

1	Intensive care admission criteria for traumatic brain injury patients across Europe
2	Victor Volovici ^{1,2} , Ari Ercole ³ , Giuseppe Citerio ^{4,5} , Nino Stocchetti ^{6,7} , Iain K. Haitsma ¹ , Jilske A.
3	Huijben ² , Clemens M. F. Dirven ¹ , Mathieu van der Jagt ⁸ , Ewout W. Steyerberg ^{2,9} , David Nelson ¹⁰ ,
4	Maryse C. Cnossen ² , Andrew I. R. Maas ¹¹ , Suzanne Polinder ² , David K. Menon ³ , Hester F. Lingsma ²
5	
6	¹ = Department of Neurosurgery, Erasmus MC Rotterdam, The Netherlands
7	² = Center for Medical Decision Making, Department of Public Health, Erasmus MC, Rotterdam, The
8	Netherlands
•	
9	³ = Division of Anesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
10	⁴ =School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
11	⁵ = Neurointensive Care Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy

- 12 ⁶=Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
- ⁷= Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Anesthesia and
 Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
- 0
- ⁸= Department of Intensive Care Adults, Erasmus MC, Rotterdam, The Netherlands
- ⁹= Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden,
 The Netherlands.
- 18 ¹⁰= Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive
- 19 Care, Karolinska Institutet, Stockholm, Sweden
- ¹¹= Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem,
 Belgium

22 Corresponding author

- 23 Victor Volovici, MD
- 24 Erasmus MC University Medical Center, Erasmus MC Stroke Center
- 25 Department of Neurosurgery and Medical Decision Making
- 26 Doctor Molenwaterplein 40
- 27 3015 GD, Rotterdam, The Netherlands
- 28 tel: 0031-10-7039324
- 29 fax: 0031-10-7040704
- 30 email: <u>v.volovici@erasmusmc.nl</u>
- 31
- Keywords: Intensive Care Admission, Moderate and Severe TBI, Intensive Care Occupancy, Cost-effectiveness,
 CENTER-TBI, European policy

34 Conflict of interest

- All authors report funding from the European Commission, Seventh Framework Program, grant number 602150.
- 36 No other sources of conflict of interest are present.

Abstract

- Within a prospective, observational, multi-center cohort study 68 hospitals (of which 66
- responded), mostly academic (n=60, 91%) level I trauma centers (n=44, 67%) in 20 countries
- were asked to complete questionnaires regarding the "standard of care" for severe
- neurotrauma patients in their hospitals. From the questionnaire pertaining to ICU
- management, 12 questions related to admission criteria were selected for this analysis.
- The questionnaires were completed by 66 centers. The median number of TBI patients
- admitted to the ICU was 92 [interguartile range (IQR): 52-160] annually. Admission policy
- varied; in 45 (68%) centers, patients with a Glasgow Come Score (GCS) between 13-15
- without CT abnormalities but with other risk factors would be admitted to the ICU while the
- rest indicated that they would not admit these patients routinely to the ICU.
- We found no association between ICU admission policy and the presence of a dedicated
- neuro ICU, the discipline in charge of rounds, the presence of step down beds or geographic
- location (North- Western Europe vs. South Eastern Europe and Israel).
- Variation in admission policy, primarily of mild TBI patients to ICU exists, even among high-
- volume academic centers and seems to be largely independent of other center characteristics.
- The observed variation suggests a role for comparative effectiveness research to investigate
- the potential benefit and cost-effectiveness of a liberal versus more restrictive admission
- policies.

