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Indium oxide is a wide band gap semiconductor that provides the platform for most n-type
transparent conductors. Optical absorption is dominated by a strong edge starting at the optical
gap around 3.7 eV, but the material also exhibits a prominent absorption tail starting around 2.7 eV.
We use first principles methods to show that this tail arises from interband transitions that are dipole
forbidden at the static lattice level, but become dipole allowed via a dynamical symmetry breaking
induced by nuclear motion. We also report the temperature dependence of the absorption onset,
which exhibits a red shift with heating, driven by a combination of electron-phonon coupling and
thermal expansion. We argue that the role of dynamical symmetry breaking in optical absorption
is a general feature of semiconductors and that the computational design of novel materials for
optical applications, ranging from transparent conductors to solar cells, should incorporate the
lattice dynamics of the crystal.

Indium oxide (In2O3) is a versatile wide band gap semi-
conductor [1] which finds applications in areas ranging
from gas sensors [2] to optoelectronic devices such as solar
cells or flat panel displays [3–8]. The optoelectronic ap-
plications arise mostly due to the use of tin-doped In2O3

as an n-type transparent conductor, and a large body
of research exists regarding both optical and transport
properties of this material.

It might therefore appear surprising that even basic
quantities such as the nature of the band gap of In2O3

continue to attract intensive research efforts [9–18]. Early
experimental reports suggested that In2O3 had a direct
band gap around 3.7 eV exhibiting strong optical absorp-
tion, and an indirect band gap around 2.7 eV exhibiting
much weaker absorption [9, 11]. However, first principles
calculations invariably reported either direct band gaps
or slightly indirect band gaps of maximum size 0.05 eV
[12, 13]. Walsh and co-workers resolved this conundrum
by a combination of group theory arguments, first prin-
ciples calculations, and x-ray spectroscopy, arguing that
the absorption tail observed below the optical gap at
3.7 eV arises from weak transitions that are formally for-
bidden due to dipole selection rules [14]. Similar phe-
nomena have been reported in other systems [19, 20].
Although the dipole-forbidden picture of the band gap of
In2O3 is now largely accepted, available first principles
calculations underestimate the strength of the measured
absorption tail by multiple orders of magnitude [17] thus
severely limiting their predictive power.

In this work, we resolve this discrepancy showing that
the absorption tail in In2O3 arises from a dynamical
symmetry breaking that allows weak optical absorption
across formally dipole forbidden states. We accomplish
this by performing first principles optical absorption cal-
culations that include the effects of lattice dynamics
[21, 22], thus extending the applicability of computa-

tional techniques used to explain absorption in indirect
band gap semiconductors [23–28] and absorption by free
carriers in doped semiconductors [29–31].

Apart from providing a microscopic picture for the op-
tical absorption of In2O3, we expect that the methodol-
ogy used in this work will prove useful in the exploration
of novel materials for transparent conducting applica-
tions. This line of research is motivated by the scarcity
of indium and the associated need for replacement n-
type transparent conductors, as well as the need for a
good p-type transparent conductor. Alternatives range
from using other transparent conducting oxides such as
BaSnO3 [32–35], to novel design principles that include
non-oxide semiconductors [36, 37], graphene [38], metal
nanowires [39], correlated metals [40], or bulk metals en-
gineered to have low interband absorption [41]. The opti-
cal properties of these materials typically exhibit indirect
transitions or rely on the enforcement of selection rules to
ensure transparency in the optical range [27, 28, 37, 41].
A full understanding of the optical properties of these
candidate transparent conductors thus requires the in-
clusion of lattice dynamics as described in this work.

We consider the ground state cubic Ia3 structure of
In2O3 with 40 atoms in the primitive cell. We perform
first principles calculations based on density-functional
theory (DFT) [42, 43] as implemented in the castep
[44] plane wave pseudopotential code. Our DFT calcula-
tions use the Perdew-Burke-Ernzerhof (PBE) generalised
gradient approximation to the exchange-correlation func-
tional [45], which is known to underestimate band gap
sizes and therefore we correct this by using a scissor op-
erator [46, 47] of +2.116 eV, chosen so that the static
lattice optical band gap corresponds to an energy of
3.75 eV, consistent with experimental reports [9, 10, 15].
Note that the absorption tail starts at lower energies of
about 2.7 eV. We additionally perform lattice dynamics
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FIG. 1. Band structure of cubic In2O3. The CBM and the
top 18 valence bands are labelled according to the even (blue)
or odd (red) parity of the corresponding states at the Γ point.

calculations based on the finite displacement method [48]
with nondiagonal supercells [49] and use these within the
Williams-Lax theory [21, 22, 24, 25] to calculate optical
absorption at finite temperature. The optical constants
are calculated using the optados package [50, 51]. Fur-
ther details of the calculations are described in the Sup-
plemental Material [52].

