IP₃ receptors and Ca²⁺ entry

Nagendra Babu Thillaiappan^a, Pragnya Chakraborty^{a,b}, Gaiti Hasan^b, Colin W. Taylor^{a,*}

^aDepartment of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom. ^bNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India.

*Corresponding author: E-mail address: cwt1000@cam.ac.uk (Colin W. Taylor)

Highlights

- IP_3Rs mediate Ca^{2+} release from ER and thereby store-operated Ca^{2+} entry (SOCE)
- IP₃Rs parked near ER-PM junctions may locally deplete ER and facilitate SOCE
- In *Drosophila*, IP₃Rs also regulate SOCE downstream of depleting the ER of Ca^{2+}
- In some cells, small numbers of PM IP₃Rs directly mediate Ca²⁺ entry

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP_3R) are the most widely expressed intracellular Ca²⁺ release channels. Their activation by IP₃ and Ca²⁺ allows Ca²⁺ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca²⁺] may directly regulate cytosolic effectors or fuel Ca²⁺ uptake by other organelles, while the decrease in ER luminal [Ca²⁺] stimulates store-operated Ca²⁺ entry (SOCE). We are close to understanding the structural basis of both IP₃R activation, and the interactions between the ER Ca²⁺-sensor, STIM, and the plasma membrane Ca²⁺ channel, Orai, that lead to SOCE. IP₃Rs are the usual means through which extracellular stimuli, through ER Ca²⁺ release, stimulate SOCE. Here, we review evidence that the IP₃Rs most likely to respond to IP₃ are optimally placed to allow regulation of SOCE. We also consider evidence that IP₃Rs may regulate SOCE downstream of their ability to deplete ER Ca²⁺ stores. Finally, we review evidence that IP₃Rs in the plasma membrane can also directly mediate Ca²⁺ entry in some cells.

Keywords:

 Ca^{2+} entry Ca^{2+} puff Ca^{2+} signal Endoplasmic reticulum IP_3 receptor Ryanodine receptor Store-operated Ca^{2+} entry STIM

1. Introduction

All animal cells maintain steep Ca^{2+} concentration gradients across the plasma membrane (PM) and across the membranes of at least some intracellular organelles, most notably the endoplasmic reticulum (ER). Other intracellular organelles, including the Golgi apparatus [1], nuclear envelope [2] and lysosomes [3] also provide intracellular Ca^{2+} stores. Regulated opening of Ca²⁺-permeable channels within these membranes allow cells to call upon either finite intracellular Ca²⁺ stores to generate cytosolic Ca²⁺ signals or the effectively unlimited pool of extracellular Ca^{2+} . The resulting Ca^{2+} signals then regulate many different cellular activities, the nature of which may depend on the source of the Ca^{2+} [4]. A diverse array of Ca²⁺-permeable channels is expressed in the PM of different cells, including channels regulated directly by extracellular stimuli, membrane potential, temperature changes, stretch and various intracellular signals. By contrast, only two major families of related intracellular Ca^{2+} channels are thought to be responsible for linking extracellular stimuli to release of Ca^{2+} from the ER. The first of these are ryanodine receptors (RyR), which are opened either by their direct interaction with a voltage-sensing Ca^{2+} channel in the PM (RyR1 in skeletal muscle) or else by Ca^{2+} (RvR2 and RvR3), most commonly delivered to them when depolarization evokes Ca²⁺ entry through voltage-gated Ca²⁺ channels in the PM, in heart for example [5]. RyR may also be stimulated by cyclic ADP-ribose, but this is contentious [6]. The second major family of intracellular Ca^{2+} release channels, and the focus of this review, comprises the inositol 1,4,5-trisphosphate receptors (IP_3R) [7]. These are more widely expressed than RyR, with almost all animal cells expressing at least one of the three IP_3R subtypes. Since IP₃Rs open only when they have bound IP₃[8], they link receptors in the PM that stimulate phospholipase C (PLC), and thereby IP_3 formation, to release of Ca^{2+} from the ER (Fig. 1A).

One of several recurrent themes in Ca^{2+} signalling is the interaction between different sources of Ca^{2+} [9]. In heart, for example, Ca^{2+} entering the cell across the PM triggers Ca^{2+} release from the sarcoplasmic reticulum (SR) through RyR2. Similar amplification of Ca^{2+} entry signals by Ca^{2+} -induced Ca^{2+} release (CICR) through RyRs occurs in other cells too. An even more widespread interaction between ER and PM underlies store-operated Ca^{2+} entry (SOCE), wherein loss of Ca^{2+} from the ER stimulates Ca^{2+} entry through PM channels. Abundant evidence has vindicated the idea, first developed by Jim Putney [10], that store depletion is itself sufficient to activate SOCE. Foremost amongst this evidence is the oftrepeated demonstration that depletion of ER Ca^{2+} stores by inhibiting their Ca^{2+} pumps with thapsigargin or cyclopiazonic acid is sufficient to stimulate SOCE [11, 12]. An obvious appeal of this scheme is that IP_3 , by releasing Ca^{2+} from the ER, coordinates both phases of the Ca^{2+} signal: an initial Ca^{2+} release followed by a sustained SOCE. When the stimulus provoking IP_3 production is removed, the IP_3Rs close, the ER Ca^{2+} stores can refill, and SOCE is switched off.

In this short review, we consider three further features of the relationship between IP_3Rs and Ca^{2+} entry. We first describe results suggesting that physiological stimulus intensities may selectively deplete an ER sub-compartment that preferentially regulates SOCE. We then consider evidence that IP_3Rs , independent of their ability to release Ca^{2+} from the ER, may contribute to regulation of SOCE. Finally, we describe the presence of IP_3Rs within the PM, where they can contribute directly to Ca^{2+} entry. We begin with short overviews of IP_3Rs and SOCE.

2. Regulation of IP₃Rs and SOCE

2.1. Regulation of IP₃Rs

 IP_3Rs are tetrameric structures, assembled from closely related subunits (IP_3R1-3). The subunits differ in their distributions, affinities for IP₃, and modulation by the many additional signals that regulate IP₃Rs [13]. Discussion of the latter lies beyond our present scope, but it is noteworthy, in the context of our focus on SOCE and IP₃Rs, that both cAMP [14] and cAMP-dependent protein kinase (PKA) [15, 16] regulate IP₃Rs, while SOCE regulates the activity of some adenylyl cyclases [17]. Despite the differences between IP₃R subtypes, they all share core properties. All IP₃Rs form large-conductance Ca²⁺ channels with relatively weak selectivity for Ca^{2+} over K⁺ [18]. They are all expressed predominantly within the ER. although they are also present in the nuclear envelope [2], Golgi apparatus [1], and perhaps more rarely, in the PM [19] (Section 5). Most importantly, all IP₃Rs are co-regulated by IP₃ and cytosolic Ca^{2+} [9, 18]. Both ligands are required for an IP₃R channel to open. The simplest scheme suggests that binding of IP₃ primes IP₃Rs to bind Ca^{2+} , and Ca^{2+} binding then triggers channel opening (Fig. 1B) [20, 21]. This interplay is important because it allows IP₃Rs to amplify, through CICR, the Ca^{2+} signals evoked by neighbouring IP₃Rs or by other Ca^{2+} channels (Fig. 1C) (Section 3.1). Higher concentrations of cytosolic Ca^{2+} inhibit IP₃Rs [22, 23]. There is, therefore, a biphasic dependence of IP_3R gating on cytosolic Ca^{2+} concentration: low Ca²⁺ concentrations are stimulatory, while higher concentrations inhibit [22, 23].