Introduction

- Intensive care unit (ICU) beds are a costly and limited resource. Admission is clearly justified
- for more severely injured patients needing acute life-sustaining physiological support. For the

- 1 less severely injured, ICU admission could be justified by the notion that a proportion of these
- 2 patients subsequently deteriorate or because of care needs that are still too intense to be
- 3 adequately provided at the ward. However, accurate and broadly applicable admission criteria
- 4 for such less severely ill patients are lacking and may be subject to service-configuration,
- 5 other institutional, or clinician-specific determinants. Admission of patients to the ICU who
- 6 have a low risk of subsequently requiring physiological support or emergent surgical
- 7 intervention, as a result of the severity of their traumatic brain injury (TBI) or extra-cranial
- 8 injuries, is undesirable and may have adverse financial consequences.
- 9 In the United States, 20% of patients with mild TBI, defined as those with a Glasgow Coma
- 10 Scale (GCS) of 13-15, presenting to the Emergency Department are admitted to the ICU 1 .
- 11 Even though admitting a patient with a 'mild' traumatic brain injury (TBI) to the ICU might
- 12 be the appropriate decision to ensure proper interventions in the case of secondary
- 13 neurological worsening, existing data do not support this ^{2, 3}. In Europe, a recent survey
- 14 demonstrated large variation in the number of critical care beds across countries. Moreover,
- no clear central policies to facilitate planning to meet the demand and optimal utilization in
- 16 the future $exist^4$.

17 In this study we aim to describe the variation in policy of European neurotrauma centers

- 18 regarding admission of TBI patients to the ICU.
- 19

20 Materials and methods

- 21 Data
- Between 2014 and 2015, 68 centers from 20 European countries, participating in the
- 23 CENTER-TBI prospective longitudinal observational study ⁵, were approached to complete a
- set of questionnaires about structure and process of care: The Provider Profiling (PP)
- 25 questionnaires. These were developed according to best practice. In the item generation phase
- 26 we have gathered experts together within the CENTER-TBI team and proceeded with item
- 27 generation and item reduction in a second phase. The questionnaires were then pre-tested with
- 28 a group of participating centers and face validity was discussed with the participants and the
- 29 experts involved in item generation. The pilot testing evaluated flow and time required to
- 30 complete.⁶
- 31 We have measured reliability and concordance rates of the questionnaire.
- To estimate reliability of the questionnaires, we included 17 (5%) duplicate questions,
 including all question formats. We equally included structure and process questions in
- 34 the duplicate questions.
- 35 Concordance rates were estimated by calculating the percentage of overlap between duplicate
- 36 questions, and presented as mean, median and range. For open questions (e.g. what is the
- number of intensivist in your center), a maximum difference of 10% was considered
- 38 concordant. Questionnaires were disseminated during presentations, workshops and email
- 39 conversations. More information is available at length in one of our groups' previous
- 40 publications^{6, 7}.
- 41

- 1 The questionnaire on ICU care contained 3 items and 7 sub-questions on admission criteria
- 2 which were selected for this analysis (Appendix A) . In most questions the 'general policy' at
- each center was requested, which was defined as 'routine policy', i.e. what the standard
- 4 treatment or policy would be in a particular case. In others, we asked for quantitative
- s estimations, whereby the frequency of a treatment strategy could be indicated (never 0-10%,
- 6 rarely 10-30%, sometimes 30-70%, frequently 70-90%, always 90-100%). The options
- 7 'frequently' and 'always' were interpreted as representing the general policy, in line with
- 8 previous provider profiling studies.⁷

9 Statistical analyses

- 10 To identify possible factors that are associated with admission policy to the ICU, we
- 11 compared admission policy between different ICU organizations: dedicated neuro- ICU
- 12 present (yes/no); high or low volume (according to number of beds and according to number
- 13 of patients admitted, 'high' designating all centers with a number of beds above the median
- 14 and 'low' centers the centers with number of beds lower than the median); presence of step-
- down beds (yes/no); healthcare expenditure as % of Gross Domestic Product (GDP;
- 16 dichotomized in relatively lower and higher % of expenditure); number of ICU beds per
- 17 100,000 inhabitants (dichotomized to countries with relatively high vs low numbers of beds);
- and health expenditure (countries with a higher % expenditure than the median being
- 19 classified as relatively high and the others classified as relatively low). For analysis of the
- 20 geographic location, countries were divided into Northern and Western Europe and Southern
- and Eastern Europe. Differences were tested with chi-square tests, and if appropriate Fisher's
- 22 exact test. This approach dichotomized hospitals based on admission of mild TBI patients to
- the ICU into those with a liberal admission policy, versus those with a more conservativepolicy. A liberal admission policy was defined as the admission of mild TBI patients to the
- policy. A liberal admission policy was defined as the admission ofICU as 'general policy'.
- Analyses were performed using the Statistical Package for Social Sciences (SPSS) version
 27 21.

