

1	IP ₃ receptors – lessons from analyses <i>ex cellula</i>
2	
3	Ana M. Rossi and Colin W. Taylor [*]
4	
5	Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
6	
7	*Author for correspondence: cwt1000@cam.ac.uk
8	
9	
10	Running title
11	IP ₃ receptors
12	
13	
14	Key words
15	Bilayer recording; Ca^{2+} channel; Endoplasmic reticulum; Ion channel structure; IP_3 receptor;

16 Nuclear patch-clamp; Permeabilized cell; Radioligand binding; Ryanodine receptor.

17 ABSTRACT

- 18 Inositol 1,4,5-trisphosphate receptors (IP_3Rs) are widely expressed intracellular channels that
- 19 release Ca^{2+} from the endoplasmic reticulum (ER). We review how studies of IP₃Rs removed
- 20 from their intracellular environment (*'ex cellula'*), alongside similar analyses of ryanodine
- 21 receptors, have contributed to understanding IP₃R behaviour. Analyses of permeabilized cells
- 22 demonstrated that the ER is the major intracellular Ca^{2+} store, and that IP₃ stimulates Ca^{2+}
- release from it. Radioligand binding confirmed that the 4,5-phosphates of IP₃ are essential for
- 24 activating IP_3Rs , and facilitated IP_3R purification and cloning, which paved the way to
- 25 structural analyses. Reconstitution of IP₃Rs into lipid bilayers and patch-clamp recording
- 26 from the nuclear envelope established that IP_3Rs have a large conductance and select weakly
- 27 between Ca^{2+} and other cations. Structural analyses are now revealing how IP₃ binding to the
- N-terminus of the tetrameric IP_3R opens the pore ~7nm away from the IP_3 -binding core
- 29 (IBC). Communication between the IBC and pore passes through a nexus of interleaved
- 30 domains contributed by structures associated with the pore and cytosolic domains, which
- together contribute to a Ca^{2+} -binding site. These structural analyses provide a plausible
- explanation for the suggestion that IP₃ gates IP₃Rs by first stimulating Ca^{2+} binding, which
- leads to pore opening and Ca^{2+} release.

34 Introduction

- 35 Inositol 1,4,5-trisphosphate receptors (IP₃Rs) and ryanodine receptors (RyR) are the two
- major families of intracellular Ca^{2+} -release channels in animal cells (**Fig. 1A**). IP₃Rs are
- 37 expressed in most cells, whereas RyRs have a more restricted distribution. RyRs are most
- 38 abundant in excitable cells, notably in striated muscle, where they contribute to excitation-
- contraction coupling (Fig. 1A) (Van Petegem, 2014). In this review, we focus on IP_3Rs , and
- 40 how methods applied to IP_3Rs removed from intact cells have contributed to our
- 41 understanding of IP₃R behaviour. Progress with understanding IP₃Rs and RyRs has
- 42 developed in parallel, and with this progress it became clear that the two families share
- 43 structural and functional features (Baker et al., 2017; Seo et al., 2012). Hence, despite our
- 44 focus on IP₃Rs, we draw also on evidence from analyses of RyRs.
- 45 Classic work by Sydney Ringer demonstrated that cardiac muscle contraction requires
- 46 extracellular Ca^{2+} (Ringer, 1883). This was, with benefit of hindsight, the first of many
- 47 studies to show that the contributions to physiological responses of extracellular Ca^{2+} and
- 48 Ca^{2+} held within intracellular stores are entangled. For cardiac muscle, depolarization of the
- 49 plasma membrane (PM) causes voltage-gated Ca^{2+} channels ($Ca_v 1.2$) to open, and the local
- 50 increase in cytosolic free Ca^{2+} concentration $[Ca^{2+}]_c$ is then amplified by Ca^{2+} -induced Ca^{2+}
- release (CICR) through type 2 ryanodine receptors (RyR2) in the sarcoplasmic reticulum
- 52 (Bers, 2002) (**Fig. 1A**). CICR and the local Ca^{2+} signalling that is required to avoid CICR
- from becoming explosive have become recurrent themes in Ca^{2+} signalling (Rios, 2018).
- 54 Fluorescent Ca^{2+} indicators and optical microscopy now allow Ca^{2+} sparks, local Ca^{2+} signals
- evoked by a small cluster of RyRs, to be measured with exquisite subcellular resolution in
- 56 cardiac muscles (Cheng and Lederer, 2008). However, it was studies of permeabilized cells
- 57 ('skinned' fibres) that provided the first evidence for CICR in muscle (Endo et al., 1970;
- 58 Fabiato and Fabiato, 1979). Analyses of RyRs that were reconstituted into planar lipid
- 59 bilayers first showed that RyRs form large-conductance cation channels that are biphasically
- regulated by cytosolic Ca^{2+} (Lai et al., 1988; Meissner, 2017). Finally, analyses of RyR
- 61 fragments by X-ray crystallography (Van Petegem, 2014) and of complete RyRs by cryo-
- 62 electron microscopy (des Georges et al., 2016; Efremov et al., 2015; Peng et al., 2016; Yan et
- al., 2015; Zalk et al., 2015) are revealing the structural basis of RyR behaviour.
- 64 Progress towards understanding the second major family of intracellular Ca^{2+} -release
- channels, the IP₃Rs, began with an influential review in which a causal link between receptor-
- stimulated turnover of phosphatidylinositol and Ca^{2+} signalling was proposed (Michell,
- 67 1975). Subsequent work established that many receptors stimulate phospholipases C, which

- cleave phosphatidylinositol 4,5-bisphosphate to produce IP₃ and diacylglycerol (Berridge,
- 69 1993) (**Fig. 1A**). IP₃ provides the link to Ca^{2+} signalling; not, as first envisaged by directly
- stimulating Ca^{2+} entry across the PM (Michell, 1975), but by stimulating Ca^{2+} release from
- 71 the endoplasmic reticulum (ER) through IP_3Rs (Berridge and Irvine, 1984; Streb et al., 1983).
- 72 Another influential review suggested the link between IP_3 -evoked Ca^{2+} release and Ca^{2+} entry
- across the PM. This review proposed that loss of Ca^{2+} from the ER stimulated Ca^{2+} entry
- 74 (Putney, 1986). The workings of this store-operated Ca^{2+} entry (SOCE) pathway are now
- clear: dissociation of Ca^{2+} from the luminal EF-hand motif of a protein embedded in the ER
- 76 membrane, stromal interaction molecule 1 (STIM1), causes STIM1 to oligomerize and
- expose a cytosolic domain, through which it stimulates opening of a Ca^{2+} -selective channel in
- the PM (Feske et al., 2006; Prakriya and Lewis, 2015). The Ca^{2+} channel that mediates SOCE
- is a hexameric assembly of Orai subunits (Hou et al., 2012; Yen and Lewis, 2018),
- 80 grandiloquently named from Greek mythology after the keepers of Heaven (Feske et al.,
- 81 2006).
- 82 IP₃Rs and RyRs are biphasically regulated by cytosolic Ca^{2+} (Bezprozvanny et al., 1991). For
- 83 IP₃Rs exposed to IP₃, a modest increase in $[Ca^{2+}]_c$ stimulates opening, whereas higher $[Ca^{2+}]_c$
- are inhibitory (Foskett et al., 2007; Iino, 1990). Hence IP₃Rs, at least once they have bound
- 85 IP₃ (Alzayady et al., 2016), can, like RyRs, mediate CICR (**Fig. 1B,C**). As with RyRs, IP₃Rs
- assemble into clusters, within which opening of one IP_3R ignites the activity of its neighbours
- to generate local ' Ca^{2+} puffs' (**Fig. 1C**) (Smith and Parker, 2009; Thillaiappan et al., 2017),
- analogous to Ca^{2+} sparks in muscle. These behaviours illustrate some of the many similarities
- 89 between IP₃Rs and RyRs, which include their close structural relationship (Baker et al., 2017;
- Seo et al., 2012; Van Petegem, 2014). Although IP₃Rs and RyRs are the major intracellular
- 91 Ca^{2+} -release channels, they are not the only intracellular Ca^{2+} channels (**Box 1**).
- 92 The productive interplay between studies of minimally perturbed tissue, facilitated by a
- 93 plethora of Ca²⁺ indicators (Lock et al., 2015), fluorescent proteins (Rodriguez et al., 2017)
- 94 and fluorescence microscopy techniques (Thorn, 2016), alongside analyses of cellular
- 95 components has shaped our understanding of Ca^{2+} signalling. Here, we consider how
- 96 analyses of IP₃Rs conducted outside their normal intracellular environment (*ex cellula*) have
- advanced our understanding of IP₃-evoked Ca^{2+} signals. We begin by considering how
- analyses of permeabilized cells established that the ER is the major intracellular Ca^{2+} store
- and that IP_3 releases Ca^{2+} from it. Radioligand binding analyses then both identified the sites
- to which IP_3 binds to activate IP_3Rs and paved the way to structural studies, which we show
- are now coming close to revealing how IP_3 binding causes the pore of the IP_3R to open. We

102 conclude by considering the contributions of electrophysiological recordings to our

103 understanding of IP₃R gating.

104

105 Lessons from permeabilized cells

Permeabilized cells allow the Ca²⁺ content of intracellular organelles to be measured under 106 conditions where the intracellular environment can be precisely controlled. To achieve this 107 control, the PM must be disrupted without unduly perturbing organelles (Schulz, 1990). The 108 permeabilized cells are then bathed in medium that mimics cytosol, notably in its low $[Ca^{2+}]_c$ 109 (~100 nM). Electroporation (Knight, 1981; Xie et al., 2013) and a variety of chemical means 110 have been used to selectively permeabilize the PM. The chemicals achieve their PM-111 selectivity by interacting with cholesterol (e.g. saponin, digitonin, β -escin), which is enriched 112 in the PM (Wassler et al., 1987), or as pore-forming toxins (e.g. α-toxin, streptolysin-O) that 113 are too large to pass through their own pores (Schulz, 1990). 114 After a protracted controversy (Babcock et al., 1979; Dehaye et al., 1980), analyses of 115 permeabilized cells established that the ER, rather than mitochondria, is the major 116 intracellular Ca²⁺ store in animal cells (Burgess et al., 1983). In an elegant study, saponin-117 permeabilized hepatocytes were bathed in cytosol-like medium with Ca²⁺ buffered to mimic 118 the $[Ca^{2+}]_c$ of an unstimulated cell. Each permeabilized cell was then shown to have the same 119 Ca²⁺ content as an intact cell, and critically all of that Ca²⁺ was in the ER (Burgess et al., 120 1983). Hence, it is the ER from which most extracellular stimuli evoke Ca^{2+} release. 121 Analyses of insect salivary glands demonstrated that phosphoinositide turnover was required 122 for extracellular stimuli to evoke Ca^{2+} signals (Berridge and Fain, 1979), and showed that IP₃ 123 was the first cytosolic product of receptor-stimulated phosphoinositide hydrolysis (Berridge, 124 1983). Hence, IP₃ emerged as the likely messenger that links receptors in the PM to Ca^{2+} 125 release from the ER (Fig. 1A). Permeabilized cells again provided the decisive experiment: 126 addition of IP₃ to permeabilized pancreatic acinar cells stimulated release of Ca²⁺ from a non-127 mitochondrial Ca²⁺ store (Streb et al., 1983). It is now universally accepted that most IP₃Rs 128 reside in ER membranes, but IP₃Rs can also mediate Ca²⁺ release from the Golgi apparatus 129