The IP₃R has a structure reminiscent of a square mushroom [24, 25] (**Fig. 1A,D**). Most of the stalk is embedded in the ER membrane and the cap, with a diameter of \sim 25 nm, extends

~13 nm into the cytosol. The large size is relevant because it may exclude IP₃Rs from the narrow junctions between the ER and the PM [26], but at other junctions, between ER and mitochondria or lysosomes for example, it puts the head of the IP₃R, where Ca^{2+} exits, close to the neighbouring organelle. Within the ER membrane, there are thought to be 24 transmembrane domains (TMDs), six from each IP₃R subunit, although a recent report suggests the possible presence of two additional TMDs between TMD1 and TMD2 [25]. The structure of this transmembrane region is similar in RyRs and, to a lesser extent, in voltagegated cation channels. The ion-conducting path is lined by the four tilted TMD6 helices, with a short (~1 nm) 'selectivity filter' at the luminal end, through which hydrated cations must pass in single-file. The selectivity filter, its supporting pore-loop helix and a flexible luminal loop are all formed by residues linking TMD5 to TMD6. Near the cytosolic end of TMD6, a narrow hydrophobic constriction blocks the movement of ions in the closed channel. The hydrophobic side-chains of these residues must move for the pore to open. Opening of RyR is associated with splaying and bowing of TMD6, such that the occluding hydrophobic sidechain is displaced [27]. A similar mechanism may open the IP₃R pore. TMD6 extends well beyond the ER membrane (~1.5 nm) and then terminates in a short α -helical bundle (the linker, LNK) that includes a Zn^{2+} -finger motif and aligns parallel with the ER membrane [24, 25]. Hence, structures formed by the TMD5-6 loop guard the luminal entrance to the pore, whereas the cytosolic exit is formed by the extended TMD6. Each of these regions is enriched in acidic residues that probably contribute to the cation selectivity.

Activation of an IP₃R begins when IP₃ binds to the clam-like IP₃-binding core (IBC) (**Fig. 1E**). This is located towards the N-terminal of the primary sequence of each subunit, and comprises two domains (α and β), with the pocket between them providing the positively charged residues that interact with IP₃ [28]. All four subunits must bind IP₃ before the channel can open [8]. The N-terminal region forms a triangular structure at the cap of the mushroom. The N-terminal domain (suppressor domain, SD; also known as β -trefoil domain 1, BTF1) and IBC- β (BTF2) line the cytosolic exit of the channel. Adjacent subunits interact through a loop within the SD that contacts the neighbouring IBC- β [24, 25, 29, 30]. IBC- α lies behind this structure at the tip of a series of largely α -helical domains (ARM 1-3) that extend in a boomerang-like shape to meet the LNK domain (**Fig. 1F**). IP₃ binding causes the IBC clam to partially close [25, 29, 31], and this conformational change is linked to IP₃R gating through the SD, but the exact sequence is unresolved. It may be that movement of IBC- α relative to a firmly anchored IBC- β /SD re-orients the ARM domains [25], or it may be that tethering of IBC- α to the SD causes re-orientation of the SD and disruption of inter-

subunit interactions [27, 29, 32]. In any event, it is clear that IP₃ binds some 7 nm away from the hydrophobic constriction of the closed pore, and the IP₃-evoked conformational changes must pass through the contacts between ARM3 and LNK domains (**Fig. 1F**).

ARM3 terminates in the intervening lateral domain (ILD), which is sandwiched between the cytosolic structures and the TMDs, runs largely parallel with the ER membrane, and comprises two β-strands (which sit immediately beneath ARM3) followed by a helix-turnhelix motif that links to TMD1 (Fig. 1F). The LNK domain (an extension of TMD6) sits between the β - and α -helical components of the ILD. Hence, interleaved structures formed by extensions of ARM3 (ILD) and TMD6 (LNK) form the critical nexus between the cytosolic region and the pore of the IP₃R. Mutations within ILD disrupt IP₃R function [30], and the LNK domain contributes a conserved residue to a Ca^{2+} -binding site at the base of the ARM3 domain (Fig. 1F) [25]. This Ca²⁺-binding site, formed by residues at the interface of the cytosolic (base of ARM3) and pore (LNK domain) regions, suggests an appealing, but untested, link between Ca^{2+} and gating of the IP₃R. A high-resolution structure of IP₃R3 recently identified another Ca^{2+} -binding site, which is also formed by residues provided by different domains across a domain interface (ARM1 and ARM2) [25]. It is not yet clear how (or whether) either of these Ca^{2+} -binding sites relates to stimulation and inhibition of IP₃Rs by cytosolic Ca²⁺. It is, however, intriguing that both sites are formed by residues contributed by different domains, consistent with IP₃-evoked rigid-body movements of domains influencing whether Ca²⁺ binds to these sites.

We are getting closer to understanding how IP₃ binding to the IBC causes pore residues some 7 nm distant to move and allow Ca^{2+} to pass from the ER lumen to the cytosol. IP₃R activation is initiated by closure of the clam-like IBC, the conformational consequences of which must pass through the critical nexus formed between the cytoplasmic and pore domains at the ILD-LNK complex. Recalling that IP₃ primes IP₃Rs to bind Ca²⁺, which then triggers channel opening [21] (**Fig. 1B**), we can speculate that clam closure is communicated to either of the Ca²⁺-binding sites, at the ARM1-ARM2 interface or at the LNK-ARM3 nexus. The conformational changes evoked by Ca²⁺ binding must then pass through the ILD-LNK complex to cause movement of the hydrophobic residues in TMD6 that occlude the closed pore (**Fig. 1F**).

2.2. Regulation of SOCE

SOCE is stimulated by loss of Ca^{2+} from the ER. It is a feature of most, and perhaps all, animal cells. After a long history, which included suggestions that IP₃R might

conformationally couple empty Ca^{2+} stores to PM Ca^{2+} channels [33], it is now clear that there are two essential players in SOCE [34-36]. Stromal interaction molecule (STIM) is the sensor of ER Ca²⁺ content, and Orai is the low-conductance, highly Ca²⁺-selective PM channel regulated by STIM [12]. The two homologues of STIM (STIM1 and 2) differ in their Ca²⁺ affinities and efficacy in activating Orai [37, 38]. STIM1 is probably the major link between receptor-evoked store-depletion and SOCE activation [39], although it may cooperate with STIM2 [37]. Three genes encode Orai proteins (Orai1-3), all three of which can form homo- or hetero-hexameric STIM-gated Ca^{2+} channels, although there are subtle differences in their behaviours [12]. Each Orai subunit has 4 TMDs and cytosolic N- and Ctermini. The Ca²⁺-selective pore of Orai is lined by TMD1 from each of the six subunits. Until recently, the oligomeric state of the functional Orai1 channel was contentious [12], but elegant use of concatameric constructs has confirmed that the functional channel [40], like the high-resolution structure [41], is a hexamer. Furthermore all six C-termini of the Orai hexamer must bind STIM1 for the channel to open [42]. STIM is expressed (though not exclusively) in ER membranes, it has a single TMD, a luminal N-terminal that includes the Ca²⁺-sensing canonical EF-hand, and a C-terminal cytosolic region. The latter includes a polybasic C-terminal tail through which STIM interacts with PM lipids, probably phosphatidylinositol 4,5-bisphosphate (PIP₂); and the CRAC-activation domain (CAD), through which STIM activates Orai. It is noteworthy, for future discussion (Section 4), that Drosophila STIM lacks the polybasic C-terminal tail.

STIM is a dimer in unstimulated cells. Dissociation of Ca^{2+} from the EF hand of STIM promotes either strengthening of the existing association within a dimer or further oligomerization. This then triggers unmasking of the cytosolic CAD domain and polybasic tail [43]. The latter allows STIM1 to be trapped, as puncta, by PM lipids at largely preformed junctions, where the ER membrane and PM are about 10-20 nm apart. The separation, maintained by scaffold proteins [44-47], is important because it allows STIM, with its CAD domain, to reach out from the ER to the C-termini of Orai subunits in the PM. But it is significant also because the gap is probably too narrow to accommodate IP₃Rs (Section 3.1). Within the ER-PM junctions, STIM1 traps Orai, so that each is retained within the junction, where they form coincident puncta. At the cytosolic end of TMD4 of Orai, there is a long α helix that aligns parallel to the PM and pairs with its partner from the neighbouring TMD4 [41] to provide three pairs of anti-parallel helices with which the CAD domain of STIM interact to open the channel. Since Orai can bind several STIM, and STIM is itself

multimeric, the STIM-Orai interaction can assemble a tightly packed cluster of Orai channels within the ER-PM junction [38, 48].

While STIM and Orai are the essential components of SOCE, many additional proteins associate with them to regulate their activities or modulate the ensuing Ca²⁺ signals [49]. These include septins, which contribute to organizing the ER-PM junction [50]; STIMate, which enhances STIM activity at ER-PM junctions [51]; Sigma 1 receptors, which associate with STIM and attenuate its coupling to Orai [52]; a complex of junctate and junctophilin-4 [53, 54] that assists STIM recruitment; CRACR2A [55] and SARAF [56], which provide cytosolic Ca²⁺ regulation of the association between STIM and Orai; and POST, which is recruited to junctions by STIM and then regulates Ca²⁺ extrusion by the PM Ca²⁺ pump [57]. Regulation of the ER-PM junctions themselves provides another level of control for SOCE [58].