28 Results

29 General characteristics

- Among the 68 eligible centers, 66 (97%) completed the questions regarding ICU admission
- policy. Sixty (91%) of these centers had an academic affiliation and 44 (67%) were
- 32 designated as level I trauma centers. Experts that completed these questionnaires were
- primarily intensivists (n = 35, 53%) and neurosurgeons (n = 23, 35%) but also included
- 34 administrative staff.
- 35 The median number of ICU beds was 33 ([interquartile range (IQR): 22-44], more than half of
- 36 the centers had a dedicated neuro ICU (n=39, 59%) with a median admission rate of 92 (IQR
- 52-160) TBI patients annually. The median number of all annual ICU admissions (across all
- diagnoses) in 2013 was 1214 (IQR 554-1950). TBI admissions therefore represented 7% (IQR
- 39 5-8) of all admissions. The majority of these ICUs had a closed organization (the intensivist is

- 1 primarily responsible for the care of patients), with intensivists that are either physically
- 2 present 24/7, or can reach the hospital within 30 minutes (*n*=63, 93%) (*Table 1*).
- 3 Admission criteria
- 4 Patients with severe TBI (GCS <= 8) would be admitted to the ICU as a general policy in 65
- (98%) of the 66 centers. One center would not admit a patient to the ICU based on GCS score
 alone, but a only after looking at the patient 'as a whole'.
- 6 alone, but a only after looking at the patient as a whole .
- 7 Moderate TBI patients with GCS of 9-12 and CT abnormalities would be admitted to the ICU

8 as a general policy in 42 (63%) of the centers. The remainder stated that they would admit

9 such patients to the ICU only in the presence of other risk factors. The risk factors were not

- 10 explicitly indicated in the provider profiling questionnaire.
- 11 However, patients with initial GCS of 9-12 and no CT abnormalities would be admitted to the
- 12 ICU as a general policy only in 17 centers (25%), and in another 43 centers (64%) only if
- 13 other risk factors were present (*Figure 1*).
- 14 Fourteen centers (21%) would admit a mild TBI patient with initial GCS of 13 to 15 to the
- 15 ICU with prior anticoagulant therapy. Another 53 centers (80%) would admit such a patient to
- the ICU routinely if there were additional risk factors present. Patients with mild TBI who
- 17 also had either a small epidural hematoma (EDH) or acute subdural hematoma (ASDH) would
- be admitted to the ICU as a general policy in 15 (22%) centers. Fourteen (21%) centers would
- 19 always admit a mild TBI patient to the ICU if he or she had contusional lesions present on the
- 20 CT Scan. (figure 1)
- 21 Most centers (n=50, or 76%) indicated that they admit TBI patients postoperatively to the
- ICU as a general policy regardless of their GCS. 64 centers (97%) would admit such patients
- in the presence of other risk factors. Only 6 centers (9%) would admit a patient with mild TBI

and concomitant extracranial injuries to the ICU if these, taken in isolation, would not

- 25 necessitate ICU observation. This number increases to 60 (91%) if other risk factors were
- 26 present.
- 27 Characteristics of centers with a liberal admission policy
- 28 The centers were dichotomized into two categories; those who had responded 'general policy'
- to any of the questions regarding the admission of GCS 13-15 patients to the ICU (n=23,
- 30 34.9%) and those who did not (n=43, 65.1%). Number of ICU beds per 100 000 inhabitants
- and healthcare expenditure as % of GDP were not associated with a higher tendency to admit
- mild TBI patients to the ICU. These data, however, were not available for all 66 centers. The
- 33 specialist deciding to transfer a TBI patient to the hospital did not influence a liberal or more
- 34 conservative approach to patient admission either: when looking at intensivists versus other
- specialties or neurosurgeons, the majority (n=41; 62%), versus other specialties (*Table 1*).
- 36 The only statistically significant difference between these two categories was the fact that
- 37 ICUs that reported a more liberal admission policy for mild TBI were less likely to follow
- formal guidelines for severe TBI management (p = 0.05). In absolute numbers, 22 centers of