130 (Aulestia et al., 2015; Pinton et al., 1998), the nuclear envelope (Foskett et al., 2007; Rahman

- et al., 2009; Stehno-Bittel et al., 1995) and perhaps from a nucleoplasmic reticulum
- 132 (Echevarria et al., 2003). In some cells, a few IP_3Rs (typically only 2-3 IP_3Rs per cell) are
- also expressed in the PM, where they mediate Ca^{2+} entry (Dellis et al., 2006; Dellis et al.,
- 134 2008). In many studies, though not in all (Watras et al., 1991), the ER Ca^{2+} release evoked by
- 135 IP₃ was shown to be positively cooperative (eg, Champeil et al., 1989; Marchant and Taylor,

- 136 1997; Meyer et al., 1988), suggesting a need for IP_3 to bind to several IP_3R subunits before
- 137 the channel can open. A recent study using concatenated IP_3R subunits showed that a
- 138 defective IP₃-binding site in only one of the four subunits prevents IP₃R activation (Alzayady
- et al., 2016), leading to the conclusion that all four subunits of an IP_3R must bind IP_3 before

the channel can open.

- But IP₃ binding is not alone sufficient to stimulate Ca^{2+} release through IP₃Rs. Instead, IP₃
- binding primes IP₃Rs to bind Ca^{2+} , and Ca^{2+} binding then causes the channel to open (Adkins
- and Taylor, 1999; Marchant and Taylor, 1997) (**Fig. 1B**). Hence, IP₃Rs require binding of
- two ligands, IP_3 and Ca^{2+} , to open. This dual regulation endows IP_3Rs with their capacity to
- 145 mediate regenerative Ca^{2+} signals through CICR. Again, it was analyses of permeabilized
- 146 cells that provided the first evidence that Ca^{2+} release through IP₃Rs is regulated by $[Ca^{2+}]_c$
- 147 (Iino, 1987). High-resolution optical analyses of Ca^{2+} signals later revealed that within intact
- 148 cells, IP₃-evoked Ca^{2+} signals originate from elementary units that comprise a small cluster of
- 149 IP₃Rs (Smith and Parker, 2009; Thillaiappan et al., 2017). Opening of the first IP₃R within a
- 150 cluster is proposed to rapidly ignite the activity of some of its neighbours by CICR to
- 151 generate a Ca^{2+} puff (**Fig. 1C**). As the stimulus intensity increases, Ca^{2+} spreading from one
- 152 Ca^{2+} puff to another IP₃R cluster can initiate further Ca²⁺ puffs, allowing the signal to spread
- across the cell as a regenerative Ca^{2+} wave (Marchant et al., 1999). The frequency of these
- 154 global signals then increases with stimulus intensity (Thurley et al., 2014).
- 155 Structure-activity relationships (SAR), established by comparing the activities of a range of
- structurally-related chemical stimuli, are often used to probe the recognition properties of
- 157 receptors. SAR analyses of the effects of IP_3 analogues on Ca^{2+} release from permeabilized
- 158 cells provided the first evidence that dephosphorylation of IP_3 to (1,4) IP_2 terminates IP_3
- activity (Burgess et al., 1984). The (1,3,4,5)IP₄ that is produced when IP₃ is phosphorylated
- by IP_3 3-kinase was proposed to regulate IP_3Rs (Loomis-Husselbee et al., 1996), but it is now
- 161 clear that this phosphorylation also inactivates IP₃ signalling through IP₃Rs (Bird and Putney,
- 162 1996; Saleem et al., 2012). Hence, both endogenous pathways for IP₃ metabolism effectively
- inactivate IP₃ signalling to IP₃Rs (**Fig. 1A**). SAR analyses of many analogues of IP₃ and
- adenophostin A, a fungal metabolite that binds with high-affinity to IP₃Rs (Takahashi et al.,
- 165 1994), established that a key feature of IP_3R agonists is the presence of a vicinal 4,5-
- bisphosphate moiety (Fig. 1D) (Rossi et al., 2010; Rossi et al., 2009; Saleem et al., 2012). All
- active inositol phosphate analogues have this 4,5-vicinal bisphosphate moiety (**Fig. 1D**).
- 168 There are no wholly selective antagonists of IP₃Rs. Some ligands (heparin, 2-
- aminoethoxydiphenylborane (2-APB), Xestospongin C and caffeine) have utility, but they all

- 170 lack selectivity. Furthermore, heparin is not membrane-permeant, and results with Xestospongin C are inconsistent (see Saleem et al., 2014). Addition of large substituents to 171 the 2-O-position of IP₃ produces partial agonists. Partial agonists are ligands that, once they 172 have bound to IP₃R, are less effective in causing the channel to open than full agonists like 173 IP₃ (Rossi et al., 2009). These SAR analyses of 2-modified analogues of IP₃, again relying 174 heavily on permeabilized cells, have both confirmed the importance of the extreme N-175 176 terminal region of the IP₃R (the suppressor domain, SD, Fig. 1E) in IP₃R activation and they suggest systematic strategies towards developing high-affinity antagonists of IP₃Rs. 177 There is, therefore, a long history of experiments using permeabilized cells illuminating our 178 understanding of IP₃-evoked Ca²⁺ release. These studies first identified ER as the major 179 intracellular Ca^{2+} store, they showed that IP₃ evokes Ca^{2+} release from the ER, and that IP₃Rs 180 are regulated by Ca^{2+} . Furthermore, they defined the biochemical steps that inactivate IP₃ 181 and, through SAR analyses, they have provided ligands that have contributed to 182
- understanding the mechanisms of IP_3R activation.
- 184

185 Analyses of IP₃ binding to IP₃Rs

Binding of IP₃ to the four binding sites of the IP₃R initiates the conformational changes that 186 culminate in opening of the Ca^{2+} -permeable pore (Alzayady et al., 2016; Chandrasekhar et 187 al., 2016). These IP₃ binding events are usually analysed by means of radioligand binding, 188 which allows determination of binding affinities (as equilibrium dissociation constants, K_D) 189 for ${}^{3}\text{H-IP}_{3}$ or any competing ligand, but there are a variety of other methods (**Fig. 2, Box 2**). 190 K_D values are important for comparison with functional analyses in revealing how ligands 191 activate IP₃Rs. Such analyses were, for example, critical in showing that the vicinal 4,5-192 193 bisphosphate of IP₃ is essential for activity, whereas the 1-phosphate improves binding 194 affinity (Fig. 1D) (Nahorski and Potter, 1989). Comparisons of SAR with binding analyses 195 can also establish which bound ligands most effectively open the channel. Our comparisons of functional and ³H-IP₃ equilibrium-competition binding analyses, for example, established 196 that whereas IP₃ is a full agonist that effectively gates the IP₃R, other modified analogues of 197 IP₃ bind with high-affinity to IP₃R, but they are much less effective in causing the channel to 198 open (Rossi et al., 2009). These partial agonists provide insight into the mechanisms of IP_3R 199 activation by demonstrating how large moieties at the 2-position of IP₃ attenuate IP₃R 200 activation, and they suggest strategies for development of analogues that bind without 201 202 activating IP₃Rs (i.e. antagonists).

- 203 Binding analyses also allow IP₃R properties to be addressed under conditions where IP₃-
- evoked Ca^{2+} release is not retained. This opportunity is particularly important during
- 205 purification of IP₃Rs for structural studies using either IP₃R fragments for X-ray
- crystallography (Bosanac et al., 2002; Bosanac et al., 2005; Hamada et al., 2017; Lin et al.,
- 207 2011; Seo et al., 2012) or, after detergent-solubilization of complete IP₃Rs, for single-particle
- analysis by cryo-EM (Fan et al., 2015; Paknejad and Hite, 2018). In subsequent sections, we
- review progress towards understanding how IP_3 binding leads to opening of the IP_3R pore.
- 210

211 **IP**₃ initiates **IP**₃**R** activation by binding to the **IP**₃-binding core

- 212 The route to IP_3R structures began with the identification of specific, high-affinity,
- 213 intracellular ³²P-IP₃-binding sites with recognition properties that matched those expected of
- the receptor through which IP_3 evoked Ca^{2+} release (Baukal et al., 1985; Spät et al., 1986).
- Subsequent studies established that heparin competed with ${}^{3}\text{H-IP}_{3}$ for these binding sites
- 216 (heparin is a competitive antagonist of IP_3), and that the sites were abundant in Purkinje cells
- of cerebellum (Worley et al., 1987). Together, these observations allowed IP_3Rs to be
- 218 purified from cerebellum using heparin-chromatography (Maeda et al., 1988; Supattapone et
- al., 1988). Functional reconstitution of the purified protein then established that it was alone
- sufficient to form an IP₃-gated Ca^{2+} channel (Ferris et al., 1989; Maeda et al., 1991). Many
- additional proteins were later shown to associate with IP_3Rs and modulate their responses to
- IP_3 (Prole and Taylor, 2016). Screening of cDNA libraries from cerebellum then provided the
- complete primary sequence of IP_3R1 (Furuichi et al., 1989; Mignery et al., 1989), and soon
- afterwards the other two IP_3R subtypes, IP_3R2 (Südhof et al., 1991) and IP_3R3 (Blondel et al.,
- 225 1993) were identified. Subsequent studies established that the three IP_3R subunits (IP_3R1-3)
- assemble to form homo-tetrameric and hetero-tetrameric channels (Monkawa et al., 1995),
- and they confirmed that the core properties of all IP_3R subtypes are similar: each forms a
- 228 large-conductance Ca^{2+} -permeable channel that is gated by binding of IP₃ and Ca^{2+} (Foskett,
- 229 2010), and each generates Ca^{2+} puffs (Mataragka and Taylor, 2018). The subtypes are,
- however, differentially expressed, and they differ in their affinities for IP_3 (Iwai et al., 2007),
- sensitivity to Ca^{2+} regulation (Foskett, 2010) and in whether they are modulated by additional
- regulators (Prole and Taylor, 2016). Furthermore, the functional consequences of mutant or
- 233 defective IP_3Rs differ among subtypes (see Terry et al., 2018). IP_3R1 has so far been the
- 234 major focus of the structural studies.
- 235 Deletion analyses (Mignery and Südhof, 1990) and expression of IP₃R fragments in bacteria
- 236 (Yoshikawa et al., 1996) established that each IP_3R subunit has a single IP_3 -binding site