In the context of the present review, two features of SOCE are particularly pertinent. First, under physiological conditions SOCE is usually activated by loss of Ca^{2+} from the ER through IP₃Rs. Second, activation of SOCE depends steeply on the ER free Ca^{2+} concentration, such that substantial loss of Ca^{2+} from the ER is required before SOCE is detectably activated by STIM1 [39, 59, 60]. We return to these issues in the next section.

3. Licensed IP₃Rs may selectively activate SOCE

3.1. Immobile IP₃Rs adjacent to the PM are licensed to respond

High-resolution optical imaging, pioneered by Ian Parker, has revealed the subcellular organization of IP₃-evoked Ca²⁺ signals in cells loaded with a fluorescent Ca²⁺ indicator [61-63]. These 'optical patch-clamp' methods reveal the brief openings of individual IP₃Rs (as 'Ca²⁺ blips'); the co-ordinated opening of several (typically fewer than 10) IP₃Rs within small clusters ('Ca²⁺ puffs'); and the regenerative propagation of intracellular Ca²⁺ waves, which initiate more frequently as the IP₃ concentration increases [64, 65]. This hierarchy of Ca²⁺ release events is assumed to arise from CICR as higher concentrations of IP₃ prime more IP₃Rs to respond to Ca²⁺ diffusing to them from nearby active IP₃Rs (**Fig. 1C**). The large local Ca²⁺ signals delivered by Ca²⁺ puffs, which are a feature of all IP₃R subtypes [66], may allow local control of cytosolic effectors with relatively low affinity for Ca²⁺. Hence, as the stimulus intensity increases, the nature of the cytosolic Ca²⁺ signal changes from local to global, and that provides opportunities for encoding Ca²⁺ signals are amplified by this CICR mechanism, and so progress through the hierarchical sequence, depends on the concentration

of IP₃ and the separation of IP₃Rs. It is important to recognise, therefore, that subcellular geography may be as important as stimulation of biochemical pathways in shaping intracellular Ca^{2+} signals.

 Ca^{2+} puffs initiate at sites that remain immobile for many minutes [26, 61, 62, 66-68]. The pioneering studies of Ca^{2+} puffs suggested there were no more than a handful of such initiation sites per cell [61, 64, 69], but recent work suggests they are more abundant with perhaps a hundred sites per cell [66, 67]. Nevertheless, it is clear that Ca^{2+} puffs repeatedly initiate at sites that remain immobile for many minutes, and which include only a small fraction of the total cellular complement of IP₃Rs. There is, therefore, a conundrum in that most IP₃Rs (typically ~70%) appear to be mobile, yet IP₃-evoked Ca^{2+} signals initiate at fixed sites, leading Parker and his colleagues to speculate that anchoring of immobile IP₃Rs into clusters may prime them to respond to IP₃ [63, 69]. To gain further insight into this problem, we used gene-editing to attach enhanced green fluorescent protein (GFP) to the endogenous IP₃R1 of HeLa cells [26]. We demonstrated that all IP₃R1s, the major subtype in HeLa cells, are tagged with GFP, the tagged IP₃R1s are functional, assemble with other IP₃R subtypes, and they are expressed in clusters within ER membranes [26].

Single-step photobleaching analyses of endogenous GFP-IP₃R1 in HeLa cells suggest that most IP₃Rs form clusters, with up to ~40 IP₃Rs in each, and a mean of ~8 IP₃Rs per cluster [26] (Fig. 2A). The dimensions of a cluster, typically several 100 nm across, are similar to the dimensions estimated from a single-particle tracking analysis (~400 nm) [69]. These small IP_3R clusters, which we suggest may be the elementary structural units of IP_3R signalling [66], are expressed throughout the cell. Super-resolution analyses of the distribution of IP_3Rs within the clusters shows that many of the component IP₃Rs are too far apart to interact directly with each other (Fig. 2B). We suggest, therefore, that IP₃R clusters are loose confederations held together by scaffolding complexes that might involve cytosolic or ER proteins, lipid microdomains, or contacts between ER and other organelles (Fig. 2C). A surprising observation is the apparent independence of each cluster. There is no evident mixing of IP₃Rs between mobile and immobile clusters, and we observe clusters apparently moving past each other without losing their identities. Hence, once IP₃Rs are assembled into a cluster, it seems to be a long-lasting relationship. The observation that IP₃Rs are rather loosely distributed within their clusters aligns with several features of Ca²⁺ puffs. Firstly, although the rising phase of Ca^{2+} puffs is usually brisk, consistent with rapid recruitment of closely spaced IP₃Rs, it is sometimes possible to discern steps in the rising phase, suggestive of a looser coupling [64]. Secondly, and notwithstanding the blurring of signals as Ca^{2+}

diffuses away from IP₃Rs, the dimensions of Ca²⁺ puffs (~500 nm) are much larger than needed to accommodate ten or fewer IP₃Rs (each ~20 nm across). Thirdly, although puff sites are immobile, the peak of the Ca²⁺ signal wanders by up to 300 nm within the site during a puff [62], suggesting that active IP₃Rs may be as much as 300 nm apart. We conclude that most IP₃Rs, whether mobile or immobile, are corralled into loose confederations by scaffolding complexes that typically hold ~8 IP₃Rs in a long-lasting relationship.

Measurements, using FRAP [70-72] or single-particle tracking [26, 69], and evidence that stimuli can regulate IP₃R clustering [2, 73-78] attest to the mobility of IP₃Rs within ER membranes. Typically, these studies suggest that most IP₃Rs are mobile (mobile fractions, M_f , typically ~70%) and that most movement is by diffusion. Using single-particle tracking of endogenous GFP-IP₃Rs in HeLa cells to record the movement of IP₃R clusters, we observed that most clusters (~70%) were mobile, while the others remained immobile for periods of many minutes. Within the population of mobile clusters, most moved by diffusion, but a small fraction of the mobile clusters (~7%) moved directionally along microtubules, driven by kinesin and dynein motors [26]. Hence, most native IP₃Rs are clustered, and most of these clusters are mobile.

However, in HeLa cells, almost all Ca^{2+} puffs initiate close to the PM [26], consistent with similar observations in SH-SY5Y cells [79, 80]. Furthermore, the pattern is similar whether the Ca^{2+} signals are evoked by histamine to stimulate endogenous signalling pathways, or by photolysis of caged-IP₃ to allow uniform release of IP₃ throughout the cytosol. Indeed, both we [67] and others [81] have shown that endogenous signalling pathways and photo-released IP₃ activate the same Ca^{2+} puff sites. Simultaneous recording of the Ca^{2+} puffs evoked by IP₃ and the underlying distribution of endogenous GFP-IP₃Rs showed that Ca^{2+} puffs initiate only at immobile clusters of IP₃Rs [26]. This observation is important, because IP₃R clusters are expressed throughout the cell, not just near the PM, and most IP₃R clusters are mobile. Hence, only a small subset of the few thousand IP₃Rs in a cell, namely those within immobile clusters adjacent to the PM, is 'licensed' to respond to IP₃. There is, therefore, an additional level of regulation of IP₃Rs that endows them with the competence to respond to IP₃. The licensing factor has yet to be identified.

3.2. Licensed IP₃Rs abut ER-PM junctions where SOCE occurs

In addition to increasing cytosolic Ca^{2+} concentration, activation of IP₃Rs also causes a decrease in the luminal Ca^{2+} concentration of the ER, and that leads to activation of SOCE [47] (Section 2.2). There is, however, a problem in that the ER is widely thought to be

luminally continuous [82, 83], and yet substantial depletion of ER Ca^{2+} stores is required to cause detectable SOCE [39, 59, 60]. Furthermore, low-intensity stimulation, which evokes minimal overall loss of ER Ca^{2+} , evokes cytosolic Ca^{2+} oscillations that are sustained only when SOCE is active [39]. How might cells activate SOCE without globally depleting their ER of Ca^{2+} and so compromising additional ER functions, like protein folding?

