof of Theorem 4.1: We first establish that Condition 3.1 implies Condition 3.2. Armed with Lemmata A. 1 and A. 2 this is a simple task. First note that, because the function c is strictly decreasing by Lemma A.1, Condition 3.1 implies that

$$
\operatorname{sgn}\left(c\left(\Delta x_{j} \beta\right)-c\left(\Delta x_{i} \beta\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

Under Condition 3.1, we also have that

$$
c\left(\Delta x_{i} \beta\right)=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)}=\tilde{c}\left(x_{i}\right) .
$$

Therefore,

$$
\operatorname{sgn}\left(\tilde{c}\left(x_{j}\right)-\tilde{c}\left(x_{i}\right)\right)=\operatorname{sgn}\left(\Delta x_{i} \beta-\Delta x_{j} \beta\right)
$$

By Lemma A.2, this is Condition 3.2.
To see that Condition 3.2 implies Condition 3.1, first note that Assumption 2.1(a) gives

$$
\frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)}=\frac{\operatorname{Pr}\left(u_{i 1} \leq \gamma_{i}-(1 / 2) \Delta x_{i} \beta, u_{i 2}>\gamma_{i}+(1 / 2) \Delta x_{i} \beta\right)}{\operatorname{Pr}\left(u_{i 1}>\gamma_{i}-(1 / 2) \Delta x_{i} \beta, u_{i 2} \leq \gamma_{i}+(1 / 2) \Delta x_{i} \beta\right)}
$$

where we let $\gamma_{i}=\alpha_{i}+(1 / 2)\left(x_{i 1}+x_{i 2}\right) \beta$. We can therefore write

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\tilde{G}\left(\Delta x_{i} \beta, \gamma_{i}\right)
$$

for some function \tilde{G}. Hence,

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=\int_{-\infty}^{+\infty} \tilde{G}\left(\Delta x_{i} \beta, \gamma\right) p\left(\gamma \mid x_{i}, \Delta y_{i} \neq 0\right) d \gamma
$$

where $p\left(\gamma_{i} \mid x_{i}, \Delta y_{i} \neq 0\right)$ denotes the density of γ_{i} given x_{i} and $\Delta y_{i} \neq 0$. Next, by Lemma A.2, Condition 3.2 implies that

$$
\begin{aligned}
\Delta x_{i} \beta=\Delta x_{j} \beta & \Longleftrightarrow \tilde{c}\left(x_{i}\right)=\tilde{c}\left(x_{j}\right) \\
& \Longleftrightarrow \frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}\right)}=\frac{\operatorname{Pr}\left(\Delta y_{j}=-1 \mid x_{j}\right)}{\operatorname{Pr}\left(\Delta y_{j}=1 \mid x_{j}\right)} \\
& \Longleftrightarrow \frac{\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \Delta y_{i} \neq 0\right)}{\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)}=\frac{\operatorname{Pr}\left(\Delta y_{j}=-1 \mid x_{j}, \Delta y_{j} \neq 0\right)}{\operatorname{Pr}\left(\Delta y_{j}=1 \mid x_{j}, \Delta y_{j} \neq 0\right)} \\
& \Longleftrightarrow \operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=\operatorname{Pr}\left(\Delta y_{j}=1 \mid x_{j}, \Delta y_{j} \neq 0\right) \\
& \Longleftrightarrow \int_{-\infty}^{+\infty} \tilde{G}\left(\Delta x_{i} \beta, \gamma\right) p\left(\gamma \mid x_{i}, \Delta y_{i} \neq 0\right) d \gamma \\
& =\int_{-\infty}^{+\infty} \tilde{G}\left(\Delta x_{j} \beta, \gamma\right) p\left(\gamma \mid x_{j}, \Delta y_{j} \neq 0\right) d \gamma
\end{aligned}
$$

where the last step follows from the definition of \tilde{G} above. Therefore, when $\Delta x_{i} \beta=\Delta x_{j} \beta=v$ (say), it must be that (A.1) holds, i.e. if the dependence between

$$
\int_{-\infty}^{+\infty} \tilde{G}(v, \gamma)\left\{p\left(\gamma \mid x_{i}, \Delta y_{i} \neq 0\right)-p\left(\gamma \mid x_{j}, \Delta y_{j} \neq 0\right)\right\} d \gamma=0
$$

and x_{i} is unrestricted, this equality can only hold if $\tilde{G}(v, \gamma)$ is (almost surely) constant in γ. Lemma A. 3 below, which is Condition 3.1, concludes the proof of the theorem.