237 formed by residues, the IBC (residues 224-604), towards the N-terminal of the primary sequence (~2750 residues) (Fig. 1E). The identification of four IP_3 -binding sites in each 238 IP_3R , and the demonstration that all four are required for IP_3 to evoke Ca^{2+} release (Alzayady 239 et al., 2016), provided an explanation for the widely observed cooperative responses to IP_3 240 (Champeil et al., 1989; Meyer et al., 1988; Parker and Miledi, 1989). Subsequent studies 241 identified residues within the IBC that are required for IP₃ binding, notably the residues that 242 bind to the critical 4- and 5-phosphate groups of IP₃ (Furutama et al., 1996). These residues 243 are conserved in IP₃Rs, but not in RyRs (Bosanac et al., 2002; Seo et al., 2012). It was also 244 245 shown that the SD inhibits IP₃ binding (Uchida et al., 2003), which aligns with the importance of the SD in coupling IP₃ binding to channel gating (Rossi et al., 2009): IP₃Rs 246 without an SD bind IP₃ with high affinity, but they do not release Ca^{2+} (Uchida et al., 2003). 247 High-resolution crystal structures of N-terminal fragments of the IP₃R directly revealed both 248 the determinants of IP₃ binding and the initial steps in IP₃R activation. The two domains (α 249 and β) of the IBC form a clam-like structure, within which conserved residues bind to IP₃ 250 (Bosanac et al., 2002). The 1- and 5-phosphates of IP₃ interact predominantly with residues in 251 252 IBC- α , whereas the 4-phosphate interacts with IBC- β (Fig. 1D,E). Interaction of the critical 4- and 5-phosphates with opposing sides of the clam allows IP₃ to partially close the clam and 253 initiate IP₃R activation (Hamada et al., 2017; Lin et al., 2011; Paknejad and Hite, 2018; Seo 254 et al., 2012). That interpretation, which elegantly reveals the structural basis of the SAR, is 255 supported by results with an adenophostin A analogue in which an alternative contact with 256 the α -domain substitutes for loss of the usual phosphate (Sureshan et al., 2012). 257 258 In the isolated N-terminal domain, the SD is firmly anchored to IBC- α by an extensive interface and more loosely associated with IBC- β (Fig. 1E). Hence, when IP₃ causes the IBC 259 clam to close, the SD moves with IBC- α and that was predicted to disrupt interaction of an 260 exposed SD loop, the 'hot spot' loop (Yamazaki et al., 2010) with IBC-β of a neighbouring 261 262 subunit (Seo et al., 2012). In RyR too, these inter-subunit interactions between N-terminal domains are weakened during receptor activation (des Georges et al., 2016). The resulting 263 weakening of interactions between subunits may contribute to channel gating. This is 264 supported by evidence that Ca^{2+} -binding protein 1 (CaBP1), which inhibits IP₃R gating, 265 rigidifies these interactions between IP₃R subunits (Li et al., 2013). However, within the 266 constraints of a full-length IP₃R, strong inter-subunit interactions between the SD and IBC- β 267 268 might constrain the SD, such that IBC- α moves when IP₃ closes the clam (Paknejad and Hite, 269 2018). Identification of the sites to which IP_3 binds, which relied heavily on radioligand

- 270 binding analyses, set the scene for the structural analyses that seek to understand how IP_3
- binding opens the pore of the IP₃R. We consider recent progress with such structural analyses 271
- in the next section. 272
- 273

Structures of complete IP₃ and ryanodine receptors 274

- Structures determined by single-particle analysis of cryo-EM images of the complete IP₃R1 275 in a closed state (Fan et al., 2015), of IP₃R3 with and without IP₃ and Ca^{2+} bound (Pakneiad 276 and Hite, 2018), and of RyRs in different states (des Georges et al., 2016; Efremov et al., 277 278 2015; Peng et al., 2016; Yan et al., 2015; Zalk et al., 2015) have begun to reveal the workings of the pore regions of these related channels. The results also tentatively suggest how IP₃ 279 binding might lead to opening of the IP₃R pore.
- 280
- The IP₃R has a structure reminiscent of a square mushroom. Much of the stalk is embedded 281
- in the ER membrane and the cap, with a diameter of ~25 nm, extends at least 13 nm into the 282
- cytosol (Fan et al., 2015). The large size is significant because it might exclude IP₃Rs from 283
- the narrow junctions between ER and the PM (Thillaiappan et al., 2017), whereas at other 284
- junctions, between ER and mitochondria for example (Csordas et al., 2018), it places the head 285 of the IP₃R, from which Ca^{2+} exits, very close to the neighbouring organelle. 286
- 287 The cytosolic entrance to the central cavity of the IP₃R is surrounded by the N-terminal
- domains (SD and IBC- β , Fig. 3). IBC- α forms part of a larger domain (ARM1) that curves to 288
- 289 the edge of the cap and interacts with two large curved domains (ARM2 and ARM3) that
- comprise most of the remaining cytosolic structure and form the underside of the mushroom 290
- 291 (Fig. 3). Within the ER membrane, there are 24 trans-membrane domains (TMDs), six from
- each subunit (Fan et al., 2015). However, recent structural analyses of both IP₃R (Paknejad 292
- 293 and Hite, 2018) and RyR1 (des Georges et al., 2016) identified a pair of additional helices
- 294 (between TMD1 and 2 of IP₃R3) that challenge the accepted view that there are six TMDs
- 295 per subunit. The TMD region, similar in structure to voltage-gated ion channels, is very
- similar (though not identical) (Baker et al., 2017) in RyRs and IP₃Rs. The ion-conducting 296
- path is lined by the four tilted TMD6 helices and a short (~1 nm) 'selectivity filter' at the 297
- luminal end through which hydrated cations must pass in single-file. The selectivity filter, its 298
- 299 supporting pore-loop helix and a flexible luminal loop are all formed by residues linking
- 300 TMD5 to TMD6. Near the cytosolic end of TMD6, a narrow hydrophobic constriction blocks
- 301 the movement of ions in the closed channel (Fan et al., 2015) (Fig. 3). The hydrophobic side
- chains of these residues must move for the pore to open. Opening of the RyR is associated 302
- with splaying and bowing of TMD6, such that the hydrophobic side-chain of a residue that 303

304 occludes the cytosolic end of the closed pore is displaced, opening a hydrophilic path that allows passage of a hydrated Ca^{2+} ion. Similar mechanisms may be associated with opening 305 of the IP₃R pore. 306

TMD6 is supported by TMD5, which is buttressed by the TMD1-4 bundle of the adjacent 307 308 subunit. The short cytosolic TMD4-5 helical linker aligns along the ER membrane behind the TMD6 helices holding them in place. In the closed RyR1 channel, this linker tightly encircles 309 the cytosolic end of the TMD6 bundle restricting its movement, but this grip is relaxed as the 310 channel opens freeing TMD6 to move, and allowing the pore to dilate (des Georges et al., 311 312 2016). In both IP₃R and RyR, TMD6 extends well beyond the ER membrane (~1.5 nm in IP_3R) and then terminates in a pair of short α -helices (the linker domain, LNK, in IP_3R) that 313 includes a Zn^{2+} -finger motif that aligns parallel with the ER membrane (des Georges et al., 314 2016; Fan et al., 2015; Paknejad and Hite, 2018). In IP₃R, but notably not in RyR, the 315 entwined TMD6 helices then continue beyond the LNK domain to the cap of the mushroom, 316 where each contacts the IBC- β domain of a neighbouring subunit (Fan et al., 2015). Hence, 317 structures formed by the TMD5-6 loop guard the luminal entrance to the pore, whereas the 318 cytosolic vestibule is formed by the extended TMD6. Each of these regions is enriched in 319 320 acidic residues that probably contribute to the cation selectivity of IP₃R and RyR (des 321 Georges et al., 2016; Fan et al., 2015; Paknejad and Hite, 2018). A conserved Ca^{2+} -binding site is present in both RyR (des Georges et al., 2016) and IP₃R 322 (Paknejad and Hite, 2018). The site is formed, in the case of IP₃R, by residues near the C-323 terminal end of ARM3 and by another residue contributed by the LNK domain (Fig. 3). In 324 RyR, the equivalent residues are proposed to coordinate the Ca^{2+} required for stimulation (des 325 Georges et al., 2016). The same may hold true for IP₃Rs, but this has yet to be tested. A 326 conserved glutamate residue on the bottom surface of the ARM3 domain (Glu²¹⁰¹ in IP₃R1) 327 previously suggested to mediate Ca^{2+} regulation of IP₃R (Miyakawa et al., 2001) and RyR 328 (Fessenden et al., 2001), does not contribute to Ca²⁺ binding to this site, but it does stabilize 329 the interaction between the cooperating domains in RyR1 (des Georges et al., 2016). A 330 second Ca²⁺-binding site was identified in the structure of IP₃R3, and again it is formed by 331 residues that are contributed by different domains (ARM3 and the α -helical domain linking 332 ARM1 to ARM2) (Paknejad and Hite, 2018) (Fig. 3). Formation of both Ca²⁺-binding sites

333

requires movement of the contributing domains from their positions in the apo-state, so as to 334

bring the Ca²⁺-coordinating residues into register (Paknejad and Hite, 2018). This important 335

observation is consistent with evidence that IP_3 controls IP_3R gating by regulating Ca^{2+} 336

binding (**Fig. 1B**). 337

- Taken together, structures of full-length IP₃Rs have defined where IP₃ binds, identified Ca^{2+} -
- binding sites that may mediate Ca^{2+} regulation, and established that hydrophobic residues
- 340 projecting into the pore must move to allow Ca^{2+} to pass.
- 341