Our results from HeLa cells show that the sites to which STIM1 translocates after loss of Ca^{2+} from the ER are immediately adjacent to (but not perfectly coincident with) the immobile near-PM IP₃R clusters that we know to be the sites where Ca^{2+} puffs occur (**Fig. 2D**) [26]. Because IP₃Rs project about 13 nm from the ER membrane [24] (Section 2.1), they may be too large to enter the narrow ER-PM junctions where STIM and Orai interact. This physical exclusion may account for the lack of perfect colocalization of STIM1 with immobile IP₃R clusters, but it leaves unexplained our observation that immobile near-PM IP₃R clusters are preferentially juxtaposed to the ER-PM SOCE junctions [26]. Future work will need to identify the tether that positions licensed IP₃R clusters adjacent to SOCE junctions. We can, however, speculate on the possible physiological significance of the juxtaposition.

We suggest that immobile near-PM IP₃R clusters sit alongside SOCE junctions and face the PM (Fig. 2E). Since PIP₂ recruits STIM to ER-PM junctions, the licensed IP₃R clusters are located immediately alongside the substrate (PIP₂) from which endogenous signalling pathways will generate IP₃. It is not however clear, given the compartmentalization of PIP₂ within the PM [84], STIM1 and PLC interact with the same pool of PIP₂. Activation of SOCE requires substantial loss of Ca^{2+} from the ER [39, 59, 60], yet while regulating SOCE the ER must also fulfill numerous additional functions, many of which require luminal Ca^{2+} [85]. We speculate that the positioning of licensed IP₃R clusters alongside SOCE junctions might allow IP₃R activation to locally deplete the ER and activate SOCE without trespassing into other Ca^{2+} -requiring ER functions. Finally, SOCE is acutely regulated by Ca^{2+} passing through the low-conductance Orai channel [12]. If IP₃Rs, with their very large Ca^{2+} conductance, were too close to SOCE junctions, they might disrupt this local feedback regulation. Hence, having the licensed IP₃Rs that will respond to IP₃ alongside, rather than within, SOCE junctions may provide the best compromise between local regulation of SOCE by local depletion of ER Ca^{2+} stores, while retaining acute auto-regulation of SOCE by Ca^{2+} passing through Orai channels (Fig. 2E) [26].

4. IP₃Rs also regulate SOCE independent of their ability to release ER Ca²⁺

Hitherto, the contribution of IP₃Rs to SOCE has been thought to depend only on their ability to release Ca^{2+} from the ER and thereby activate STIM1 (Fig. 3A). But several findings suggest an additional role for IP₃Rs. In *Drosophila*, just as in vertebrates, SOCE is mediated by STIM and Orai, although *Drosophila* has only a single gene for each. SOCE evoked by thapsigargin is attenuated in *Drosophila* neurons with mutant IP₃Rs. The obvious explanation for the defect would be that functional IP_3Rs normally contribute to the Ca^{2+} leak unmasked by inhibiting the ER Ca^{2+} pump with thapsigargin, and in their absence the stores empty less completely causing reduced activation of STIM [86, 87]. However, pan-neuronal knockdown of the single IP₃R subtype expressed in *Drosophila* and several mutant alleles of the IP₃R attenuated thapsigargin-evoked SOCE without affecting thapsigargin-evoked Ca²⁺ release from the ER [88]. These results suggest a role for IP₃Rs downstream of their ability to deplete the ER of Ca²⁺ (Fig. 3B). STIM and Orai expression are normal in neurons with mutant IP₃Rs, but their association after store depletion, whether assessed by immunoprecipitation or translocation to puncta, is attenuated. This suggests that IP₃Rs stabilize the interaction of STIM with Orai [88], consistent with evidence that both the attenuated SOCE [88] and systemic phenotypes of *Drosophila* IP₃R mutants are rescued by neuronal over-expression of STIM and Orai [87].

How might evidence that IP₃R contributes directly to downstream regulation of SOCE in *Drosophila* be reconciled with evidence from avian DT40 B cells, where graded depletion of Ca^{2+} stores evoked indistinguishable SOCE in cells with and without IP₃Rs (DT40-KO cells) [88]? One possibility is that the IP₃R is one of several proteins that influence STIM-Orai interactions (Section 2.2), and adaptive changes to the other modulators allow fully functional SOCE when IP₃Rs are lost from vertebrate cells. An alternative possibility is that modulation of SOCE by IP₃Rs is restricted to invertebrates. *Drosophila* STIM, for example, lacks the polybasic tail through which mammalian STIM is tethered to PIP₂. Perhaps the IP₃R, which can also bind to PIP₂ [89], provides an alternative tether for *Drosophila* STIM [88]. A third possibility is that the SOCE measured in DT40 cells after loss of IP₃Rs is not mediated by Orai, but by different Ca^{2+} -permeable channels [90, 91]. There is, therefore, a need to both define the properties of the IP₃R that intervene downstream of store depletion and to establish the extent to which such regulation extends beyond *Drosophila* (**Fig. 3B**).

5. Plasma membrane IP₃Rs can also mediate Ca²⁺ entry

SOCE is the almost universal partner of IP_3 -evoked Ca^{2+} release, and we have argued that the distribution of licensed IP_3Rs may allow physiological stimuli to cause sufficient depletion of

small ER compartments near the PM to activate SOCE (**Fig. 3A**, Section 3.2). We have further suggested that IP₃Rs may play modulatory roles downstream of store depletion (**Fig. 3B**, Section 4). Receptors that stimulate PLC, and so formation of IP₃, can also activate additional PM Ca²⁺ channels. Some transient receptor potential (TRP) channels, for example, are regulated by G proteins, PIP₂, diacylgycerol, Ca²⁺ or, more contentiously [92], by store depletion. Hence, there are many opportunities for cells to activate Ca²⁺ entry pathways in parallel with Ca²⁺ release from the ER by IP₃Rs and their inextricable link to SOCE (Section 2.2). In this final section, we briefly consider evidence that IP₃Rs within the PM can provide an additional parallel route for Ca²⁺ entry.

In DT40 cells, stimulation of PLC evokes both Ca²⁺ release from intracellular stores and Ca^{2+} entry. Both phases of the response require IP₃Rs [19, 93-95]. In DT40 cells, as in most cells, pharmacological depletion of ER Ca²⁺ stores activates SOCE, which can be detected using Ca²⁺ indicators [19, 91, 96, 97] or by whole-cell patch-clamp recording of CRAC $(Ca^{2+}-release activated Ca^{2+})$ currents [90, 98-101]. The SOCE is blocked by low concentrations of Gd^{3+} [102]. However, concentrations of Gd^{3+} that completely block thapsigargin-evoked SOCE, only partially block the Ca²⁺ entry evoked by stimulating PLC through the B-cell receptor (BCR) [19, 95]. Furthermore, whereas thapsigargin fails to evoke Ba²⁺ entry, activation of the BCR does [94, 95]. Hence, in DT40 cells there is an IP₃Rdependent Ca²⁺ entry that is clearly not SOCE, and which contributes about 50% of the BCRevoked Ca²⁺ entry [19]. The non-SOCE pathway is restored to DT40-IP₃RKO cells by expression of functional IP₃R [19]. In whole-cell patch-clamp recording from DT40 cells, IP₃ stimulates opening of large-conductance cation-selective channels. These are absent from cells without IP₃Rs, restored by expression of functional IP₃Rs, and most decisively, the conductance of these PM channels is predictably affected by point mutations within the pore [19]. Further confirmation that IP₃Rs within the PM carry these currents (rather than IP₃R regulating another channel from the ER) was provided by expressing IP₃R with an α bungarotoxin-binding site inserted into a luminal loop. When expressed in DT40 cells, this binding site would be within the ER for intracellular IP₃R, but in the extracellular space for IP₃R in the PM. Intracellular IP₃ activated the mutant channel in the PM, and its conductance was increased by addition of extracellular, but not intracellular, α -bungarotoxin [19]. The only tenable conclusion, namely that IP₃R straddles the PM and provides the pore through which IP_3 -activated currents pass, has been confirmed by others [15, 103, 104].