- 1 the 55 (less than half, 40%) that follow severe TBI guidelines also have a liberal admission
- 2 policy. Several other center characteristics were compared between these groups but we did
- 3 not find any clear differences in internal organization of ICUs and hospital, the specialty that
- 4 oversees patient care, or the geographical region where the center is located. (*Table 1*).

5 Discussion

- 6 Among the 66 centers that responded to our provider profiling questionnaire, mostly
- 7 academic, level I trauma centers, about a third (n=23, 35%) reported that they always
- 8 admitted mild TBI patients to the ICU in the presence of risk factors. Severe and moderate
- 9 TBI patients are mostly admitted to the ICU as a general policy, especially in the presence of
- 10 risk factors. Having a liberal admission policy regarding mild TBI patients did not correlate
- 11 with other center characteristics except following TBI guidelines, suggesting that the
- 12 variability is mainly caused by (random) variability of admission policies.
- 13 Higher-volume or specialized neuro-ICUs did not appear to be more likely to admit mild TBI
- 14 patients. Unexpectedly, presence of a step-down unit from ICU did not have an impact in this
- regard either. This suggests that regardless of the resources available or of the organization,
- 16 clinicians apply a more liberal or more conservative admission policy according to their
- 17 personal preference, based on their knowledge and experience. This applies to the presence of
- 18 step down beds as well, even though our questionnaire did not specifically aim to explore the
- 19 exact processes of care with regards to the use of these beds and the admission policy
- 20 surrounding them. Nonetheless, even in centers without step-down beds (n=18), 7 centers
- 21 (39%) would still admit mild TBI patients to the ICU. Centers that follow severe TBI
- 22 guidelines are less likely to have a liberal admission policy for mild TBI.
- 23 This apparent variation in policy has important implications for both research and processes
- of care, in two separate areas. ICU admission policy for TBI is ill-supported by high-quality
- evidence, and from a healthcare expenditure viewpoint, a day in the ICU can incur costs as
- high as 1597 euro 8 . Given that TBI costs are steeply on the rise 9 , avoiding ICU admissions
- 27 for uncomplicated mild TBI might be a cost-efficient alternative to current policy. Further
- research is needed to establish whether this alternative is not associated with worse clinical
- 29 outcomes.
- 30 The observed variation provides support for comparative effectiveness research and
- 31 prognostic modelling, in order to predict neuro-worsening and pinpoint who would indeed
- 32 benefit from more intensive monitoring. Scarce literature suggests that observation of isolated
- mild TBI patients on the ICU is seldom necessary 2,3 , but the evidence is of low quality.
- 34 Despite the ideal occupancy rate being estimated at 70-75% and higher occupancy rates being
- linked to more morbidity and mortality¹⁰, many ICUs, especially in academic and larger
- hospitals routinely operate at far higher occupancy rates^{11, 12}. As a result, high opportunity
- costs arise from admitting patients who may not require ICU level care.
- 38 Our study was underpowered to detect subtle associations. Another limitation is that 'risk
- 39 factors' in the response 'when other risk factors are present' were not specified. In practice,

- 1 TBI is often associated with extra-cranial lesions (as major bleedings, chest injuries, spinal
- 2 lesions, limb fractures etc.), other surgical or medical comorbidities, advanced age,
- 3 mechanism of injury, duration of loss of consciousness, which may, in themselves, be an
- 4 indication for ICU admission. Our questionnaire was not specifically designed to detect the
- 5 interplay of these factors in the decision to admit a patient to the ICU. Also, given that the
- 6 respondents were mostly academic centers and mild TBI is often seen in a non-academic
- 7 setting, the generalizability of the data is limited. Further research is needed to establish best
- 8 practice for both academic and non-academic settings.
- 9 The issue of cost-efficiency of liberal admission policy for patients with mild TBI to the ICU
- 10 motivates further investigation to support organizational decision-making and policy making.
- 11 Moreover, high-quality comparative studies and prognostic models to aid the clinicians in
- 12 tailoring the admission policy to the needs of the individual patient are necessary.