Towards understanding how IP₃ and Ca²⁺ binding open the IP₃R pore

The only contacts between the large cytosolic structures of the IP₃R and its channel region 343 are the C-terminal end of ARM3 and the LNK domain (Fig. 3) (Fan et al., 2015). There are 344 similar contacts in RyR (des Georges et al., 2016). In both IP₃R and RyR, this critical nexus 345 346 comprises a platform of interleaved structures: the C-terminus of the ARM3 domain (the intervening lateral domain, ILD) forms a 'thumb-and-fingers' arrangement of an upper thumb 347 abutting the bulk of ARM3, and an α -helical pair of fingers lying below and forming a cavity 348 into which the LNK domain inserts (Fig. 3) (Fan et al., 2015). Mutations within the thumb 349 disrupt IP₃R function (Hamada et al., 2017). The LNK domain also wraps around the thumb 350 and contributes a residue to the Ca^{2+} -binding site at the base of the ARM3 domain. 351 How, then, does IP₃ binding to the IBC cause hydrophobic pore residues some 7 nm distant to 352 move and allow Ca²⁺ to pass from the ER lumen to the cytosol (Fan et al., 2015)? Recalling 353 that IP₃ primes IP₃Rs to bind Ca^{2+} , which then triggers channel opening (Adkins and Taylor, 354 1999) (Fig. 1B), it seems reasonable to speculate that IP₃ binding to the IBC is communicated 355 to the Ca²⁺-binding site at the ILD-LNK nexus and thence to the pore (Paknejad and Hite, 356 2018). IP₃ binding closes the clam-like IBC, and, with IBC-β held firmly in place by inter-357 subunit interactions at the top of the mushroom, IBC- α moves and initiates conformational 358 359 changes throughout the associated ARM domains. These changes include disruption of intersubunit interaction between ARM1 and ARM2 domains, and rotation of the LNK domains 360 361 (Paknejad and Hite, 2018). Here, the need for the SD is attributed to its role in stabilizing inter-subunit interactions to provide a fixed structure against which movement of IBC- α can 362 leverage conformational changes through the ARM domains (Paknejad and Hite, 2018). 363 Given the essential role of the SD in IP₃R activation, an alternative possibility was that the 364 direct contact between the SD and ARM3 might mediate communication between N-terminal 365 regions and the ILD. However, the SD-ARM3 interaction occurs through the handle of the 366 367 hammer-like SD, which can be deleted without impairing IP₃R function (Yamazaki et al., 2010). Another possibility was that interaction between IBC- β and the CTD (which is unique 368 to IP_3R) might communicate IP_3 binding to the LNK domain. However, this scheme is 369 difficult to reconcile with functional IP₃R/RyR chimeras (Seo et al., 2012) since the RyR 370 structure does not have an extended CTD, and with evidence that deletion of residues within 371

- the CTD that interact with IBC- β do not prevent IP₃-evoked Ca²⁺ release (Hamada et al.,
- 2017; Schug and Joseph, 2006). Whatever the exact path from IBC to the ILD-LNK nexus is,
- IP_3 -evoked conformational changes appear to reconfigure the Ca²⁺-binding site formed at the
- LNK-ARM3 interface to allow Ca^{2+} binding (Paknejad and Hite, 2018), thereby providing a
- 376 plausible mechanism for IP₃ priming IP₃Rs to respond to Ca^{2+} (**Fig. 1B**).
- We conclude that analyses of IP_3 binding contributed to defining the SAR for IP_3Rs and to
- 378 quantitative comparisons of the relationship between binding and channel activation, but
- 379 most significantly they allowed IP₃Rs to be identified during their purification, which paved
- the way to cloning and molecular manipulation of IP_3Rs , and to structural studies. The latter
- have established that IP_3Rs are huge tetrameric structures, wherein IP_3 binding closes a clam-
- 382 like IBC. That conformational change is communicated to a critical nexus between
- 383 interleaved structures from the cytosolic and channel domains. IP₃ binding probably stabilizes
- Ca^{2+} binding to this nexus, leading to re-arrangement of the pore, such that occluding
- hydrophobic residues are displaced to allow the passage of Ca^{2+} from the ER lumen to the cytosol.
- 387

388 Lessons from planar lipid bilayers and patch-clamp recording

Electrical recordings from ion channels, most often by means of patch-clamp recording (**Box** 3) (Lape et al., 2008; Neher, 1992), allow the openings and closing of single channels to be recorded with sub-millisecond resolution, and they allow their ion permeation properties to be defined. Since the intracellular location of RyR and IP₃R in the ER presents a formidable barrier to such recordings (Jonas et al., 1997), two alternative approaches have been used.

394

395 Planar lipid bilayers

396 The first approach, which involves reconstitution of ER vesicles or solubilized IP_3Rs into

397 planar lipid bilayers, provided the first measurements of currents through IP₃R

398 (Bezprozvanny et al., 1994; Bezprozvanny and Ehrlich, 1994; Bezprozvanny et al., 1991;

- Ehrlich and Watras, 1988; Maeda et al., 1991). These analyses established that IP_3R , like
- 400 RyR, are large-conductance cation channels with relatively low-selectivity for Ca^{2+} . Both
- 401 features are important in allowing IP_3R to generate large local cytosolic Ca^{2+} signals: the
- 402 large conductance allows an open IP₃R to pass ~500,00 Ca^{2+} per second (Foskett et al., 2007),
- 403 whereas the weak selectivity might allow a counter-flux of K^+ to dissipate the electrical
- 404 gradient that is formed as Ca^{2+} leaves the ER and which would otherwise rapidly terminate
- 405 Ca^{2+} release (Zsolnay et al., 2018). The short, wide selectivity filter and large vestibules with

406 abundant acidic residues probably provide the structural basis of these ion permeation

407 properties (Fan et al., 2015). Bilayer analyses also confirmed the biphasic regulation of IP₃R1

- 408 by cytosolic Ca^{2+} (Bezprozvanny et al., 1991). A potential problem with recordings from
- 409 planar lipid bilayers is that solubilization and/or reconstitution could lead to loss of accessory
- 410 proteins or perturbation of structure. Maximal open probabilities recorded from IP₃Rs in
- bilayers, for example, are much lower than in patch-clamp recordings, and bilayer recordings
- 412 of IP₃R2 and IP₃R3 failed to capture the inhibitory effect of cytosolic Ca^{2+} (Hagar et al.,
- 413 1998; Ramos-Franco et al., 2000).
- 414

415 Patch-clamp recording

The second approach to obtaining electrical recordings from IP₃R exploits the fact that the 416 ER is continuous with the outer nuclear membrane (ONM) (Box 3) (Dingwall and Laskey, 417 1992). Hence, patch-clamp recording from the ONM allows analysis of IP₃R in a native 418 membrane, albeit not the ER (Mak et al., 2013; Rahman and Taylor, 2010) (Box 3). These 419 recordings, which have been applied to both native and heterologously expressed IP_3Rs 420 (Betzenhauser et al., 2008; Cheung et al., 2010; Foskett et al., 2007; Marchenko et al., 2005; 421 Rahman et al., 2009), confirmed their ion permeation properties and the biphasic regulation 422 of all IP₃R subtypes by Ca^{2+} . They have also suggested complex gating schemes wherein IP₃ 423 drives bursts of IP₃R activity by extending the duration of sequences of openings and 424 425 shortening the gaps between the bursts (Gin et al., 2009; Ionescu et al., 2007). Another application of nuclear patch-clamp recording is provided by our work, where we 426 427 showed that IP₃Rs within patches that fortuitously contained several IP₃Rs behave differently to patches with only a single IP₃R (Rahman et al., 2009). This led to our proposal that low 428 429 concentrations of IP₃, perhaps arising from occupancy of only some of the four IP₃-binding sites, trigger IP₃R clustering (Rahman et al., 2009). The clustered IP₃Rs, we suggest, are 430 better placed than lone IP₃Rs to benefit from CICR when a near neighbour opens to release 431 Ca^{2+} and so provide the second stimulus that is needed for IP₃R opening (Fig. 1B). Effects of 432 clustering on the IP₃ and Ca²⁺ sensitivity of IP₃Rs reinforce the propensity of clustered IP₃Rs 433 to amplify Ca^{2+} signals by CICR. These proposals have been challenged (Rahman et al., 434 435 2011; Smith et al., 2009; Vais et al., 2011) and our own recent work suggests that even in unstimulated cells there are pre-existing clusters of IP₃Rs, each typically comprising about 436 eight IP₃Rs (Thillaiappan et al., 2017). Our revised proposal therefore envisages that IP₃Rs 437 are, as we have shown, loosely clustered in unstimulated cells (Thillaiappan et al., 2017) and 438

that IP_3 might then cause IP_3Rs within the cluster to huddle more closely and so be more likely to respond to Ca^{2+} released by a neighbour.

441

442 Concluding remarks

Throughout the long history of analyses of intracellular Ca^{2+} signalling, there has been a 443 productive interplay between studies of intact tissues and of biological systems extracted 444 from intact cells (*ex cellula*). These approaches succeeded in showing that the ER is the 445 major intracellular Ca^{2+} store and they identified the enormous channels (RyR and IP₃R) that 446 mediate Ca²⁺ release from the ER. We are now fast approaching an understanding of how IP₃ 447 binding leads, through its interactions with Ca^{2+} binding, to opening of the IP₃R. In parallel 448 with these approaches, developments in optical microscopy have provided opportunities to 449 examine IP_3 -evoked Ca^{2+} release with exquisite temporal and spatial resolution in intact cells. 450 We can surely look forward to these analyses converging with structural analyses *in situ* to 451 provide a comprehensive understanding of IP₃Rs in living cells. 452 453 Funding 454 This work was supported by the Wellcome Trust (grant number 101844) and the 455 Biotechnology and Biological Sciences Research Council (grant number BB/P005330/1). 456 457 458 References Adkins, C. E. and Taylor, C. W. (1999). Lateral inhibition of inositol 1,4,5-trisphosphate 459 receptors by cytosolic Ca²⁺. Curr. Biol. 9, 1115-1118. 460 Alzayady, K. J., Wang, L., Chandrasekhar, R., Wagner, L. E., 2nd, Van Petegem, F. 461 and Yule, D. I. (2016). Defining the stoichiometry of inositol 1,4,5-trisphosphate 462 binding required to initiate Ca^{2+} release. *Sci. Signal.* 9, ra35. 463 Aulestia, F. J., Alonso, M. T. and Garcia-Sancho, J. (2015). Differential calcium handling 464 by the cis and trans regions of the Golgi apparatus. Biochem. J. 466, 455-465. 465 Babcock, D. F., Chen, J. L., Yip, B. P. and Lardy, H. A. (1979). Evidence for 466 mitochondrial localization of the hormone-responsive pool of Ca²⁺ in isolated 467 hepatocytes. J. Biol. Chem. 254, 8117-8120. 468 Baker, M. R., Fan, G. and Serysheva, II. (2017). Structure of IP₃R channel: high-resolution 469 insights from cryo-EM. Curr. Opin. Struct. Biol. 46, 38-47. 470

- 471 Baukal, A. J., Guillemette, G., Rubin, R., Spat, A. and Catt, K. J. (1985). Binding sites
- 472 for inositol trisphosphate in the bovine adrenal cortex. *Biochem. Biophys. Res.*

473 *Commun.* **133**, 532-538.