A striking feature of the PM IP_3R is the reliability with which DT40 cells 'count' small numbers of functional IP_3R into the PM. In both native DT40 cells and those transfected with

IP₃R, IP₃Rs are invariably detected in the PM, but there are always very few in each cell, typically 1-3 IP₃R/cell and never more than 5 IP₃R/cell. The presence of so few IP₃Rs in the PM might arise through imperfect ER retention, with a few IP₃Rs 'escaping' to the PM. We would then expect such rare events to follow a Poisson distribution, in which case many cells would be predicted to have no PM IP₃Rs. However, we invariably detected at least one PM IP₃R in each cell, suggesting that IP₃R expression within the PM is actively regulated rather than a failure of ER retention [19, 105]. The tiny numbers of IP₃Rs, given their very large conductance relative to Orai, are sufficient to provide substantial Ca^{2+} entry signals. Furthermore, even when IP₃R are massively over-expressed in the ER, there is no change in the number of functional IP₃R detected in the PM [19]. These observations suggest that cells count IP₃R into the PM, with just 2-3 from the 10,000 IP₃R expressed in each DT40 cell being targeted to the PM. We had expected such counting to rely on feedback from active IP₃R within the PM regulating trafficking of IP₃R. But neither the cytosolic Ca^{2+} signal evoked by IP₃Rs nor any IP₃-evoked conformational change within the IP₃R is required for IP₃Rs to be reliably counted into the PM [105]. How, without any apparent feedback monitoring, DT40 cells reliably count small numbers of functional IP₃R into the PM remains a mystery.

We conclude that in addition to their long-recognised role in mediating release of Ca^{2+} from the ER [106], IP₃R can also be expressed in the PM [19, 95, 105, 107, 108] and mediate Ca^{2+} entry (**Fig. 3C**). In DT40 cells, half the Ca^{2+} entry evoked by activation of the BCR occurs via SOCE mediated by some 10,000 or so Orai channels, and the other half is carried by the 1-3 IP₃R expressed in the PM [19]. The two very different modes of Ca^{2+} entry – dribbling into cells though low-conductance Orai channels or gushing in through IP₃Rs – will generate very different local Ca^{2+} signals that might differentially regulate intracellular events.

6. Conclusions

IP₃-evoked Ca²⁺ release and SOCE exist in an almost inseparable functional relationship in most cells. IP₃Rs licensed to respond to IP₃ are anchored alongside the ER-PM junctions where SOCE occurs and that, we suggest, may allow the licensed IP₃Rs to locally and substantially deplete the ER of Ca²⁺ and to thereby activate STIM1 and SOCE (**Fig. 3A**). It seems reasonable to think of the ER-PM junction and the associated licensed IP₃Rs as the autonomous and fundamental signalling unit for SOCE. In addition to their role in linking cell-surface receptors to loss of Ca²⁺ from the ER, IP₃Rs may also intervene at a later stage by regulating interactions between active STIM and Orai (**Fig. 3B**). The underlying mechanism and the generality of this contribution of IP₃Rs to SOCE need to be established. Finally, at least in some cells, IP₃Rs in the PM can directly mediate Ca²⁺ entry (**Fig. 3C**), which, given the weak cation selectivity of IP₃Rs, would also be associated with membrane depolarization.

Acknowledgements

Supported by the Wellcome Trust (101844) and Biotechnology and Biological Sciences Research Council UK (BB/P005330/1) to CWT; Department of Science and Technology (DST), Ministry of Science and Technology, India to GH; and by the DST INSPIRE Fellowship programme and an Infosys travel grant to PC.

References

- P. Pinton, T. Pozzan, R. Rizzuto, The Golgi apparatus is an inositol 1,4,5trisphosphate-sensitive Ca²⁺ store, with functional properties distinct from those of the endoplasmic reticulum, EMBO J. 17 (1998) 5298-5308.
- [2] T.U. Rahman, A. Skupin, M. Falcke, C.W. Taylor, Clustering of IP_3 receptors by IP_3 retunes their regulation by IP_3 and Ca^{2+} , Nature 458 (2009) 655-659.
- [3] H. Xu, D. Ren, Lysosomal physiology, Annu. Rev. Physiol. 77 (2015) 57-80.
- [4] K. Samanta, A.B. Parekh, Spatial Ca²⁺ profiling: decrypting the universal cytosolic Ca²⁺ oscillation, J. Physiol. 595 (2016) 3053-3062.
- [5] F. Van Petegem, Ryanodine receptors: allosteric ion channel giants, J. Mol. Biol. 427 (2014) 31-53.
- [6] E. Venturi, S. Pitt, E. Galfre, R. Sitsapesan, From eggs to hearts: what is the link between cyclic ADP-ribose and ryanodine receptors?, Cardiovasc. Ther. 30 (2010) 109-116.
- [7] M.J. Berridge, The inositol trisphosphate/calcium signaling pathway in health and disease, Physiol. Rev. 96 (2016) 1261-1296.
- [8] K.J. Alzayady, L. Wang, R. Chandrasekhar, L.E. Wagner, 2nd, F. Van Petegem, D.I.
 Yule, Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca²⁺ release, Sci. Signal. 9 (2016) ra35.
- [9] A.M. Rossi, C.W. Taylor, Intracellular Ca²⁺ release channels lessons from beyond the cell, J. Cell Sci. In press (2018).
- [10] J.W. Putney, Jr., A model for receptor-regulated calcium entry, Cell Calcium 7 (1986) 1-12.

- [11] J.W. Putney, Jr., Capacitative calcium entry revisited., Cell Calcium 11 (1990) 611-624.
- [12] M. Prakriya, R.S. Lewis, Store-operated calcium channels, Physiol. Rev. 95 (2015) 1383-1436.
- [13] D.L. Prole, C.W. Taylor, Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs, J. Physiol. 594 (2016) 2849-2866.
- [14] S.C. Tovey, S.G. Dedos, E.J.A. Taylor, J.E. Church, C.W. Taylor, Selective coupling of type 6 adenylyl cyclase with type 2 IP₃ receptors mediates a direct sensitization of IP₃ receptors by cAMP, J. Cell Biol. 183 (2008) 297-311.
- [15] L.E. Wagner, 2nd, S.K. Joseph, D.I. Yule, Regulation of single inositol 1,4,5trisphosphate receptor channel activity by protein kinase A phosphorylation, J. Physiol. 586 (2008) 3577-3596.
- [16] C.W. Taylor, Regulation of IP₃ receptors by cyclic AMP, Cell Calcium 63 (2017) 48-52.
- [17] D.M. Cooper, V.G. Tabbasum, Adenylate cyclase-centred microdomains, Biochem.J. 462 (2014) 199-213.
- [18] J.K. Foskett, C. White, K.H. Cheung, D.O. Mak, Inositol trisphosphate receptor Ca²⁺ release channels, Physiol. Rev. 87 (2007) 593-658.
- [19] O. Dellis, S. Dedos, S.C. Tovey, T.-U.-. Rahman, S.J. Dubel, C.W. Taylor, Ca²⁺ entry through plasma membrane IP₃ receptors, Science 313 (2006) 229-233.
- [20] J.S. Marchant, C.W. Taylor, Cooperative activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity, Curr. Biol. 7 (1997) 510-518.
- [21] C.E. Adkins, C.W. Taylor, Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca²⁺, Curr. Biol. 9 (1999) 1115-1118.
- [22] M. Iino, Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca²⁺ release in smooth muscle cells of the guinea pig taenia caeci, J. Gen. Physiol. 95 (1990) 1103-1122.
- [23] I. Bezprozvanny, J. Watras, B.E. Ehrlich, Bell-shaped calcium-response curves for Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature 351 (1991) 751-754.
- [24] G. Fan, M.L. Baker, Z. Wang, M.R. Baker, P.A. Sinyagovskiy, W. Chiu, S.J. Ludtke, I.I. Serysheva, Gating machinery of InsP₃R channels revealed by electron cryomicroscopy, Nature 527 (2015) 336-341.