Lemma A.3. For all v and almost all $\gamma_{i}\left(\right.$ or $\left.\alpha_{i}\right)$

$$
\tilde{G}\left(\Delta x_{i} \beta, \gamma_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0, \alpha_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=G\left(\Delta x_{i} \beta\right)
$$

for some function G.
Proof: First, note that Assumption 2.1(a) implies that

$$
\operatorname{Pr}\left(\Delta y_{i} \neq 0 \mid x_{i}, \alpha_{i}\right)=\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \alpha_{i}\right)+\operatorname{Pr}\left(\Delta y_{i}=-1 \mid x_{i}, \alpha_{i}\right)=h\left(\Delta x_{i} \beta, \gamma_{i}\right)
$$

for some function h. This gives the factorization

$$
\operatorname{Pr}\left(\Delta y_{i}=1 \mid x_{i}, \Delta y_{i} \neq 0\right)=\frac{\int_{-\infty}^{+\infty} \tilde{G}\left(\Delta x_{i} \beta, \gamma\right) h\left(\Delta x_{i} \beta, \gamma\right) p\left(\gamma \mid x_{i}\right) d \gamma}{\int_{-\infty}^{+\infty} h\left(\Delta x_{i} \beta, \gamma\right) p\left(\gamma \mid x_{i}\right) d \gamma}
$$

where $p\left(\gamma_{i} \mid x_{i}\right)$ is the density of γ_{i} given x_{i}. Now, fix x_{i} and v. Let $p_{0}(\gamma)=p\left(\gamma \mid x_{i}\right)$. By Assumption 2.1(c), there always exists an x_{j} for which

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \tilde{G}(v, \gamma)\left\{p\left(\gamma \mid x_{i}, \Delta y_{i} \neq 0\right)-p\left(\gamma \mid x_{j}, \Delta y_{j} \neq 0\right)\right\} d \gamma=0 \tag{A.1}
\end{equation*}
$$

must hold. Let $p_{1}(\gamma)=p\left(\gamma \mid x_{j}\right)$. Then, (A.1) can be written as

$$
\begin{equation*}
\frac{\int_{-\infty}^{+\infty} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma}=\frac{\int_{-\infty}^{+\infty} \tilde{G}(v, \gamma) h(v, \gamma) p_{1}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{1}(\gamma) d \gamma} \tag{A.2}
\end{equation*}
$$

Because $p_{1}(\gamma)$ is unrestricted we may set

$$
p_{1}(\gamma)=\left\{\begin{array}{ll}
p_{0}(\gamma)(1+\varepsilon) & \text { if } \gamma \in \mathcal{A} \\
p_{0}(\gamma)\left(1-\varepsilon^{\prime}\right) & \text { if } \gamma \notin \mathcal{A}
\end{array},\right.
$$

where

$$
\mathcal{A}=\{\gamma \in \mathcal{R}: \tilde{G}(v, \gamma) \geq \bar{G}(v)\}, \quad \bar{G}(v)=\frac{\int_{-\infty}^{+\infty} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma},
$$

and $\left(\varepsilon, \varepsilon^{\prime}\right) \in[0,1)^{2}$ can be chosen such that $\varepsilon+\varepsilon^{\prime} \in(0,1)$. Note that $\operatorname{Pr}(\gamma \in \mathcal{A})>0$ because of Assumption 2.1(d). Furthermore, because $\int_{-\infty}^{+\infty} p_{1}(\gamma) d \gamma=1$ we have $\operatorname{Pr}(\gamma \in \mathcal{A})=\varepsilon^{\prime} /\left(\varepsilon+\varepsilon^{\prime}\right)$ and $\operatorname{Pr}(\gamma \notin$ $\mathcal{A})=\varepsilon /\left(\varepsilon+\varepsilon^{\prime}\right)$. Also, as