- 474 Berridge, M. J. (1983). Rapid accumulation of inositol trisphosphate reveals that agonists
 475 hydrolyse polyphosphoinositides instead of phosphatidylinositol. *Biochem. J.* 212, 849476 858.
- 477 Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. *Nature* **361**, 315-325.
- Berridge, M. J. and Fain, J. N. (1979). Inhibition of phosphatidylinositol synthesis and the
 inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to
 5-hydroxytryptamine. *Biochem. J.* 178, 59-69.
- Berridge, M. J. and Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger
 in cellular signal transduction. *Nature* 312, 315-321.
- 483 Bers, D. M. (2002). Cardiac excitation-contraction coupling. *Nature* 415, 198-205.
- 484 Betzenhauser, M. J., Wagner, L. E., 2nd, Won, J. H. and Yule, D. I. (2008). Studying
- 485 isoform-specific inositol 1,4,5-trisphosphate receptor function and regulation. *Methods*486 46, 177-82.
- 487 Bezprozvanny, I., Bezprozvannaya, S. and Ehrlich, B. E. (1994). Caffeine-induced
 488 inhibition of inositol(1,4,5)-trisphosphate-gated calcium channels from cerebellum.
 489 Mol. Biol. Cell 5, 97-103.
- Bezprozvanny, I. and Ehrlich, B. E. (1994). Inositol (1,4,5)-trisphosphate (InsP₃)-gated Ca
 channels from cerebellum: conduction properties for divalent cations and regulation by
 intraluminal calcium. J. Gen. Physiol. 104, 821-856.
- Bezprozvanny, I., Watras, J. and Ehrlich, B. E. (1991). Bell-shaped calcium-response
 curves for Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of
 cerebellum. *Nature* 351, 751-754.
- Bird, G. S. J. and Putney, J. W., Jr. (1996). Effect of inositol 1,3,4,5-trisphosphate on
 inositol trisphosphate-activated Ca²⁺ signaling in mouse lacrimal cells. *J. Biol. Chem.*271, 6766-6770.
- Blondel, O., Takeda, J., Janssen, H., Seino, S. and Bell, G. I. (1993). Sequence and
 functional characterization of a third inositol trisphosphate receptor subtype, IP₃R-3,
 expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. *J. Biol. Chem.* 268, 11356-11363.

503 Bosanac, I., Alattia, J.-R., Mal, T. K., Chan, J., Talarico, S., Tong, F. K., Tong, K. I., 504 Yoshikawa, F., Furuichi, T., Iwai, M. et al. (2002). Structure of the inositol 1,4,5trisphosphate receptor binding core in complex with its ligand. *Nature* **420**, 696-700. 505 Bosanac, I., Yamazaki, H., Matsu-ura, T., Michikawa, T., Mikoshiba, K. and Ikura, M. 506 507 (2005). Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol. Cell 17, 193-203. 508 509 Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, J. S. and Putney, J. W., Jr. (1984). Actions of inositol phosphates on calcium pools in guinea pig hepatocytes. 510 511 Biochem. J. 224, 741-746. Burgess, G. M., McKinney, J. S., Fabiato, A., Leslie, B. A. and Putney, J. W., Jr. (1983). 512 Calcium pools in saponin-permeabilized guinea pig hepatocytes. J. Biol. Chem. 258, 513 15336-15345. 514 Cao, Q., Yang, Y., Zhong, X. Z. and Dong, X. P. (2017). The lysosomal Ca²⁺ release 515 channel TRPML1 regulates lysosome size by activating calmodulin. J. Biol. Chem. 516 **292**, 8424-8435. 517 Champeil, P., Combettes, L., Berthon, B., Doucet, E., Orlowski, S. and Claret, M. 518 519 (1989). Fast kinetics of calcium release induced by myo-inositol trisphosphate in 520 permeabilized rat hepatocytes. J. Biol. Chem. 264, 17665-17673. 521 Chandrasekhar, R., Alzayady, K. J., Wagner, L. E., 2nd and Yule, D. I. (2016). Unique 522 regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J. Biol. Chem. 291, 4846-4860. 523 524 Cheng, H. and Lederer, W. J. (2008). Calcium sparks. Physiol. Rev. 88, 1491-1545. Cheng, Y.-C. and Prusoff, W. H. (1973). Relationship between the inhibition constant (K_I) 525 526 and the concentration of inhibitor causing 50 per cent inhibition (IC_{50}) of an enzymatic 527 reaction. Biochem. Pharmacol. 22, 3099-3108. 528 Cheung, K. H., Mei, L., Mak, D. O., Hayashi, I., Iwatsubo, T., Kang, D. E. and Foskett, J. K. (2010). Gain-of-function enhancement of IP₃ receptor modal gating by familial 529 Alzheimer's disease-linked presenilin mutants in human cells and mouse neurons. Sci. 530 *Signal.* **3**, ra22. 531 Csordas, G., Weaver, D. and Hajnoczky, G. (2018). Endoplasmic reticular-mitochondrial 532 contactology: structure and signaling functions. Trends Cell Biol. 28, 523-540. 533 de Azevedo, W. F., Jr. and Dias, R. (2008). Experimental approaches to evaluate the 534 thermodynamics of protein-drug interactions. Curr. Drug Targets 9, 1071-1076. 535

536	Dehaye, J. P., Blackmore, P. F., Venter, J. C. and Exton, J. H. (1980). Studies on the
537	alpha-adrenergic activation of hepatic glucose output. alpha-adrenergic activation of
538	phosphorylase by immobilized epinephrine. J. Biol. Chem. 255, 3905-3910.
539	Dellis, O., Dedos, S., Tovey, S. C., Rahman, TU, Dubel, S. J. and Taylor, C. W.
540	(2006). Ca^{2+} entry through plasma membrane IP ₃ receptors. <i>Science</i> 313 , 229-233.
541	Dellis, O., Rossi, A. M., Dedos, S. G. and Taylor, C. W. (2008). Counting functional IP ₃
542	receptors into the plasma membrane. J. Biol. Chem. 283, 751-755.
543	des Georges, A., Clarke, O. B., Zalk, R., Yuan, Q., Condon, K. J., Grassucci, R. A.,
544	Hendrickson, W. A., Marks, A. R. and Frank, J. (2016). Structural basis for gating
545	and activation of RyR1. Cell 167, 145-157.
546	Ding, Z., Rossi, A. M., Riley, A. M., Rahman, T., Potter, B. V. L. and Taylor, C. W.
547	(2010). Binding of inositol 1,4,5-trisphosphate (IP_3) and adenophostin A to the N-
548	terminal region of the IP3 receptor: thermodynamic analysis using fluorescence
549	polarization with a novel IP ₃ receptor ligand. <i>Mol. Pharmacol.</i> 77 , 995-1004.
550	Dingwall, C. and Laskey, R. (1992). The nuclear membrane. Science 258, 942-947.
551	Echevarria, W., Leite, M. F., Guerra, M. T., Zipfel, W. R. and Nathanson, M. H. (2003).
552	Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat. Cell
553	<i>Biol.</i> 5 , 440-446.
554	Efremov, R. G., Leitner, A., Aebersold, R. and Raunser, S. (2015). Architecture and
555	conformational switch mechanism of the ryanodine receptor. Nature 517, 39-43.
556	Ehrlich, B. E. and Watras, J. (1988). Inositol 1,4,5-trisphosphate activates a channel from
557	smooth muscle sarcoplasmic reticulum. <i>Nature</i> 336 , 583-586.
558	Endo, M., Tanaka, M. and Ogawa, Y. (1970). Calcium induced release of calcium from the
559	sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228, 34-36.
560	Fabiato, A. and Fabiato, F. (1979). Use of chlorotetracycline fluorescence to demonstrate
561	Ca^{2+} -induced release of Ca^{2+} from sarcoplasmic reticulum of skinned cardiac cells.
562	<i>Nature</i> 281 , 146-148.
563	Fan, G., Baker, M. L., Wang, Z., Baker, M. R., Sinyagovskiy, P. A., Chiu, W., Ludtke,
564	S. J. and Serysheva, I. I. (2015). Gating machinery of InsP ₃ R channels revealed by
565	electron cryomicroscopy. Nature 527, 336-341.
566	Ferris, C. D., Huganir, R. L., Supattapone, S. and Snyder, S. H. (1989). Purified inositol
567	1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles.
568	<i>Nature</i> 342 , 87-89.

- 569 Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P.
- G., Lewis, R. S., Daly, M. and Rao, A. (2006). A mutation in Orai1 causes immune
 deficiency by abrogating CRAC channel function. *Nature* 441, 179-185.
- Fessenden, J. D., Chen, L., Wang, Y., Paolini, C., Franzini-Armstrong, C., Allen, P. D.
 and Pessah, I. N. (2001). Ryanodine receptor point mutant E4032A reveals an
 allosteric interaction with ryanodine. *Proc. Natl. Acad. Sci. USA* 98, 2865-2870.
- Foskett, J. K. (2010). Inositol trisphosphate receptor Ca²⁺ release channels in neurological
 diseases. *Pfluegers Arch./Eur. J. Physiol.* 460, 481-494.
- Foskett, J. K., White, C., Cheung, K. H. and Mak, D. O. (2007). Inositol trisphosphate
 receptor Ca²⁺ release channels. *Physiol. Rev.* 87, 593-658.
- 579 Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, M. and Mikoshiba, K.
- 580 (1989). Primary structure and functional expression of the inositol 1,4,5-trisphosphate581 binding protein P₄₀₀. *Nature* 342, 32-38.
- Furutama, D., Shimoda, K., Yoshikawa, S., Miyawaki, A., Furuichi, T. and Mikoshiba,
 K. (1996). Functional expression of the type 1 inositol 1,4,5-trisphosphate receptor
 promoter-*lacz* fusion genes in transgenic mice *J. Neurochem.* 66, 1793-1801.
- Gin, E., Falcke, M., Wagner, L. E., 2nd, Yule, D. I. and Sneyd, J. (2009). A kinetic model
 of the inositol trisphosphate receptor based on single-channel data. *Biophys. J.* 96,
 4053-4062.
- Hagar, R. E., Burgstahler, A. D., Nathanson, M. H. and Ehrlich, B. E. (1998). Type III
 InsP₃ receptor channel stays open in the presence of increased calcium. *Nature* 296, 8184.
- Hamada, K., Miyatake, H., Terauchi, A. and Mikoshiba, K. (2017). IP₃-mediated gating
 mechanism of the IP₃ receptor revealed by mutagenesis and X-ray crystallography. *Proc. Natl. Acad. Sci. USA* 114, 4661-4666.
- Hou, X., Pedi, L., Diver, M. M. and Long, S. B. (2012). Crystal structure of the calcium
 release-activated calcium channel Orai. *Science* 338, 1308-1313.
- 596 Huang, P., Zou, Y., Zhong, X. Z., Cao, Q., Zhao, K., Zhu, M. X., Murell-Lagnado, R.
- and Dong, X. P. (2014). P2X4 forms functional ATP-activated cation channels on
 lysosomal membranes regulated by luminal pH. *J. Biol. Chem.* 289, 17658-17667.
- 599 Iino, M. (1987). Calcium dependent inositol trisphosphate-induced calcium release in the
 guinea-pig taenia caeci. *Biochem. Biophys. Res. Commun.* 142, 47-52.