- [25] N. Paknejad, R.K. Hite, Structural basis for the regulation of inositol trisphosphate receptors by Ca^{2+} and IP₃, Nat. Struct. Mol. Biol. 25 (2018) 660-668.
- [26] N.B. Thillaiappan, A.P. Chavda, S.C. Tovey, D.L. Prole, C.W. Taylor, Ca²⁺ signals initiate at immobile IP₃ receptors adjacent to ER-plasma membrane junctions, Nat. Commun. 8 (2017) 1505.
- [27] A. des Georges, O.B. Clarke, R. Zalk, Q. Yuan, K.J. Condon, R.A. Grassucci, W.A. Hendrickson, A.R. Marks, J. Frank, Structural basis for gating and activation of RyR1, Cell 167 (2016) 145-157.
- [28] I. Bosanac, J.-R. Alattia, T.K. Mal, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, M. Ikura, Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700.
- M.-D. Seo, S. Velamakanni, N. Ishiyama, P.B. Stathopulos, A.M. Rossi, S.A. Khan,
 P. Dale, C. Li, J.B. Ames, M. Ikura, C.W. Taylor, Structural and functional conservation of key domains in InsP₃ and ryanodine receptors, Nature 483 (2012) 108-112.
- [30] K. Hamada, H. Miyatake, A. Terauchi, K. Mikoshiba, IP₃-mediated gating mechanism of the IP₃ receptor revealed by mutagenesis and X-ray crystallography, Proc. Natl. Acad. Sci. USA 114 (2017) 4661-4666.
- [31] C.C. Lin, K. Baek, Z. Lu, Apo and InsP₃-bound crystal structures of the ligandbinding domain of an InsP₃ receptor, Nat. Struct. Mol. Biol. 18 (2011) 1172-1174.
- [32] C. Li, J. Chan, F. Haeseleer, K. Mikoshiba, K. Palczewski, M. Ikura, J.B. Ames, Structural insights into Ca²⁺-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1, J. Biol. Chem. 284 (2009) 2472-2481.
- [33] R.F. Irvine, "Quantal" Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates a possible mechanism, FEBS Lett. 263 (1990) 5-9.
- [34] M. Prakriya, S. Feske, Y. Gwack, S. Srikanth, A. Rao, P.G. Hogan, Orai1 is an essential pore subunit of the CRAC channel, Nature 443 (2006) 230-233.
- [35] J. Liou, M.L. Kim, W.D. Heo, J.T. Jones, J.W. Myers, J.E. Ferrell, Jr., T. Meyer,
 STIM is a Ca²⁺ sensor essential for Ca²⁺-store-depletion-triggered Ca²⁺ influx, Curr.
 Biol. 15 (2005) 1235-1241.
- Y. Zhou, P. Meraner, H.T. Kwon, D. Machnes, M. Oh-hora, J. Zimmer, Y. Huang,
 A. Stura, A. Rao, P.G. Hogan, STIM1 gates the store-operated calcium channel
 ORAI1 in vitro, Nat. Struct. Mol. Biol. 17 (2010) 112-116.

- [37] H.L. Ong, L.B. de Souza, C. Zheng, K.T. Cheng, X. Liu, C.M. Goldsmith, S. Feske,
 I.S. Ambudkar, STIM2 enhances receptor-stimulated Ca²⁺ signaling by promoting
 recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions,
 Sci. Signal. 8 (2015) ra3.
- [38] Y. Zhou, X. Cai, R.M. Nwokonko, N.A. Loktionova, Y. Wang, D.L. Gill, The STIM-Orai coupling interface and gating of the Orai1 channel, Cell Calcium 63 (2017) 8-13.
- [39] G.S. Bird, S.Y. Hwang, J.T. Smyth, M. Fukushima, R.R. Boyles, J.W. Putney, Jr.,
 STIM1 is a calcium sensor specialized for digital signaling, Curr. Biol. 19 (2009) 1 6.
- [40] M. Yen, L.A. Lokteva, R.S. Lewis, Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel, Biophys. J. 111 (2016) 1897-1907.
- [41] X. Hou, L. Pedi, M.M. Diver, S.B. Long, Crystal structure of the calcium releaseactivated calcium channel Orai, Science 338 (2012) 1308-1313.
- [42] M. Yen, R.S. Lewis, Physiological CRAC channel activation and pore properties require STIM1 binding to all six Orai1 subunits, J. Gen. Physiol. In press (2018).
- [43] M.K. Korzeniowski, I.M. Manjarres, P. Varnai, T. Balla, Activation of STIM1-Orai1 involves an intramolecular switching mechanism, Sci. Signal. 3 (2010) ra82.
- [44] C.L. Chang, T.S. Hsieh, T.T. Yang, K.G. Rothberg, D.B. Azizoglu, E. Volk, J.C. Liao, J. Liou, Feedback regulation of receptor-induced Ca²⁺ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions, Cell Rep. 5 (2013) 813-825.
- [45] R. Fernandez-Busnadiego, Y. Saheki, P. De Camilli, Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites, Proc. Natl. Acad. Sci. USA 112 (2015) E2004-E2013.
- [46] F. Giordano, Y. Saheki, O. Idevall-Hagren, S.F. Colombo, M. Pirruccello, I.
 Milosevic, E.O. Gracheva, S.N. Bagriantsev, N. Borgese, P. De Camilli, PI(4,5)P₂ dependent and Ca²⁺-regulated ER-PM interactions mediated by the extended
 synaptotagmins, Cell 153 (2013) 1494-1509.
- [47] P.G. Hogan, The STIM1-ORAI1 microdomain, Cell Calcium 58 (2015) 357-367.
- [48] Y. Zhou, R.M. Nwokonko, X. Cai, N.A. Loktionova, R. Abdulqadir, P. Xin, B.A. Niemeyer, Y. Wang, M. Trebak, D.L. Gill, Cross-linking of Orai1 channels by STIM proteins, Proc. Natl. Acad. Sci. USA 115 (2018) E3398-E3407.

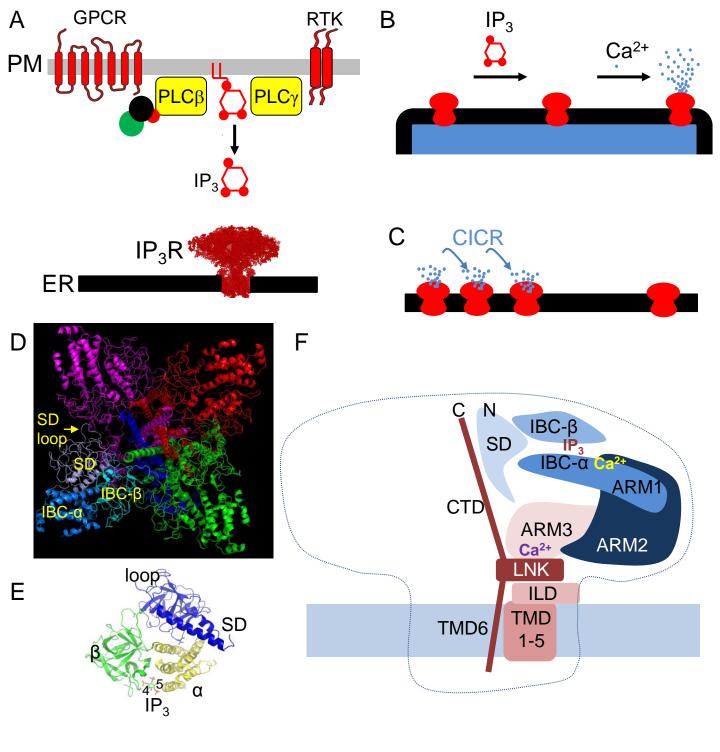
- [49] S. Srikanth, B. Ribalet, Y. Gwack, Regulation of CRAC channels by protein interactions and post-translational modification, Channels 7 (2013) 354-363.
- [50] S. Sharma, A. Quintana, G.M. Findlay, M. Mettlen, B. Baust, M. Jain, R. Nilsson, A. Rao, P.G. Hogan, An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca²⁺ entry, Nature 499 (2013) 238-242.
- [51] J. Jing, L. He, A. Sun, A. Quintana, Y. Ding, G. Ma, P. Tan, X. Liang, X. Zheng, L. Chen, X. Shi, S.L. Zhang, L. Zhong, Y. Huang, M.Q. Dong, C.L. Walker, P.G. Hogan, Y. Wang, Y. Zhou, Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca²⁺ influx, Nat. Cell Biol. 17 (2015) 1339-1347.
- [52] S. Srivats, D. Balasuriya, M. Pasche, G. Vistal, J.M. Edwardson, C.W. Taylor, R.D. Murrell-Lagnado, Sigma1 receptors inhibit store-operated Ca²⁺ entry by attenuating coupling of STIM1 to Orai1, J. Cell Biol. 213 (2016) 65-79.
- [53] S. Srikanth, M. Jew, K.D. Kim, M.K. Yee, J. Abramson, Y. Gwack, Junctate is a Ca²⁺-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1), Proc. Natl. Acad. Sci. USA 109 (2012) 8682-8687.
- [54] J.S. Woo, S. Srikanth, M. Nishi, P. Ping, H. Takeshima, Y. Gwack, Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca²⁺ dynamics in T cells, Proc. Natl. Acad. Sci. USA 113 (2016) 2762-2767.
- [55] S. Srikanth, H.J. Jung, K.D. Kim, P. Souda, J. Whitelegge, Y. Gwack, A novel EFhand protein, CRACR2A, is a cytosolic Ca²⁺ sensor that stabilizes CRAC channels in T cells, Nat. Cell Biol. 12 (2010) 436-446.
- [56] R. Palty, A. Raveh, I. Kaminsky, R. Meller, E. Reuveny, SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling, Cell 149 (2012) 425-438.
- [57] G. Krapivinsky, L. Krapivinsky, S.C. Stotz, Y. Manasian, D.E. Clapham, POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters, Proc. Natl. Acad. Sci. USA 108 (2011) 19234-10239.
- [58] Y.J. Chen, C.L. Chang, W.R. Lee, J. Liou, RASSF4 controls SOCE and ER-PM junctions through regulation of PI(4,5)P₂, J. Cell Biol. 216 (2017) 2011-2025.
- [59] R.M. Luik, B. Wang, M. Prakriya, M.M. Wu, R.S. Lewis, Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation, Nature 454 (2008) 538-542.