In the single-electron band theory of solids optical ab-
sorption can be studied by considering transitions be-
tween electronic levels induced by a time-dependent elec-
tromagnetic field of amplitude A0 and polarisation ê. We
consider an initial electronic state |ψvk〉 of energy εvk
with valence band index v and momentum k and a con-
duction band final state |ψck〉 of energy εck. The first
order transition probability between these two states is
given by Fermi’s golden rule within the dipole approxi-
mation:

Pvk→ck =
2π

~

(
eA0

mγ

)2

|Mcvk|2δ(εck − εvk − ~ω), (1)

where we have denoted the speed of light, γ, (to avoid
confusion with conduction states), m is the electron mass,
e the electron charge, ~ω is the energy of the absorbed
photon, and the optical matrix element is

Mcvk = 〈ψck|ê · p|ψvk〉. (2)

Selection rules arising from symmetry are an important
feature of the optical matrix element of Eq. (2). The
electric dipole operator p has odd symmetry under in-
version, which implies that Mcvk = 0 for transitions be-
tween states of the same parity. These states can arise
in systems with inversion symmetry Ci, whose two one-
dimensional irreducible representations are labelled by
their even (+1) and odd (−1) parities.

Cubic In2O3 is a centrosymmetric crystal, and the

electron states at the Γ point can be classified accord-
ing to their parity eigenvalues because the symmetry of
k = 0 is the full point group symmetry of the crystal
and therefore includes inversion (see Fig. 1 and Table I).
Walsh and co-workers [14] showed that the minimum di-
rect band gap of In2O3, which occurs at the Γ point
as shown in Fig. 1, is dipole forbidden because the va-
lence band maximum (VBM) and the conduction band
minimum (CBM) are both of even parity. They further
demonstrated that strong optical absorption only occurs
from the valence band at −0.725 eV (see Table I) which
is of odd parity and therefore dipole allowed. Although
there are two sets of valence bands at higher energies of
−0.227 eV and −0.428 eV which are also dipole allowed,
their optical matrix elements are small (see Table I), and
therefore strong optical absorption only occurs from the
−0.725 eV valence band, which determines the so-called
optical gap observed in experiments in the range 3.5–
3.8 eV [9, 10, 15]. This can be seen in the static lattice
absorption spectrum of In2O3 shown in Fig. 2, which ex-
hibits a sharp increase at energies around 3.75 eV, the
location of the optical gap.

The parity argument provides a convincing explana-
tion for the observation of the optical gap at an energy
about 0.7 eV higher than the nominal minimum band gap
at 3.03 eV. The weak but dipole allowed transitions from
the valence bands at −0.227 eV and −0.428 eV provide
an absorption tail at the static lattice level, as shown in
Fig. 2. This tail also has contributions from weak absorp-
tion arising from states at k 6= 0, for which parity is not
a good quantum number and therefore the corresponding
optical matrix elements are dipole allowed. The contribu-
tions from states at k 6= 0 is weak because for sufficiently
small k the states are largely aligned with their k = 0
counterparts, thus exhibiting strongly suppressed optical
matrix elements between the VBM and CBM.

However, these weak sub-optical gap contributions are
insufficient to account for the experimentally observed
tail. First, optical absorption starts at energies in the
range 2.6–2.9 eV [9, 10, 15, 17] but the tail exhibited
by the calculated static lattice absorption coefficient in
Fig. 2 starts above 3 eV. Second, the calculated absorp-
tion coefficient at the tail is multiple orders of magnitude
too weak compared to experiment [17]. For example, the
experimental absorption coefficient is about 500 cm−1 at
2.9 eV, and reaches 1500 cm−1 at 3.0 eV [17], values which
are two to three orders of magnitude higher than those
of static lattice calculations (see Fig. 2 and Ref. [14]). We
note that our static lattice absorption coefficient results
agree with those of Ref. [14], but disagree with those re-
cently reported in Ref. [55], in which a significant over-
estimation of the absorption coefficient compared to ex-
periment is calculated.

Lattice dynamics provides an explanation for the
stronger tail observed experimentally. Within the adi-
abatic approximation, electronic quantities can be modi-
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TABLE I. Electronic and optical properties of In2O3 at the BZ center. Band energies are measured with respect to the valence
band maximum, and we report the band degeneracies, parities (determined using c2x [53]), and the optical matrix elements
|McvΓ|2 = |〈ψcΓ|ê · p|ψvΓ〉|2 between the CBM at 3.032 eV and a number of valence band states. Results are shown at the
static lattice level, and for thermal line distortions [54] corresponding to 0 K (zero-point motion) and 300 K. For bands that are
degenerate at the static lattice level, we consider the average over the optical matrix elements at 0 K and 300 K.