$$
\int_{-\infty}^{+\infty} h(v, \gamma) p_{1}(\gamma) d \gamma=(1+\varepsilon) \int_{\gamma \in \mathcal{A}} h(v, \gamma) p_{0}(\gamma) d \gamma+\left(1-\varepsilon^{\prime}\right) \int_{\gamma \notin \mathcal{A}} h(v, \gamma) p_{0}(\gamma) d \gamma,
$$

we can write

$$
\begin{equation*}
\int_{-\infty}^{+\infty} h(v, \gamma) p_{1}(\gamma) d \gamma=\left((1+\varepsilon) \lambda+\left(1-\varepsilon^{\prime}\right)(1-\lambda)\right) \int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma \tag{A.3}
\end{equation*}
$$

for

$$
\lambda=\frac{\int_{\gamma \in \mathcal{A}} h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma} \in[0,1] .
$$

Because $h(v, \gamma)>0$ and $p_{0}(\gamma)>0$ for almost all γ and $\operatorname{Pr}(\gamma \in \mathcal{A})>0$, we find that $\lambda>0$ and that $\lambda=1$ if and only if $\operatorname{Pr}(\gamma \in \mathcal{A})=1$. Now, rearranging (A.2) and using (A.3) gives

$$
\begin{align*}
0= & \left(\frac{\left(\varepsilon+\varepsilon^{\prime}\right)(1-\lambda)}{(1+\varepsilon) \lambda+\left(1-\varepsilon^{\prime}\right)(1-\lambda)}\right) \frac{\int_{\gamma \in \mathcal{A}} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma} \\
& -\left(\frac{\left(\varepsilon+\varepsilon^{\prime}\right) \lambda}{(1+\varepsilon) \lambda+\left(1-\varepsilon^{\prime}\right)(1-\lambda)}\right) \frac{\int_{\gamma \notin \mathcal{A}} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma}, \tag{A.4}
\end{align*}
$$

while, by definition of the set \mathcal{A}, we have

$$
\begin{equation*}
\frac{\int_{\gamma \in \mathcal{A}} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma} \geq \lambda \bar{G}(v), \quad \frac{\int_{\gamma \notin \mathcal{A}} \tilde{G}(v, \gamma) h(v, \gamma) p_{0}(\gamma) d \gamma}{\int_{-\infty}^{+\infty} h(v, \gamma) p_{0}(\gamma) d \gamma} \leq(1-\lambda) \bar{G}(v) \tag{A.5}
\end{equation*}
$$

with a strict inequality of the second expression if and only if $\lambda<1$. Suppose that $\lambda<1$. Then, combining (A.4) and (A.5) gives the inequality

$$
\left(\frac{\left(\varepsilon+\varepsilon^{\prime}\right)(1-\lambda) \lambda}{(1+\varepsilon) \lambda+\left(1-\varepsilon^{\prime}\right)(1-\lambda)}\right) \bar{G}(v)<\left(\frac{\left(\varepsilon+\varepsilon^{\prime}\right)(1-\lambda) \lambda}{(1+\varepsilon) \lambda+\left(1-\varepsilon^{\prime}\right)(1-\lambda)}\right) \bar{G}(v),
$$

which is a contradiction as $\varepsilon+\varepsilon^{\prime}>0$ and $\bar{G}(v)>0$. Thus, we must have that $\lambda=1$, and so $\operatorname{Pr}(\gamma \in \mathcal{A})=1$. Therefore, we have for any v

$$
\operatorname{Pr}(G(v, \gamma) \geq \bar{G}(v))=1
$$

and, by symmetry, for any v

$$
\operatorname{Pr}(G(v, \gamma) \leq \bar{G}(v))=1 .
$$

Therefore, for any $v, \tilde{G}(v, \gamma)$ is constant (almost surely) in γ and $\Delta y_{i} \neq 0$ is sufficient for γ_{i}. This completes the proof of the lemma.

APPENDIX B

The notation in Lee (1999) decomposes x into its continuously varying single component whose coefficient is equal to 1 and the remaining variables. We denote by a the first component and by z the remaining variables, so that $x=(a, z)$. We denote by θ the coefficient of z in $x \beta$ so that $\beta=(1, \theta)$, and we omit the subscript i throughout.