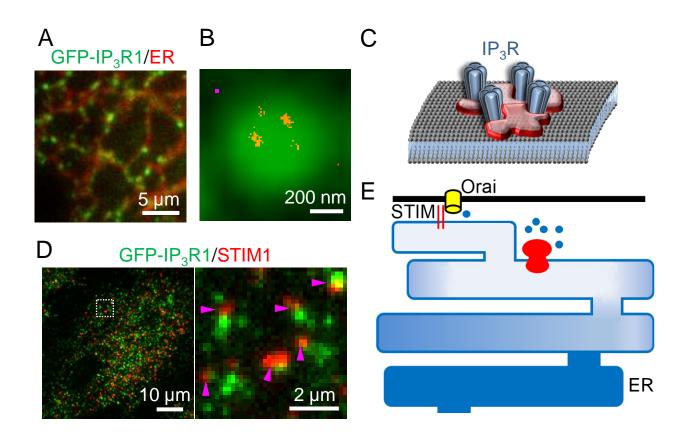
- [60] O. Brandman, J. Liou, W.S. Park, T. Meyer, STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca²⁺ levels, Cell 131 (2007) 1327-1339.
- [61] M.D. Bootman, M.J. Berridge, P. Lipp, Cooking with calcium: the recipes for composing global signals from elementary events, Cell 91 (1997) 367-373.
- [62] S.M. Wiltgen, I.F. Smith, I. Parker, Superresolution localization of single functional IP_3R channels utilizing Ca²⁺ flux as a readout, Biophys. J. 99 (2010) 437-446.
- [63] I. Parker, I.F. Smith, Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp, J. Gen. Physiol. 136 (2010) 119-127.
- [64] I.F. Smith, I. Parker, Imaging the quantal substructure of single IP₃R channel activity during Ca²⁺ puffs in intact mammalian cells, Proc. Natl. Acad. Sci. USA 106 (2009) 6404-6409.
- [65] K. Thurley, S.C. Tovey, G. Moenke, V.L. Prince, A. Meena, A.P. Thomas, A. Skupin, C.W. Taylor, M. Falcke, Reliable encoding of stimulus intensities within random sequences of intracellular Ca²⁺ spikes, Sci. Signal. 7 (2014) ra59.
- [66] S. Mataragka, C.W. Taylor, All three IP₃ receptor subtypes generate Ca^{2+} puffs, the universal building blocks of IP₃-evoked Ca^{2+} signals, J. Cell Sci. In press (2018).
- [67] M.V. Keebler, C.W. Taylor, Endogenous signalling pathways and caged-IP₃ evoke Ca²⁺ puffs at the same abundant immobile intracellular sites, J. Cell Sci. 130 (2017) 3728-3739.
- [68] I.F. Smith, S.M. Wiltgen, J. Shuai, I. Parker, Ca²⁺ puffs originate from preestablished stable clusters of inositol trisphosphate receptors, Sci. Signal. 2 (2009) ra77.
- [69] I.F. Smith, D. Swaminathan, G.D. Dickinson, I. Parker, Single-molecule tracking of inositol trisphosphate receptors reveals different motilities and distributions, Biophys. J. 107 (2014) 834-845.
- [70] K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.
- [71] E. Pantazaka, C.W. Taylor, Differential distribution, clustering and lateral diffusion of subtypes of inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 286 (2011) 23378-23387.

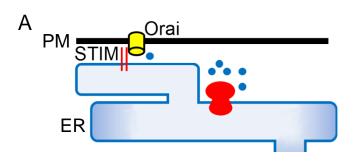
- [72] M. Ferreri-Jacobia, D.-O.D. Mak, J.K. Foskett, Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca²⁺ release channel in endoplasmic reticulum membrane, J. Biol. Chem. 280 (2005) 3824-3831.
- B.S. Wilson, J.R. Pfeiffer, A.J. Smith, J.M. Oliver, J.A. Oberdorf, R.J.H.
 Wojcikiewicz, Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors, Mol. Biol. Cell 9 (1998) 1465-1478.
- Y. Tateishi, M. Hattori, T. Nakayama, M. Iwai, H. Bannai, T. Nakamura, T.
 Michikawa, T. Inoue, K. Mikoshiba, Cluster formation of inositol 1,4,5trisphosphate receptor requires its transition to open state, J. Biol. Chem. 280 (2005) 6816-6822.
- [75] M. Iwai, Y. Tateishi, M. Hattori, A. Mizutani, T. Nakamura, A. Futatsugi, T. Inoue,
 T. Furuichi, T. Michikawa, K. Mikoshiba, Molecular cloning of mouse type 2 and
 type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2
 receptor splice variant, J. Biol. Chem. 280 (2005) 10305-10317.
- [76] M. Chalmers, M.J. Schell, P. Thorn, Agonist-evoked inositol trisphosphate receptor (IP₃R) clustering is not dependent on changes in the structure of the endoplasmic reticulum, Biochem. J. 394 (2006) 57-66.
- [77] Y. Tojyo, T. Morita, A. Nezu, A. Tanimura, The clustering of inositol 1,4,5trisphosphate (IP₃) receptors is triggered by IP₃ binding and facilitated by depletion of the Ca²⁺ store, J. Pharm. Sci. 107 (2008) 138-150.
- [78] M. Geyer, F. Huang, Y. Sun, S.M. Vogel, A.B. Malik, C.W. Taylor, Y.A.
 Komarova, Microtubule-associated protein EB3 regulates IP₃ receptor clustering and Ca²⁺ signaling in endothelial cells, Cell Rep. 12 (2015) 79-89.
- [79] I.F. Smith, S.M. Wiltgen, I. Parker, Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca²⁺ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP₃, Cell Calcium 45 (2009) 65-76.
- [80] K.L. Ellefsen, I. Parker, Dynamic Ca²⁺ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca²⁺ puffs, Cell Calcium 71 (2018) 34-44.
- [81] J.T. Lock, I.F. Smith, I. Parker, Comparison of Ca²⁺ puffs evoked by extracellular agonists and photoreleased IP₃, Cell Calcium 63 (2017) 43-47.
- [82] M.K. Park, O. Petersen, A.V. Tepikin, The endoplasmic reticulum as one continuous Ca²⁺ pool: visualization of rapid Ca²⁺ movements and equilibration, EMBO J. 19 (2000) 5729-5739.