13 Conclusions

- 14 There is considerable variation regarding the admission policy of (mild) TBI patients to the
- 15 ICU in Europe. It is unclear if a liberal admission policy is beneficial for the patients and what
- 16 the impact is on healthcare costs or whether there is a possible tendency to over-treat at play.
- 17 Further investigation in this topic is needed, and includes, but is not limited to, on-going
- 18 large-scale prospective studies, such as CENTER-TBI and TRACK-TBI.
- 19
- 20
- 21

22 **References**

- 23 [1]Ratcliff JJ, Adeoye O, Lindsell CJ, et al.: ED disposition of the Glasgow Coma Scale 13 to 15
- traumatic brain injury patient: analysis of the Transforming Research and Clinical Knowledge in TBI
 study. Am J Emerg Med 32:844-850, 2014
- 26 Nishijima DK, Sena MJ, Holmes JF: Identification of low-risk patients with traumatic brain injury and
- 27 intracranial hemorrhage who do not need intensive care unit admission. The Journal of trauma
- 28 70:E101-107, 2011
- Washington CW, Grubb RL, Jr.: Are routine repeat imaging and intensive care unit admission
 necessary in mild traumatic brain injury? Journal of neurosurgery 116:549-557, 2012
- Rhodes A, Ferdinande P, Flaatten H, et al.: The variability of critical care bed numbers in Europe.
 Intensive care medicine 38:1647-1653, 2012
- 33 Maas AI, Menon DK, Steyerberg EW, et al.: Collaborative European NeuroTrauma Effectiveness
- Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study.
- 35 Neurosurgery 76:67-80, 2015
- 36 Burns KE, Duffett M, Kho ME, et al.: A guide for the design and conduct of self-administered surveys
- 37 of clinicians. Cmaj 179:245-252, 2008

- 1 Cnossen MC, Polinder S, Lingsma HF, et al.: Variation in Structure and Process of Care in Traumatic
- 2 Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI
- 3 Study. PloS one 11:e0161367, 2016
- 4 Grieve R, Sadique Z, Gomes M, et al.: An evaluation of the clinical and cost-effectiveness of
- 5 alternative care locations for critically ill adult patients with acute traumatic brain injury. Br J
- 6 Neurosurg 30:388-396, 2016
- 7 Tuominen R, Joelsson P, Tenovuo O: Treatment costs and productivity losses caused by traumatic 8 brain injuries. Brain Inj 26:1697-1701, 2012
- 9 Chrusch CA, Olafson KP, McMillan PM, et al.: High occupancy increases the risk of early death or
- 10 readmission after transfer from intensive care. Critical care medicine 37:2753-2758, 2009
- 11 Halpern NA, Pastores SM: Critical care medicine in the United States 2000-2005: an analysis of bed
- 12 numbers, occupancy rates, payer mix, and costs. Critical care medicine 38:65-71, 2010
- 13 Thattil R, Klepzig D, Schuster M: [Intensive care capacities in Germany: provision and usage between 14 1991 and 2009]
- 15 Intensivkapazitaten in Deutschland: Vorhaltung und Nutzung zwischen 1991 und 2009. Anaesthesist 16 61:56-62, 2012
- 17
- 18
- 19
- 20
- 21
- 22
- Tables 23
- 24

25

- Table 1
- 26

Factor	Total (% of	Centers admitting	Centers not	<i>p</i> -value
	total	mild TBI to the	admitting mild	
	respondents)	ICU as a general	TBI to the ICU as	
		policy $(n = 23)$	a general policy (<i>n</i>	