Band energy (eV) Degeneracy Parity |McvΓ|2 (static) |McvΓ|2 (0 K) |McvΓ|2 (300 K)

3.032 1 1 – – –

0.000 3 1 0.000 0.006 0.010

−0.227 3 −1 0.015 0.020 0.023

−0.238 1 1 0.000 0.025 0.033

−0.264 2 1 0.000 0.002 0.007

−0.317 3 1 0.000 0.020 0.039

−0.428 3 −1 0.008 0.044 0.052

−0.719 3 1 0.000 0.346 0.320

−0.725 3 −1 0.800 0.346 0.320
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FIG. 2. Absorption coefficient of In2O3 at the static lattice
level of theory (dashed black line), and including lattice dy-
namics at multiple temperatures (solid lines). The inset shows
the same data around the absorption onset, with dashed grey
vertical lines depicting the location of the minimum band gap
Eg and the optical band gap Eop. The inset also shows a
comparison with the experimental data (circles) reported in
Ref. [17].

fied by nuclear motion by considering the average over
all nuclear configurations distributed according to the
temperature dependent nuclear density [56]. Consider
a generic atomic configuration u = {uνq} where uνq is
the amplitude of the normal mode of vibration labelled
by phonon branch ν and wave vector q. In this nota-
tion, the static lattice corresponds to u = 0. The optical
matrix element becomes

Mcvk(u) = 〈ψck(u)|ê · p|ψvk(u)〉. (3)

Most nuclear configurations u break inversion symmetry,

and therefore parity is no longer a good quantum num-
ber, even for the states at k = 0. It follows that the
optical matrix elements at Γ that are dipole forbidden
at the static lattice level become dipole allowed when
lattice dynamics are incorporated. This dynamical sym-
metry breaking leads to enhanced absorption compared
to the static lattice absorption. This is shown in Fig. 2,
where we plot the optical absorption coefficient includ-
ing lattice dynamics at 0 K (quantum zero-point motion)
as well as finite temperatures up to 400 K. The vibra-
tionally averaged absorption onset undergoes a red shift
to about 2.6 eV, recovering good agreement with experi-
mental observations. Furthermore the absorption coeffi-
cient increases by multiple orders of magnitude for pho-
ton energies below the optical gap, reaching a value be-
tween 100 and 1000 cm−1 between 2.9 and 3.1 eV. These
values compare favourably with experiment [17], allowing
for an uncertainty of up to 0.2 eV in the scissor operator
that we have chosen to fix the static lattice optical band
gap at 3.75 eV. We emphasise that our approach allows
us to include absorption tails and the shift of absorption
peaks with temperature on the same footing.

To quantify the effects of dynamical symmetry break-
ing on the dipole-forbidden optical matrix elements, we
compare the optical matrix elements at the static lat-
tice level with those including nuclear dynamics in Table
I. The dynamical matrix elements at 0 K and 300 K are
calculated from atomic configurations corresponding to
points on thermal lines at those temperatures [54]. These
are mean configurations of the system for which the value
of an electronic quantity (such as the optical matrix ele-
ment) is equal to the vibrational average of that quantity
as a consequence of the mean-value theorem for integrals
[54, 56]. The results in Table I show that the matrix el-
ements involving valence states of even parity vanish at
the static lattice level due to the dipole selection rules.
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However, the corresponding matrix elements at 0 K and
300 K are non-zero, and their magnitude increases with
increasing temperature, driven by the dynamical symme-
try breaking induced by lattice vibrations. We can also
see that optical transitions from states at −0.227 eV and
−0.428 eV, which are not dipole forbidden but have small
matrix elements at the static lattice level, also increase
in magnitude with increasing temperature. The states at
−0.719 eV are even and therefore transitions from them
are dipole forbidden, and the states at −0.725 eV are odd
and transitions are dipole allowed, with the latter exhibit-
ing large matrix elements associated with the optical gap
of In2O3. When lattice dynamics are included, these two
sets of bands, which are very close in energy at the static
lattice level, become mixed at the dynamical level, and
we therefore report the average over all six bands in Ta-
ble I. Inspecting individual matrix elements shows that
their magnitudes are similar to the reported average, sug-
gesting that the dynamics makes these two sets of bands
equivalent.

We note that additional contributions to transitions
between formally dipole forbidden states arise from sec-
ond order perturbation theory [57]. These transitions
bypass the selection rules because they are mediated by
an intermediate state i that could be of a different parity
to the initial and final states. We expect these contri-
butions to be small because the transition strength is
proportional to (εik − εvk ∓ ~ω)−1, and the highly dis-
persive conduction band of In2O3 leads to an isolated
conduction band minimum and thus to a large denomi-
nator in the second order perturbative term which sup-
presses its value. Another contribution would arise from
the presence of defects, which statically break inversion
symmetry and could therefore also allow optical transi-
tions between the band edges at the Γ point that would
contribute to the absorption tails. We finally note that
excitonic contributions have been reported for In2O3 [18],
but the symmetry arguments provided in this work are
independent of those.