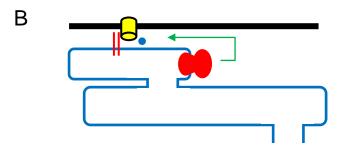
- [83] Y. Okubo, J. Suzuki, K. Kanemaru, N. Nakamura, T. Shibata, M. Iino, Visualization of Ca²⁺ filling mechanisms upon synaptic inputs in the endoplasmic reticulum of cerebellar Purkinje cells, J. Neurosci. 35 (2015) 15837-15846.
- [84] R.G. de Rubio, R.F. Ransom, S. Malik, D.I. Yule, A. Anantharam, A.V. Smrcka, Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production, Sci. Signal. 11 (2018) eaan1210.
- [85] M.J. Berridge, The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium 32 (2002) 235-249.
- [86] G. Venkiteswaran, G. Hasan, Intracellular Ca²⁺ signaling and store-operated Ca²⁺ entry are required in Drosophila neurons for flight, Proc. Natl. Acad. Sci. USA 106 (2009) 10326-10331.
- [87] N. Agrawal, G. Venkiteswaran, S. Sadaf, N. Padmanabhan, S. Banerjee, G. Hasan, Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulinproducing neurons regulates systemic intracellular calcium homeostasis and flight, J. Neurosci. 30 (2010) 1301-1313.
- [88] S. Chakraborty, B.K. Deb, T. Chorna, V. Konieczny, C.W. Taylor, G. Hasan, Mutant IP₃ receptors attenuate store-operated Ca²⁺ entry by destabilizing STIM-Orai interactions in *Drosophila* neurons, J. Cell Sci. 129 (2016) 3903-3910.
- [89] V.D. Lupu, E. Kaznacheyeva, U.M. Krishna, J.R. Falck, I. Bezprozvanny, Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5trisphosphate receptors, J. Biol. Chem. 273 (1998) 14067-14070.
- Y. Mori, M. Wakamori, T. Miyawkawa, M. Hermosura, Y. Hara, M. Nishida, K. Hirose, A. Mizushima, M. Kurosaki, E. Mori, K. Gotoh, T. Okada, A. Fleig, R. Penner, M. Iino, T. Kurosaki, Transient receptor potential 1 regulates capacitative Ca²⁺ entry and Ca²⁺ release from endoplasmic reticulum in B lymphocytes, J. Exp. Med. 195 (2002) 673-681.
- K. Kiselyov, G.A. Mignery, M.X. Zhu, S. Muallem, The N-terminal domain of the IP₃ receptor gates store-operated hTrp3 channels, Mol. Cell 4 (1999) 423-429.
- [92] W.I. DeHaven, B.F. Jones, J.G. Petranka, J.T. Smyth, T. Tomita, G.S. Bird, J.W.
 Putney, Jr., TRPC channels function independently of STIM1 and Orai1, J. Physiol. 587 (2009) 2275-2298.
- [93] D.B. van Rossum, R.L. Patterson, K. Kiselyov, D. Boehning, R.K. Barrow, D.L.
 Gill, S.H. Snyder, Agonist-induced Ca²⁺ entry determined by inositol 1,4,5trisphosphate recognition, Proc. Natl. Acad. Sci. USA 101 (2004) 2323-2327.

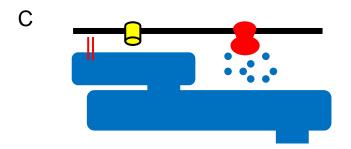
- K. Venkatachalam, H.-T. Ma, D.L. Ford, D.L. Gill, Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP₃ knockout cells, J. Biol. Chem. 276 (2001) 33980-33985.
- [95] G. Vazquez, B. Wedel, J., G.S.J. Bird, S.K. Joseph, J.W. Putney, An inositol 1,4,5trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes, EMBO J. 21 (2002) 4531-4538.
- [96] H.T. Ma, K. Venkatachalam, J.B. Parys, D.L. Gill, Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2aminoethoxydiphenyl borate in DT40 lymphocytes, J. Biol. Chem. 277 (2002) 6915-6922.
- [97] G. Vazquez, J.-P. Lievremont, G.S.J. Bird, J.W.J. Putney, Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes, Proc. Natl. Acad. Sci. USA 98 (2001) 11777-11782.
- [98] M. Prakriya, R.S. Lewis, Potentiation and inhibition of Ca²⁺ release-activated Ca²⁺ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP₃ receptors, J. Physiol. 536 (2001) 3-19.
- [99] S.C. Chung, A. Limnander, T. Kurosaki, A. Weiss, J.I. Korenbrot, Coupling Ca²⁺ store release to Icrac channel activation in B lymphocytes requires the activity of Lyn and Syk kinases, J. Cell Biol. 177 (2007) 317-328.
- [100] K. Kiselyov, D.M. Shin, N. Shcheynikov, M. Kurosaki, S. Muallem, Regulation of Ca^{2+} -release-activated Ca^{2+} current (I_{crac}) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells, Biochem. J. 360 (2001) 17-22.
- [101] J.P. Lievremont, T. Numaga, G. Vazquez, L. Lemonnier, Y. Hara, E. Mori, M. Trebak, S.E. Moss, G.S. Bird, Y. Mori, J.W. Putney, Jr., The role of canonical transient receptor potential 7 in B-cell receptor-activated channels, J. Biol. Chem. 280 (2005) 35346-35351.
- [102] A.B. Parekh, J.W. Putney, Store-operated calcium channels, Physiol. Rev. 85 (2005) 757-810.
- [103] M.J. Betzenhauser, L.E. Wagner, 2nd, J.H. Won, D.I. Yule, Studying isoformspecific inositol 1,4,5-trisphosphate receptor function and regulation, Methods 46 (2008) 177-182.
- [104] M.J. Betzenhauser, L.E. Wagner, 2nd, M. Iwai, T. Michikawa, K. Mikoshiba, D.I.
 Yule, ATP modulation of Ca²⁺ release by type-2 and type-3 InsP₃R: Differing ATP


sensitivities and molecular determinants of action, J. Biol. Chem. 283 (2008) 21579-21587.


- [105] O. Dellis, A.M. Rossi, S.G. Dedos, C.W. Taylor, Counting functional IP₃ receptors into the plasma membrane, J. Biol. Chem. 283 (2008) 751-755.
- [106] M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21.
- [107] A.A. Khan, J.P. Steiner, M.G. Klein, M.F. Schneider, S.H. Snyder, IP₃ receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor, Science 257 (1992) 815-818.
- [108] L. Vaca, D.L. Kunze, IP₃-activated Ca²⁺ channels in the plasma membrane of cultured vascular endothelial cells, Am. J. Physiol. 269 (1995) C733-C738.


Fig. 1. Regulation of IP₃Rs by IP₃ and Ca^{2+} . (A) Receptors in the PM, including G-proteincoupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), stimulate PLC and so production of IP₃, which then binds to the IP₃-binding site on each subunit of the tetrameric IP_3R . This leads to channel opening and release of Ca²⁺ from the ER. (B) IP_3 binding primes IP_3Rs to bind Ca^{2+} , and that leads to channel opening. (C) This regulation of IP_3Rs by IP_3 and Ca^{2+} allows them to propagate Ca^{2+} signals by CICR. (D) Cytosolic view of the closed IP₃R1 determined by cryo-EM [24], with the N-terminal domains of a single subunit highlighted and the loop through which the SD of one subunit and IBC- β of its neighbour interact. (E) IP₃ binds in the cleft between IBC- β and IBC- α . (F) Simplified view of a single IP₃R subunit showing some of the interactions between domains. The SD and IBC are at the top of the structure. Three large α -helical domains (ARM1-3) form the edges and underside of the mushroom. The only contact between the cytosolic and pore region occurs at the nexus between ARM3 with its C-terminal ILD domain and the C-terminal extension of TMD6 (LNK). Ca²⁺-binding sites are formed by residues contributed across the interfaces between ARM1 and ARM2, and between LNK and the underside of ARM3 [25]. In one structure the C-terminal extends as an α -helix from LNK to the mushroom cap [24], but in another it is unresolved beyond LNK [25].


Fig. 2. Licensed IP₃Rs may locally deplete ER Ca²⁺ and stimulate SOCE. (A) Endogenously tagged EGFP-IP₃R1 form puncta in the ER membranes of HeLa cells, with an average of ~8 tetrameric IP₃Rs in each [26]. (B) Super-resolution (STORM) imaging shows that within puncta, IP₃Rs are quite diffusively distributed. (C) We suggest that scaffolds hold IP₃Rs within puncta. (D) Total internal reflection fluorescence (TIRF) image of an EGFP-IP₃R1-HeLa cell treated with thapsigargin to deplete Ca²⁺ stores showing distribution of IP₃Rs and STIM1. The enlargement shows (arrow heads) the juxtaposition of immobile IP₃R puncta and STIM1. (E) The ER-PM junction with its associated licensed IP₃Rs may comprise the basic functional unit for SOCE, with the licensed IP₃Rs causing the large local decrease in ER Ca²⁺ concentration required to activate STIM.


Fig. 3. IP₃Rs and Ca²⁺ entry. (A) Licensed IP₃Rs alongside the junctions where SOCE occurs may allow physiological stimuli to cause the large local decrease in ER Ca²⁺ concentration required to activate STIM1. (B) Even when the Ca²⁺ stores are empty, IP₃Rs may intervene to stimulate SOCE by enhancing interactions between STIM and Orai. The mechanisms are not fully resolved, but they appear to arise from IP₃R facilitating the coupling of STIM to Orai [88]. (C) In some cells, IP₃Rs in the PM directly mediate Ca²⁺ entry.