Conditions (g) and (h) of Lee (1999) can be written as
(g) $\alpha \perp \Delta z \mid \Delta a+\theta \Delta z$,
(h) $a_{1}+\theta z_{1} \perp \Delta z \mid \Delta a+\theta \Delta z, \alpha$,
in which, e.g., $\Delta z=z_{2}-z_{1}$.
We first prove that these conditions imply an index-sufficiency requirement on the distribution function of regressors. Second, we provide an example in which these conditions restrict the parameter of interest to only two possible values, except in non-generic cases.

Index sufficiency

Denote by f the density with respect to some dominating measure and rewrite (h) as

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z, \alpha\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z, \alpha\right) f(\Delta z \mid \Delta a+\theta \Delta z, \alpha)
$$

As Condition (g) can be written as

$$
f(\Delta z \mid \Delta a+\theta \Delta z, \alpha)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

we therefore have that

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z, \alpha\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z, \alpha\right) f(\Delta z \mid \Delta a+\theta \Delta z)
$$

which we can multiply by $f(\alpha \mid \Delta a+\theta \Delta z)$ and integrate with respect to α to obtain

$$
f\left(a_{1}+\theta z_{1}, \Delta z \mid \Delta a+\theta \Delta z\right)=f\left(a_{1}+\theta z_{1} \mid \Delta a+\theta \Delta z\right) f(\Delta z \mid \Delta a+\theta \Delta z)
$$

As this expression can be rewritten as

$$
f\left(\Delta z \mid \Delta a+\theta \Delta z, a_{1}+z_{1} \theta\right)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

Conditions (g) and (h) of Lee (1999) demand that

$$
f\left(\Delta z \mid a_{1}+z_{1} \theta, a_{2}+z_{2} \theta\right)=f\left(\Delta z \mid \Delta a+\theta \Delta z, a_{1}+z_{1} \theta\right)=f(\Delta z \mid \Delta a+\theta \Delta z)
$$

or in terms of the original variables, that

$$
f\left(\Delta z \mid x_{1} \beta, x_{2} \beta\right)=f(\Delta z \mid \Delta x \beta)
$$

This is an index-sufficiency requirement on the data-generating process of the regressors x that is driven by the parameter of interest, β.

Example

To illustrate, suppose that z is a single dimensional regressor and that regressors are jointly normal with a restricted covariance matrix allowing for contemporaneous correlation only. Moreover,

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
z_{1} \\
z_{2}
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu_{a_{1}} \\
\mu_{a_{2}} \\
\mu_{z_{1}} \\
\mu_{z_{2}}
\end{array}\right), \quad\left(\begin{array}{cccc}
\sigma_{a_{1}}^{2} & 0 & \sigma_{a_{1} z_{1}} & 0 \\
0 & \sigma_{a_{2}}^{2} & 0 & \sigma_{a_{2} z_{2}} \\
\sigma_{a_{1} z_{1}} & 0 & \sigma_{z_{1}}^{2} & 0 \\
0 & \sigma_{a_{2} z_{2}} & 0 & \sigma_{z_{2}}^{2}
\end{array}\right)\right) .
$$

Then

$$
\left(\begin{array}{c}
\Delta z \\
x_{1} \beta \\
x_{2} \beta
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right), \quad\left(\begin{array}{lll}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{12} & \Sigma_{22} & \Sigma_{23} \\
\Sigma_{13} & \Sigma_{23} & \Sigma_{33}
\end{array}\right)\right)
$$