- Iino, M. (1990). Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca²⁺
 release in smooth muscle cells of the guinea pig taenia caeci. *J. Gen. Physiol.* 95, 11031122.
- Ionescu, L., White, C., Cheung, K. H., Shuai, J., Parker, I., Pearson, J. E., Foskett, J. K.
 and Mak, D. O. (2007). Mode switching is the major mechanism of ligand regulation
 of InsP₃ receptor calcium release channels. *J. Gen. Physiol.* 130, 631-635.
- Iwai, M., Michikawa, T., Bosanac, I., Ikura, M. and Mikoshiba, K. (2007). Molecular
 basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate
 receptors. *J. Biol. Chem.* 282, 12755-12764.
- Jonas, E. A., Knox, R. J. and Kaczmarek, L. (1997). Giga-ohm seals on intracellular
 membranes: a technique for studying intracellular ion channels in intact cells. *Neuron*19, 7-13.
- Knight, D. E. (1981). Rendering cells permeable by exposure to electric fields. In *Techniques in Cellular Physiology*, pp. 1-20. Amsterdam: Elsevier/North Holland
 Scientific Publishers Ltd.
- Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., Ehrlich, B.E. and
 Somlo, S. (2002). Polycystin-2 is an intracellular calcium release channel. *Nat Cell Biol.* 4,191-197.
- Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y. and Meissner, G. (1988). Purification
 and reconsitution of the calcium release channel from skeletal muscle. *Nature* 331, 315319.
- Lape, R., Colquhoun, D. and Sivilotti, L. G. (2008). On the nature of partial agonism in the
 nicotinic receptor superfamily. *Nature* 454, 722-727.
- Li, C., Enomoto, M., Rossi, A. M., Seo, M.-D., Rahman, T., Stathopulos, P. B., Taylor,
 C. W., Ikura, M. and Ames, J. B. (2013). CaBP1, a neuronal Ca²⁺ sensor protein,
 inhibits inositol trisphosphate receptors by clamping inter-subunit interactions. *Proc. Natl. Acad. Sci. USA* 110, 8507-8512.
- Lin, C. C., Baek, K. and Lu, Z. (2011). Apo and InsP₃-bound crystal structures of the
 ligand-binding domain of an InsP₃ receptor. *Nat. Struct. Mol. Biol.* 18, 1172-1174.
- Lock, J. T., Parker, I. and Smith, I. F. (2015). A comparison of fluorescent Ca²⁺ indicators
 for imaging local Ca²⁺ signals in cultured cells. *Cell Calcium* 58, 638-648.
- 632 Loomis-Husselbee, J. W., Cullen, P. J., Dreikhausen, U. E., Irvine, R. F. and Dawson, A.
- 633 **P.** (1996). Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-
- trisphosphate-stimulated Ca^{2+} release do not involve direct interaction of inositol

- 635 1,3,4,5-tetrakisphosphate with inositol trisphosphate-binding sites. *Biochem. J.* 314,
 636 811-816.
- Ludtke, S. J., Serysheva, I. I., Hamilton, S. L. and Chiu, W. (2005). The pore structure of
 the closed RYR1 channel. *Structure* 13, 1203-1211.
- Ludtke, S. J., Tran, T. P., Ngo, Q. T., Moiseenkova-Bell, V. Y., Chiu, W. and Serysheva,
 I. I. (2011). Flexible architecture of IP₃R1 by cryo-EM. *Structure* 19, 1192-1199.
- 641 Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M. and
- 642 **Mikoshiba, K.** (1991). Structural and functional characterization of inositol 1,4,5-
- trisphosphate receptor channel from mouse cerebellum. *J. Biol. Chem.* **266**, 1109-1116.
- 644 Maeda, N., Niinobe, M., Nakahira, K. and Mikoshiba, K. (1988). Purification and
- 645 characterization of P_{400} protein, a glycoprotein characteristic of purkinje cell from 646 mouse cerebellum. *J. Neurochem.* **51**, 1724-1730.
- 647 Mak, D. O. and Foskett, J. K. (2014). Inositol 1,4,5-trisphosphate receptors in the
- 648 endoplasmic reticulum: A single-channel point of view. *Cell Calcium* **58**, 67-78.
- 649 Mak, D. O., Pearson, J. E., Loong, K. P., Datta, S., Fernandez-Mongil, M. and Foskett,
- **J. K.** (2007). Rapid ligand-regulated gating kinetics of single inositol 1,4,5trisphosphate receptor Ca^{2+} release channels. *EMBO Rep.* **8**, 1044-1051.
- Mak, D. O., Vais, H., Cheung, K. H. and Foskett, J. K. (2013). Patch-clamp
 electrophysiology of intracellular Ca²⁺ channels. *Cold Spring Harbor Protocols* 2013,
- 654 787-97.
- Marchant, J., Callamaras, N. and Parker, I. (1999). Initiation of IP₃-mediated Ca²⁺ waves
 in *Xenopus* oocytes. *EMBO J.* 18, 5285-5299.
- Marchant, J. S. and Taylor, C. W. (1997). Cooperative activation of IP₃ receptors by
 sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity. *Curr. Biol.* 7, 510-518.
- Marchenko, S. M., Yarotskyy, V. V., Kovalenko, T. N., Kostyuk, P. G. and Thomas, R.
 C. (2005). Spontaneously active and InsP₃-activated ion channels in cell nuclei from rat
- cerebellar Purkinje and granule neurones. *J. Physiol.* **565**, 897-910.
- 663 Mataragka, S. and Taylor, C. W. (2018). All three IP_3 receptor subtypes generate Ca^{2+}
- 664 puffs, the universal building blocks of IP_3 -evoked Ca^{2+} signals. J. Cell Sci. In press.
- Meissner, G. (2017). The structural basis of ryanodine receptor ion channel function. *J. Gen. Physiol.* 149, 1065-1089.
- Meyer, T., Holowka, D. and Stryer, L. (1988). Highly cooperative opening of calcium
 channels by inositol 1,4,5-trisphosphate. *Science* 240, 653-656.

- Michell, R. H. (1975). Inositol phospholipids and cell surface receptor function. *Biochim. Biophys. Acta* 415, 81-147.
- Mignery, G. A. and Südhof, T. C. (1990). The ligand binding site and transduction
 mechanism in the inositol-1,4,5-trisphosphate receptor. *EMBO J.* 9, 3893-3898.
- Mignery, G. A., Südhof, T. C., Takei, K. and De Camilli, P. (1989). Putative receptor for
 inositol 1,4,5-trisphosphate similar to ryanodine receptor. *Nature* 342, 192-195.
- 675 Miyakawa, T., Mizushima, A., Hirose, K., Yamazawa, T., Bezprozvanny, I., Kurosaki,
- 676 **T. and Iino, M.** (2001). Ca^{2+} -sensor region of IP₃ receptor controls intracellular Ca^{2+} 677 signaling. *EMBO J.* **20**, 1674-1680.
- Monkawa, T., Miyawaki, A., Sugiyama, T., Yoneshima, H., Yamamoto-Hino, M.,
 Furuichi, T., Saruta, T., Hasagawa, M. and Mikoshiba, K. (1995). Heterotetrameric
- complex formation of inositol 1,4,5-trisphosphate receptor subunits. *J. Biol. Chem.* 270,
 14700-14704.
- Morgan, A. J. and Galione, A. (2013). Two-pore channels (TPCs): current controversies.
 Bioessays 36, 173-183.
- Nahorski, S. R. and Potter, B. V. L. (1989). Molecular recognition of inositol
 polyphosphates by intracellular receptors and metabolic enzymes. *Trends Pharmacol. Sci.* 10, 139-144.
- Neher, E. (1992). Nobel lecture. Ion channels for communication between and within cells.
 EMBO J. 11, 1672-1679.
- Oxenoid, K., Dong, Y., Cao, C., Cui, T., Sancak, Y., Markhard, A. L., Grabarek, Z.,
 Kong, L., Liu, Z., Ouyang, B. et al. (2016). Architecture of the mitochondrial calcium
 uniporter. *Nature* 533, 269-273.
- 692 **Paknejad, N. and Hite, R. K.** (2018). Structural basis for the regulation of inositol 693 trisphosphate receptors by Ca^{2+} and IP₃. *Nat. Struct. Mol. Biol.* **25**, 660-668.
- 694 Parker, I. and Miledi, R. (1989). Nonlinearity and facilitation in phosphoinositide signaling
 695 studied by the use of caged inositol trisphosphate in *Xenopus* oocytes. *J. Neurosci.* 9,
 696 4068-4077.
- Patel, S., Harris, A., O'Beirne, G., Cook, N. D. and Taylor, C. W. (1996). Kinetic analysis
 of inositol trisphosphate binding to pure inositol trisphosphate receptors using
 scintillation proximity assay. *Biochem. Biophys. Res. Commun.* 221, 821-825.
- 700 Patron, M., Raffaello, A., Granatiero, V., Tosatto, A., Merli, G., De Stefani, D., Wright,
- 701 L., Pallafacchina, G., Terrin, A., Mammucari, C. et al. (2013). The mitochondrial

702	calcium uniporter (MCU): molecular identity and physiological roles. J. Biol. Chem.
703	288 , 10750-10758.
704	Peng, W., Shen, H., Wu, J., Guo, W., Pan, X., Wang, R., Chen, S. R. and Yan, N. (2016).
705	Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2.
706	<i>Science</i> 354 , aah5324.
707	Pinton, P., Pozzan, T. and Rizzuto, R. (1998). The Golgi apparatus is an inositol 1,4,5-
708	trisphosphate-sensitive Ca ²⁺ store, with functional properties distinct from those of the
709	endoplasmic reticulum. EMBO J. 17, 5298-5308.
710	Prakriya, M. and Lewis, R. S. (2015). Store-operated calcium channels. Physiol. Rev. 95,
711	1383-1436.
712	Prole, D. L. and Taylor, C. W. (2016). Inositol 1,4,5-trisphosphate receptors and their
713	protein partners as signalling hubs. J. Physiol. 594, 2849-2866.
714	Putney, J. W., Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium 7, 1-
715	12.
716	Rahman, T., Skupin, A., Falcke, M. and Taylor, C. W. (2011). InsP ₃ R channel gating
717	altered by clustering? Rahman et al. reply. Nature 478, E2-E3.
718	Rahman, T. and Taylor, C. W. (2010). Nuclear patch-clamp recording from inositol 1,4,5-
719	trisphosphate receptors. In Calcium in Living Cells, (ed. M. Whittaker), pp. 199-224.
720	Amsterdam: Elsevier.
721	Rahman, T. U., Skupin, A., Falcke, M. and Taylor, C. W. (2009). Clustering of IP_3
722	receptors by IP ₃ retunes their regulation by IP ₃ and Ca ²⁺ . <i>Nature</i> 458 , 655-659.
723	Ramos-Franco, J., Bare, D., Caenepeel, S., Nani, A., Fill, M. and Mignery, G. (2000).
724	Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor.
725	Biophys. J. 79, 1388-1399.
726	Ringer, S. (1883). A further contribution regarding the influence of the different constituents
727	of the blood on the contraction of the heart. J. Physiol. 4, 29-42.
728	Rios, E. (2018). Calcium-induced release of calcium in muscle: 50 years of work and the
729	emerging consensus. J. Gen. Physiol. 150, 521-537.
730	Rizzuto, R., De Stefani, D., Raffaello, A. and Mammucari, C. (2012). Mitochondria as
731	sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566-578.
732	Rodriguez, E. A., Campbell, R. E., Lin, J. Y., Lin, M. Z., Miyawaki, A., Palmer, A. E.,
733	Shu, X., Zhang, J. and Tsien, R. Y. (2017). The growing and glowing toolbox of
734	fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111-129.