In the Supplemental Material [52] we report analogous
optical absorption calculations including the effects of
lattice dynamics for two additional polymorphs of In2O3

which have also been stabilised under ambient conditions
[58–65], finding similar results to those reported here for
the cubic ground state structure.

The phonon-assisted optical absorption reported so far
has been calculated at the fixed equilibrium volume. The
equilibrium lattice parameter of cubic In2O3 calculated
using PBE is 10.293 Å, a value that overestimates the ex-
perimental lattice parameter by about 2% [66], a typical
number for PBE-based volumes. However, here we are
interested in thermal expansion, for which PBE repro-
duces the correct trend.

Using the quasiharmonic approximation [67], we con-
sider In2O3 structures with lattice parameters ranging
from 10.293 Å to 10.367 Å in steps of 0.011 Å, and re-
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FIG. 3. Thermal expansion of In2O3. (a) Relative Helmholtz
free energy as a function of the cubic lattice parameter for a
range of temperatures. The black triangles indicate the min-
ima of the corresponding Helmholtz free energy curves. (b)
Temperature dependence of the optical (top) and minimum
(bottom) band gaps of In2O3 arising from thermal expansion.

laxed internal coordinates. For each of these structures
we calculate the Helmholtz free energy using the har-
monic approximation to lattice dynamics. The diagram
on the left of Fig. 3 shows the calculated Helmholtz free
energy relative to the static lattice energy of In2O3 as a
function of lattice parameter and for temperatures rang-
ing from 0 K to 400 K. The black triangles indicate the
minimum of each temperature curve, and provide the
quasiharmonic estimate of the equilibrium volume at that
temperature. Available experimental data of thermal ex-
pansion in In2O3 only starts at 273.15 K, showing an in-
crease of the cubic lattice parameter from 300 K to 400 K
of 0.06% by the dilatometric method [68] and of 0.09%
by the more accurate x-ray method [66]. The calculated
change of 0.12% between 300 K and 400 K is closer to the
x-ray results, but overestimates the lattice expansion by
an amount similar to the discrepancy between the two
experimental methods.

The diagram on the right of Fig. 3 shows the tempera-
ture dependence of the optical and minimum band gaps
of In2O3 arising from the effects of thermal expansion.
The optical band gap at 0 K (including quantum zero-
point motion) is 28 meV lower in energy than the static
lattice band gap of 3.750 eV. Increasing temperature to
400 K leads to a further decrease in the size of the band
gap of 53 meV from 0 K. The minimum band gap exhibits
a weaker temperature dependence, with a decrease of
25 meV due to quantum zero-point motion from a static
lattice value of 3.032 eV, and a further decrease of 44 meV
to 400 K.

Comparing the change in the band gap arising from
thermal expansion in Fig. 3 to the change arising from the
electron-phonon interaction in Fig. 2 we observe that the
electron-phonon coupling contribution dominates. For
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example, the absorption onset decreases by 140 meV
due to electron-phonon coupling when temperature in-
creases from 0 K to 400 K, whereas the corresponding de-
crease arising from thermal expansion is 44 meV. Adding
these two contributions leads to an overall red shift of
the band gap of 184 meV, which corresponds to 60%
of the 316 meV red shift reported experimentally [17].
Recent calculations have demonstrated that semilocal
DFT tends to underestimate the strength of electron-
phonon coupling in both metals [69–71] and semiconduc-
tors [72, 73], and we therefore attribute the discrepancy
between our calculations and the experimental temper-
ature dependence to the use of semilocal DFT in our
study.

In summary, we have studied optical absorption in
In2O3 polymorphs showing that, although the minimum
band gap corresponds to a dipole forbidden optical tran-
sition, this transition becomes allowed when nuclear vi-
brations dynamically break the inversion symmetry of
the system. Using first principles calculations, we pre-
dict an absorption coefficient for the absorption tail of
cubic In2O3 that is in good agreement with experimental
observations, thereby resolving a longstanding disagree-
ment between theory and experiment of multiple orders
of magnitude in the optical absorption coefficient. Our
calculations also show a significant red shift of the ab-
sorption onset with increasing temperature, with contri-
butions from both electron-phonon coupling and thermal
expansion.

More generally, our results demonstrate that formally
forbidden transitions in semiconductors can become al-
lowed driven by dynamical symmetry breaking. This has
important consequences to understand the optical prop-
erties of known semiconductors such as In2O3, and also
for the computational design of novel materials for ap-
plications ranging from transparent conductors to solar
cells.
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the Winton Programme for the Physics of Sustainability,
and from Robinson College, Cambridge, and the Cam-
bridge Philosophical Society for a Henslow Research Fel-
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