for

$$
\begin{aligned}
& \mu_{1}=\mu_{z_{2}}-\mu_{z_{1}} \\
& \mu_{2}=\mu_{a_{1}}+\mu_{z_{1}} \theta \\
& \mu_{3}=\mu_{a_{2}}+\mu_{z_{2}} \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\Sigma_{11} & =\operatorname{var}(\Delta z)=\operatorname{var}\left(z_{1}\right)+\operatorname{var}\left(z_{2}\right) \\
\Sigma_{12} & =\operatorname{cov}\left(\Delta z, x_{1} \beta\right)=-\operatorname{cov}\left(z_{1}, a_{1}+z_{1} \theta\right) \\
& =-\operatorname{cov}\left(a_{1}, z_{1}\right)-\theta \operatorname{var}\left(z_{1}\right) \\
& =-\sigma_{a_{1} z_{1}}-\theta \sigma_{z_{1}}^{2} \\
\Sigma_{13} & =\operatorname{cov}\left(\Delta z, x_{2} \beta\right)=\operatorname{cov}\left(z_{2}, a_{2}+z_{2} \theta\right) \\
& =\operatorname{cov}\left(a_{2}, z_{2}\right)+\theta \operatorname{var}\left(z_{2}\right) \\
& =\sigma_{a_{2} z_{2}}+\theta \sigma_{z_{2}}^{2} \\
\Sigma_{22} & =\operatorname{var}\left(x_{1} \beta\right)=\operatorname{var}\left(a_{1}+z_{1} \theta\right) \\
& =\operatorname{var}\left(a_{1}\right)+\theta^{2} \operatorname{var}\left(z_{1}\right)+\theta 2 \operatorname{cov}\left(a_{1}, z_{1}\right) \\
& =\sigma_{a_{1}}^{2}+2 \theta \sigma_{a_{1} z_{1}}+\theta^{2} \sigma_{z_{1}}^{2} \\
\Sigma_{33} & =\operatorname{var}\left(x_{2} \beta\right)=\operatorname{var}\left(a_{2}+z_{2} \theta\right) \\
& =\operatorname{var}\left(a_{2}\right)+\theta^{2} \operatorname{var}\left(z_{2}\right)+\theta 2 \operatorname{cov}\left(a_{2}, z_{2}\right) \\
& =\sigma_{a_{2}}^{2}+2 \theta \sigma_{a_{2} z_{2}}+\theta^{2} \sigma_{z_{2}}^{2} \\
\Sigma_{23} & =\operatorname{cov}\left(x_{1} \beta, x_{2} \beta\right)=0 .
\end{aligned}
$$

From standard results on the multivariate normal distribution, we have that

$$
\Delta z \mid x_{1} \beta, x_{2} \beta
$$

is normal with constant variance and conditional mean function

$$
m\left(x_{1} \beta, x_{2} \beta\right)=\mu_{1}+\frac{\left(\Sigma_{13} \Sigma_{22}-\Sigma_{12} \Sigma_{23}\right)\left(x_{2} \beta-\mu_{3}\right)-\left(\Sigma_{13} \Sigma_{23}-\Sigma_{12} \Sigma_{33}\right)\left(x_{1} \beta-\mu_{2}\right)}{\Sigma_{22} \Sigma_{33}-\Sigma_{23}^{2}} .
$$

To satisfy the condition of index sufficiency, we need

$$
\left(\Sigma_{13} \Sigma_{22}-\Sigma_{12} \Sigma_{23}\right)=\left(\Sigma_{13} \Sigma_{23}-\Sigma_{12} \Sigma_{33}\right) .
$$

Plugging-in the expressions from above, this becomes

$$
\left(\sigma_{a_{2} z_{2}}+\theta \sigma_{z_{2}}^{2}\right)\left(\sigma_{a_{1}}^{2}+2 \theta \sigma_{a_{1} z_{1}}+\theta^{2} \sigma_{z_{1}}^{2}\right)=\left(\sigma_{a_{1} z_{1}}+\theta \sigma_{z_{1}}^{2}\right)\left(\sigma_{a_{2}}^{2}+2 \theta \sigma_{a_{2} z_{2}}+\theta^{2} \sigma_{z_{2}}^{2}\right) .
$$

We can write this condition as the third-order polynomial equation (in θ)

$$
C+B \theta+A \theta^{2}+D \theta^{3}=0
$$

with coefficients

$$
\begin{aligned}
C & =\sigma_{a_{1}}^{2} \sigma_{a_{2} z_{2}}-\sigma_{a_{2}}^{2} \sigma_{a_{1} z_{1}} \\
B & =\sigma_{a_{1}}^{2} \sigma_{z_{2}}^{2}+2 \sigma_{a_{2} z_{2}} \sigma_{a_{1} z_{1}}-\sigma_{a_{2}}^{2} \sigma_{z_{1}}^{2}-2 \sigma_{a_{2} z_{2}} \sigma_{a_{1} z_{1}} \\
& =\sigma_{a_{1}}^{2} \sigma_{z_{2}}^{2}-\sigma_{a_{2}}^{2} \sigma_{z_{1}}^{2} \\
A & =\sigma_{a_{1} z_{1}} \sigma_{z_{2}}^{2}-\sigma_{a_{2} z_{2}} \sigma_{z_{1}}^{2} \\
D & =0 .
\end{aligned}
$$