- Rossi, A. M., Riley, A. M., Potter, B. V. L. and Taylor, C. W. (2010). Adenophostins:
 high-affinity agonists of IP₃ receptors. *Curr. Top. Membr.* 66, 209-233.
- 737 Rossi, A. M., Riley, A. M., Tovey, S. C., Rahman, T., Dellis, O., Taylor, E. J. A.,
- Veresov, V. G., Potter, B. V. L. and Taylor, C. W. (2009). Synthetic partial agonists
 reveal key steps in IP₃ receptor activation. *Nat. Chem. Biol.* 5, 631-639.
- **Rossi, A. M. and Taylor, C. W.** (2013). High-throughput fluorescence polarization assay of
 ligand binding to IP₃ receptors. *Cold Spring Harbor Protocols* 2013, 938-946.
- 742 Rossi, A. M., Tovey, S. C., Rahman, T., Prole, D. L. and Taylor, C. W. (2012). Analysis
- of IP₃ receptors in and out of cells. *Biochim. Biophys. Acta* **1820**, 1214-1227.
- 744 Saleem, H., Tovey, S. C., Molinski, T. F. and Taylor, C. W. (2014). Interactions of
- antagonists with subtypes of inositol 1,4,5-trisphosphate (IP₃) receptor. *Br. J. Pharmacol.* 171, 3298-3312.
- 747 Saleem, H., Tovey, S. C., Rahman, T., Riley, A. M., Potter, B. V. L. and Taylor, C. W.
- 748 (2012). Stimulation of inositol 1,4,5-trisphosphate (IP₃) receptor subtypes by analogues
 749 of IP₃. *PLoS ONE* 8, e54877.
- Schug, Z. T. and Joseph, S. K. (2006). The role of the S4-S5 linker and C-terminal tail in
 inositol 1,4,5-trisphosphate receptor function. *J. Biol. Chem.* 281, 24431-24440.
- Schulz, I. (1990). Permeabilizing cells: some methods and application for the study of
 intracellular processes. *Methods Enzymol.* 192, 280-300.
- Seo, M.-D., Velamakanni, S., Ishiyama, N., Stathopulos, P. B., Rossi, A. M., Khan, S. A.,
 Dale, P., Li, C., Ames, J. B., Ikura, M. et al. (2012). Structural and functional
 conservation of key domains in InsP₃ and ryanodine receptors. *Nature* 483, 108-112.
- Smith, I. F. and Parker, I. (2009). Imaging the quantal substructure of single IP₃R channel activity during Ca²⁺ puffs in intact mammalian cells. *Proc. Natl. Acad. Sci. USA* 106, 6404-6409.
- Smith, I. F., Wiltgen, S. M., Shuai, J. and Parker, I. (2009). Ca²⁺ puffs originate from
 preestablished stable clusters of inositol trisphosphate receptors. *Sci. Signal.* 2, ra77.
- Spät, A., Bradford, P. G., McKinney, J. S., Rubin, R. P. and Putney, J. W., Jr. (1986). A
 saturable receptor for ³²P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils.
 Nature 319, 514-516.
- Stehno-Bittel, L., Lückhoff, A. and Clapham, D. E. (1995). Calcium release from the
 nucleus by InsP₃ receptor channels. *Neuron* 14, 163-167.

- 767 Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. (1983). Release of Ca²⁺ from a
 768 nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-
- 769 trisphosphate. *Nature* **306**, 67-69.
- Südhof, T. C., Newton, C. L., Archer, B. T., Ushkaryov, Y. A. and Mignery, G. A.
 (1991). Structure of a novel InsP₃ receptor. *EMBO J.* 10, 3199-3206.
- Supattapone, S., Worley, P. F., Baraban, J. M. and Snyder, S. H. (1988). Solubilization,
 purification, and characterization of an inositol trisphosphate receptor. *J. Biol. Chem.*263, 1530-1534.
- Sureshan, K. M., Riley, A. M., Thomas, M. P., Tovey, S. C., Taylor, C. W. and Potter, B.
 V. (2012). Contribution of phosphates and adenine to the potency of adenophostins at
 the IP₃ receptor: synthesis of all possible bisphosphates of adenophostin A. *J. Med. Chem.* 55, 1706-1720.
- Takahashi, M., Tanzawa, K. and Takahashi, S. (1994). Adenophostins, newly discovered
 metabolites of *Penicillium brevicompactum*, act as potent agonists of the inositol 1,4,5 trisphosphate receptor. *J. Biol. Chem.* 269, 369-372.
- Taylor, C. W., Prole, D. L. and Rahman, T. (2009). Ca²⁺ channels on the move.
 Biochemistry 48, 12062-12080.
- Taylor, C. W., Tovey, S. C., Rossi, A. M., Lopez Sanjurjo, C. I., Prole, D. L. and
 Rahman, T. (2014). Structural organization of signalling to and from IP₃ receptors.
 Biochem. Soc. Trans. 42, 63-70.
- 787 Terry, L. E., Alzayady, K. J., Furati, E. and Yule, D. I. (2018). Inositol 1,4,5788 trisphosphate receptor mutations associated with human disease. *Messenger* 6, 29-44.
- 789 Thillaiappan, N. B., Chavda, A. P., Tovey, S. C., Prole, D. L. and Taylor, C. W. (2017).
- 790 Ca^{2+} signals initiate at immobile IP₃ receptors adjacent to ER-plasma membrane 791 junctions. *Nat. Commun.* **8**, 1505.
- Thorn, K. (2016). A quick guide to light microscopy in cell biology. *Mol. Biol. Cell* 27, 219222.
- Thurley, K., Tovey, S. C., Moenke, G., Prince, V. L., Meena, A., Thomas, A. P., Skupin,
 A., Taylor, C. W. and Falcke, M. (2014). Reliable encoding of stimulus intensities
- within random sequences of intracellular Ca^{2+} spikes. *Sci. Signal.* **7**, ra59.
- 797 Uchida, K., Miyauchi, H., Furuichi, T., Michikawa, T. and Mikoshiba, K. (2003).
- 798 Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. *J. Biol.*
- 799 *Chem.* **278**, 16551-16560.

- Vais, H., Foskett, J. K. and Mak, D. O. (2011). InsP₃R channel gating altered by
 clustering? *Nature* 478, E1-E2.
- Van Petegem, F. (2014). Ryanodine receptors: allosteric ion channel giants. J. Mol. Biol.
 427, 31-53.
- Wassler, M., Jonasson, I., Persson, R. and Fries, E. (1987). Differential permeabilization
 of membranes by saponin treatment of isolated rat hepatocytes. Release of secretory
 vesicles. *Biochem. J.* 247, 407-415.
- Watras, J., Bezprozvanny, I. and Ehrlich, B. E. (1991). Inositol 1,4,5-trisphosphate-gated
 channels in cerebellum: presence of multiple conductance states. *J. Neurosci.* 11, 32393245.
- 810 Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S. and Snyder, S. H. (1987).
- 811 Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH
 812 and calcium. *J. Biol. Chem.* 262, 12132-12136.
- 813 Xie, X., Xu, A. M., Leal-Ortiz, S., Cao, Y., Garner, C. C. and Melosh, N. A. (2013).
- Nanostraw-electroporation system for highly efficient intracellular delivery and
 transfection. *ACS Nano* 7, 4351-4358.
- Yamazaki, H., Chan, J., Ikura, M., Michikawa, T. and Mikoshiba, K. (2010). Tyr167/Trp-168 in type1/3 inositol 1,4,5-trisphosphate receptor mediates functional
 coupling between ligand binding and channel opening. *J. Biol. Chem.* 285, 36081-
- 819 36091.
- Yan, Z., Bai, X. C., Yan, C., Wu, J., Li, Z., Xie, T., Peng, W., Yin, C. C., Li, X., Scheres,
 S. H. et al. (2015). Structure of the rabbit ryanodine receptor RyR1 at near-atomic
 resolution. *Nature* 517, 50-55.
- 823 Yen, M. and Lewis, R. S. (2018). Physiological CRAC channel activation and pore
- properties require STIM1 binding to all six Orai1 subunits. J. Gen. Physiol. In press.

825 Yoshikawa, F., Morita, M., Monkawa, T., Michikawa, T., Furuichi, T. and Mikoshiba,

- K. (1996). Mutational analysis of the ligand binding site of the inositol 1,4,5trisphosphate receptor. *J. Biol. Chem.* 271, 18277-18284.
- Zalk, R., Clarke, O. B., Georges, A. D., Grassucci, R. A., Reiken, S., Mancia, F.,
- Hendrickson, W. A., Frank, J. and Marks, A. R. (2015). Structure of a mammalian
 ryanodine receptor. *Nature* 517, 44-49.
- Zsolnay, V., Fill, M. and Gillespie, D. (2018). Sarcoplasmic reticulum Ca²⁺ release uses a
 cascading network of intra-SR and channel countercurrents. *Biophys. J.* 114, 462-473.