			= 43)	
ICU Volume according to				
number of beds				.53
- High-volume	31 (47%)	12 (39%)	19 (61%)	
- Low-volume	35 (53%)	11 (31%)	24 (69%)	
ICU Volume according to				.43
number of patients admitted				
- High- volume	31 (47%)	13 (42%)	18 (58%)	
- Low- volume	31 (47%)	10 (32%)	21 (68%)	
Dedicated neuro ICU				.45
- Available	39 (59%)	15 (38%)	24 (62%)	
- Not available	27 (41%)	8 (30%)	19 (70%)	
Following any severe TBI				.05
treatment guidelines				
- Yes	55 (83%)	22 (40%)	33 (60%)	
- No	11 (16%)	1 (9%)	10 (91%)	
Having step down beds				.67
- Yes	48 (73%)	16 (33%)	32 (67%)	
- No	18 (27%)	7 (39%)	11 (61%)	

	- Intensivists	<mark>8 (12%)</mark>	<mark>3 (37%)</mark>	<mark>5 (63%)</mark>	
by inter	nsivists				
	s to the hospital made				1. V
Decisio	on of transfer of TBI				1.0
	expenditure				
	- Relatively higher	33 (57%)	13 (39%)	20 (61%)	
	expenditure				
	- Relatively lower	25 (43%)	8 (32%)	17 (68%)	
GDP					
Health	expenditure as % of				.59
-	Relatively high number of beds	28 (53%)	11 (39%)	17 (61%)	
-	Relatively low number of beds	25 (47%)	9 (36%)	16 (64%)	
inhabita	ants				
Numbe	r of ICU beds/100 000				1.0
-	South Eastern Europe	23 (35%)	6 (26%)	17 (74%)	
-	North Western Europe	43 (65%)	17 (39%)	26 (61%)	
Geogra	phic location*				.27
-	Intensivists, Anesthesiologists	50 (76 %)	18 (36%)	32 (64%)	
-	Neurosurgeons, Neurologists	16 (24%)	5 (31%)	11 (69%)	
Discipl	ine in charge of rounds				.72

- Other specialties	<mark>57 (88%)</mark>	13 (23%)	20 (77%)	
Decision of transfer of TBI				.11
patients to the hospital made by neurosurgeons				
- Neurosurgeons	<mark>41 (62%)</mark>	<mark>11 (27%)</mark>	<u>30 (73%)</u>	
- Other specialties	<mark>25 (38%)</mark>	<mark>12 (48%)</mark>	<mark>13 (52%)</mark>	
TBI patients always admitted				<mark>.28</mark>
to the same ICU				
<mark>- Yes</mark>	<mark>41 (62%)</mark>	<mark>12 (29%)</mark>	<mark>29 (71%)</mark>	
<mark>- No</mark>	<mark>25 (38%)</mark>	<u>11 (44%)</u>	<mark>14 (56%)</mark>	
TBI and polytrauma patients				<mark>.25</mark>
admitted to the same ICU				
<mark>- Yes</mark>	<mark>47 (71%)</mark>	<mark>14 (30%)</mark>	<mark>33 (70%)</mark>	
<mark>- No</mark>	19 (29%)	<mark>9 (47%)</mark>	<mark>10 (53%)</mark>	

2	* = The subdivision into geographic location was based on the classification by the United Nations.
3	Austria, Belgium, Denmark, Finland, France, Germany, Lithuania, the Netherlands, Norway, Sweden
4	and the United Kingdom (UK) were subsequently classified as countries from West and North Europe,
5	while all other countries were classified as countries from South and East Europe and Israel, in line
6	with our other publications on this matter

Legend to tables and figures Figure 1 –Indications for the admission of patients to the ICU among the interviewed centers (*N*=66). GCS= Glasgow Coma Scale; EDH=epidural hematoma; ASDH= acute subdural hematoma. Irrelevant in the decision to admit designates a criterion that does not influence the decision to admit someone to the ICU or not. Table 1 –Association between factors that may influence admission policy and centers that have a liberal policy of ICU admission and those that do not.