For $t=1,2$, let

$$
\rho_{t}=\frac{\sigma_{a_{t} z_{t}}}{\sigma_{a_{t}} \sigma_{z_{t}}}, r_{t}=\frac{\sigma_{a_{t}}}{\sigma_{z_{t}}} .
$$

Then

$$
\begin{aligned}
& \frac{C}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\rho_{2} r_{1}-\rho_{1} r_{2} \\
& \frac{B}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}} \\
& \frac{A}{\sigma_{a_{1}} \sigma_{a_{2}} \sigma_{z_{1}} \sigma_{z_{2}}}=\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}} .
\end{aligned}
$$

Therefore, the polynomial condition is

$$
\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right)+\left(\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}}\right) \theta+\left(\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}}\right) \theta^{2}=0 .
$$

Note that the leading polynomial coefficient is equal to zero if and only if $\rho_{1} r_{1}=\rho_{2} r_{2}$. This leads to three mutually-exclusive cases, as follows.
(a) The data are stationary, that is, $\rho_{1}=\rho_{2}$ and $r_{1}=r_{2}$. Then, all polynomial coefficients are zero so that all values of θ satisfy Lee's restriction.
(b) We have $\rho_{1} r_{1}=\rho_{2} r_{2}$ but $r_{1} \neq r_{2}$. Then, the resulting linear equation admits one and only one solution in θ.
(c) The leading polynomial coefficient is non-zero, so, $\rho_{1} r_{1} \neq \rho_{2} r_{2}$. In this case, the discriminant of the second-order polynomial equals

$$
\begin{aligned}
\Delta & =\left(\frac{r_{1}}{r_{2}}-\frac{r_{2}}{r_{1}}\right)^{2}-4\left(\frac{\rho_{1}}{r_{2}}-\frac{\rho_{2}}{r_{1}}\right)\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right) \\
& =\left(\frac{r_{1}}{r_{2}}\right)^{2}+\left(\frac{r_{2}}{r_{1}}\right)^{2}-2-4\left(\rho_{1} \rho_{2}\left(\frac{r_{1}}{r_{2}}+\frac{r_{2}}{r_{1}}\right)-\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right)
\end{aligned}
$$

Set $x=\left(r_{1} / r_{2}\right) \geq 0$ and write

$$
\Delta(x)=x^{2}+\frac{1}{x^{2}}-2-4\left(\rho_{1} \rho_{2}\left(x+\frac{1}{x}\right)-\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right)
$$

which is smooth for $x>0$. The derivative of Δ with respect to x equals

$$
\begin{aligned}
\Delta^{\prime}(x) & =2 x-\frac{2}{x^{3}}-4\left(\rho_{1} \rho_{2}\left(1-\frac{1}{x^{2}}\right)\right) \\
& =\frac{2}{x^{3}}\left(x^{4}-1\right)-4 \rho_{1} \rho_{2} \frac{1}{x^{2}}\left(x^{2}-1\right) \\
& =\frac{2}{x^{3}}\left(x^{2}-1\right)\left(x^{2}+1-2 \rho_{1} \rho_{2} x\right)
\end{aligned}
$$

Note that the Cauchy-Schwarz inequality implies that $x^{2}+1-2 \rho_{1} \rho_{2} x \geq 0$ so that, for $x \geq 0$,

$$
\operatorname{sgn}\left(\Delta^{\prime}(x)\right)=\operatorname{sgn}(x-1)
$$

Further, $\Delta(1)=4\left(\rho_{1}-\rho_{2}\right)^{2}$. Therefore, $\Delta(x)$ is always non-negative. Hence, in this case, the polynomial condition generically has two solutions in θ.

Conclusion

Conditions (g) and (h) of Lee (1999) imply an index-sufficiency condition for the distribution function of regressors. In generic cases in a standard example, this condition is restrictive and is not verified by every possible value of the parameter of interest, θ, but only two.