Fig. 1: Ca²⁺ release by IP₃ and ryanodine receptors. (A) Many receptors in the plasma 833 membrane (PM), including G-protein-coupled receptors (GPCRs) and receptor tyrosine 834 kinases (RTKs), stimulate phospholipases C (PLC), causing hydrolysis of the PM lipid, 835 phosphatidylinositol 4,5-bisphosphate, into diacylglycerol and IP₃. IP₃ binds to each of the 836 four IP₃-binding sites of the tetrameric IP₃R to initiate conformational changes that lead to 837 channel opening and release of Ca^{2+} from the ER. IP₃ is deactivated by phosphorylation to IP₄ 838 or dephosphorylation to IP₂. RyRs are close relatives of IP₃Rs, but they are predominantly 839 expressed in the sarcoplasmic reticulum of skeletal (RyR1) and cardiac (RyR2) muscle. Each 840 RyR is activated when depolarization of the PM activates voltage-gated Ca²⁺ channels (Ca_v1). 841 RyR1 are directly activated by conformational coupling to $Ca_V 1.1$, whereas Ca^{2+} entering 842 cardiac myocytes through $Ca_v 1.2$ activates RyR2 through Ca^{2+} -induced Ca^{2+} release (CICR). 843 Structures from Electron Microscopy Data Bank (IP₃R, EMD-5278 (Ludtke et al., 2011); 844 RyR1, EMD-1275 (Ludtke et al., 2005)). (B) IP₃ binding is not alone sufficient to activate 845 IP_3Rs . IP_3 binding primes IP_3Rs to bind Ca^{2+} and that leads to channel opening. All four IP_3 -846 binding sites must be occupied for the pore to open, but it is not yet known how many Ca^{2+} -847 binding sites must be occupied (we show four for simplicity). (C) Dual regulation of IP₃Rs by 848 IP_3 and Ca^{2+} allows them to propagate regenerative Ca^{2+} signals by CICR. Local CICR 849 activity within a small cluster of IP₃Rs generates a Ca²⁺ puff. (D) The vicinal 4,5-850 bisphosphate moiety of IP₃ is essential for activity, whereas the 1-phosphate enhances 851 affinity. (E) IP₃ is recognised by the IP₃-binding core (IBC) of IP₃R. The essential 4- and 5-852 phosphates of IP₃ interact with opposing sides of the clam-like IBC to cause clam closure. 853 854 The loop of the suppressor domain (SD) interacts with IBC- β of a neighbouring subunit (Seo et al., 2012). A-C modified from Taylor et al. (2014), and D reproduced from Seo et al. 855 856 (2012).

equilibrium dissociation constant (K_D) (Box 2). Non-equilibrium measurements allow rate 858 constants $(k_{\pm 1} \text{ and } k_{\pm 1})$ to be determined. (B) Commonly, radioactive IP₃ (typically ³H-IP₃) is 859 equilibrated with IP₃R before rapidly separating (usually by centrifugation) bound and free 860 ligands to determine the amount of 3 H-IP₃ bound to its receptor. (C) By immobilizing IP₃R on 861 the surface of a bead that detects only immediately adjacent (i.e. bound) ³H-IP₃, scintillation 862 proximity assays (SPA) report bound 3 H-IP₃ without separating bound from free ligand (Patel 863 et al., 1996). (D) A variety of methods, including surface-plasmon resonance (SPR), 864 fluorescence correlation spectroscopy (FCS) and fluorescence polarization (FP) rely on 865 detecting the large increase in apparent size of IP₃ as it binds to the IP₃R (or a fragment of it). 866 With FP, for example (illustrated), a fluorescent analogue of IP₃ rotates rapidly when free, 867 but less so when it has bound to a soluble IP₃R fragment. The difference can be measured, 868 without separating bound and free ligands, by recording the extent to which plane-polarized

Fig. 2: Measuring IP₃ binding to IP₃Rs. (A) Binding assays allow determination of the

869

light remains polarized (Ding et al., 2010). (E) Isothermal titration calorimetry (ITC) 870

measures the very small amounts of heat released or absorbed (ΔH) as IP₃ binds to purified 871

IP₃R by comparison with a reference cell (de Azevedo and Dias, 2008). 872

857

Fig. 3: Towards understanding how IP₃ and Ca²⁺ open IP₃Rs. (A) Single IP₃R1 subunit 873 showing key domains: the N-terminal suppressor domain (SD); the β and α domains of the 874 IP₃-binding core (IBC); the intervening lateral domain (ILD), which lies between ARM3 and 875 the first trans-membrane domain (TMD1); TMD6, which lines the pore and is occluded by 876 877 hydrophobic residues towards its cytosolic end in the closed state; the helical linker domain (LNK); and the C-terminal α -helical domain (CTD), which is unique to IP₃Rs. The structure 878 879 was published in Fan et al. (2015) (Protein Data Base, PDB 3JAV). (B) Simplified scheme, derived from structures of IP₃R1 (Fan et al., 2015) and IP₃R3 (Paknejad and Hite, 2018) 880 shows that the only contact between the cytosolic and pore region occurs at the nexus 881 between ARM3 with its C-terminal ILD domain and the C-terminal extension of TMD6 882 (LNK). These contacts form an interleaved structure, with residues from LNK and the base of 883 ARM3 cooperating to form a Ca^{2+} -binding site. Binding sites for IP₃ (IBC- α and IBC- β) and 884 Ca^{2+} are formed by residues contributed from different domains, allowing rigid-body 885 movements of domains to reconfigure the sites. The first Ca²⁺-binding site assembles from 886 residues provided by ARM1 and the α-helical linker between ARM1 and ARM2. The second 887 Ca²⁺-binding site is structurally conserved in RyR, and assembled by residues from ARM3 888 and LNK domains. This second site may mediate the IP_3 -regulated binding of Ca^{2+} that 889 precedes channel opening (see text for details) (Paknejad and Hite, 2018). Opening of the 890 pore requires movement of occluding hydrophobic residues that lie close to the cytosolic end 891 of TMD6; Ca^{2+} can then pass rapidly form the ER lumen to the cytosol. 892

893 Box 1: IP₃Rs and RyRs are not the only intracellular Ca^{2+} channels

IP₃Rs and RyRs are the major intracellular Ca^{2+} -release channels in most cells and the major 894 links between extracellular stimuli and Ca²⁺ release from the ER or sarcoplasmic reticulum 895 (SR) (Fig. 1A), but they are not the only intracellular Ca^{2+} channels (Taylor et al., 2009). 896 Polycystin-2 (also known as TRPP2), a member of the transient receptor potential (TRP) 897 superfamily, is also expressed in the ER and is activated by Ca^{2+} (Koulen et al., 2002). A 898 variety of Ca²⁺-permeable channels are expressed in lysosomes, including those regulated by 899 luminal pH and ATP (P2X purinoceptor 4, P2X4) (Huang et al., 2014), cytosolic nicotinic 900 acid adenine dinucleotide phosphate (NAADP; two pore channel 2, TPC2) (Morgan and 901 Galione, 2013), and the lysosomal membrane lipid, phosphatidylinositol 3,5-bisphosphate 902 (transient receptor potential mucolipin 1 channel, TRPML1) (Cao et al., 2017). The 903 mitochondrial uniporters (MCU) comprise another important family of intracellular Ca²⁺ 904 channels (Oxenoid et al., 2016; Patron et al., 2013). Opening of MCU is triggered by large 905 local increases in $[Ca^{2+}]_c$, causing Ca^{2+} to flow rapidly from the cytosol across the inner 906 mitochondrial membrane and into the mitochondrial matrix, where Ca^{2+} regulates many 907 activities (Rizzuto et al., 2012). A recurrent theme in Ca^{2+} signalling is the importance of 908 interactions between Ca²⁺ channels in different membranes: store-operated Ca²⁺ entry is 909 activated after loss of Ca^{2+} from the ER through IP₃Rs; mitochondrial Ca^{2+} uptake is driven 910 by local Ca²⁺ release through IP₃Rs and RyRs (Csordas et al., 2018); NAADP-evoked Ca²⁺ 911 release from lysosomes is amplified by CICR through closely apposed IP₃Rs or RyRs 912 (Morgan and Galione, 2013); and Ca^{2+} puffs and sparks are ignited by CICR triggering Ca^{2+} 913 release within clusters of IP₃Rs or RyRs (Fig. 1C) (Cheng and Lederer, 2008; Rios, 2018; 914 Thillaiappan et al., 2017). 915

916

917 **Box 2: Analysis of IP₃ binding**

Analyses of IP₃ binding allow affinities of IP₃ or competing ligands to be determined (as 918 equilibrium dissociation constants, K_D, the concentration of IP₃ at which 50% of binding sites 919 920 are occupied) (Fig. 2). These analyses determine the relationship between the concentration of a ligand and the amount bound to IP_3R_5 . Radioligand binding, using ³H-IP₃, is the most 921 commonly used approach. Most methods used to determine specific binding of ${}^{3}\text{H-IP}_{3}$ to 922 IP_3Rs require rapid separation of bound and free ${}^{3}H$ - IP_3 , such that the equilibrium between 923 free 3 H-IP₃, competing ligands and the IP₃R is not perturbed by the separation procedure 924 (filtration or centrifugation) (Fig. 2A,B). Measuring specific binding with different 925 concentrations of ³H-IP₃ allows the K_D for ³H-IP₃ to be determined, whereas measuring 926 specific binding of ³H-IP₃ in the presence of different concentrations of a competing ligand 927 allow the K_D of that ligand to be determined (Cheng and Prusoff, 1973). Advantages of these 928 ³H-IP₃ binding assays are their simplicity and applicability to IP₃Rs within membranes, after 929 detergent-solubilization or as IP₃-binding fragments (Rossi et al., 2009). Scintillation 930 proximity assays (SPA) avoid the need for separation steps because the SPA beads are 931 impregnated with a scintillant, such that when IP₃Rs are immobilized on the surface of the 932 bead, only ³H-IP₃ bound to an IP₃R is detected (Fig. 2C) (Patel et al., 1996). More 933 specialized methods allow analysis of ligand binding to IP₃Rs without using radioligands. 934 These methods include fluorescence polarization (FP), which uses a fluorescent analogue of 935 IP_3 to report the size of the molecule to which the fluorophore is attached. When free, the 936 fluorescent IP_3 is small and tumbles rapidly in solution, but when bound to a large IP_3R 937 938 fragment it tumbles more slowly. These changes can be detected using plane-polarized light (Fig. 2D) (Ding et al., 2010; Rossi and Taylor, 2013). Isothermal titration calorimetry (ITC), 939 which measures heat exchange during IP₃ binding, is another means of measuring ligand 940 binding to IP₃Rs without using ³H-IP₃ (Fig. 2E) (de Azevedo and Dias, 2008). Limitations of 941 both FP and ITC include the need for both specialised equipment and large amounts of 942 purified protein. 943 944

31

945 Box 3: Nuclear patch-clamp recordings can be applied to IP₃Rs

Patch-clamp recording allows the opening and closing of single ion channels to be recorded 946 with exquisite sensitivity (Neher, 1992). Usually these recordings are made at the plasma 947 membrane (PM), but that is not applicable to single-channel recordings from IP₃Rs, most of 948 which are expressed in ER. However, the outer nuclear membrane (ONM) is continuous with 949 the ER membrane, and IP₃Rs are expressed in the ONM. A glass microelectrode applied to 950 951 the ONM of an isolated nucleus allows single-channel recording from IP₃Rs trapped within. By excising the patch from the intact nucleus to provide an excised patch, it is possible to 952 make recordings with the IP₃-binding site of the IP₃R exposed to either the interior of the 953 patch-pipette patch or (with greater difficulty) to the bath solution (Mak et al., 2007). The 954 latter allows rapid application of IP₃ or Ca^{2+} to the cytosolic surface. K⁺ or Cs⁺ are commonly 955 used as charge-carriers for patch-clamp recording because they provide large currents and 956 they, unlike Ca^{2+} , do not regulate IP₃R gating. These patch-clamp methods allow the ion 957 selectivity and conductance of IP₃Rs to be determined. By examining the sequence of channel 958 openings and closing, gating schemes can be developed that seek to explain how regulators of 959 IP₃Rs (like IP₃ and Ca²⁺) move the channel through different closed states to its open state 960 (Mak and Foskett, 2014; Rahman et al., 2009). Image reproduced, with permission, from 961 962 Rossi et al. (2012).

