
22nd Cambridge International Manufacturing Symposium – Full Papers and Extended Abstracts 
University of Cambridge, 27th – 28th September 2018 

1 
 

Combining field data analysis and simulation to evaluate an 
alternative Just-In-Time clinical trial supply strategy 

Ettore Settannia,*, Jagjit Singh Sraia, V. Mark Kothapallib 

a University of Cambridge, Institute for Manufacturing, Cambridge, UK  

b GSK R&D Medicinal Science & Technology, Zebulon, North Carolina, United States 
*corresponding author: e.settanni@eng.cam.ac.uk  

 
Abstract 

This paper combines recurrence analysis of field data from clinical trial supply chain (CTSC) 
with a proof-of-concept inventory profile simulation to evaluate an alternative packing 
capability that supports just-in-time (JIT) manufacturing and distribution of investigational 
medicinal products (IMP). Assumptions for JIT packing supply capabilities and expedite quality 
release were taken from a detailed design prototype recently commissioned by a leading 
pharmaceutical consortium. The suggested technological intervention is assessed in its ability 
to reduce finished good inventory while adequately responding to the dynamics of uncertain 
patient recruitment and required service levels. The proposed combination of field data analysis 
and simulation enables practitioners to consider the possibilities for a more economically viable 
adaptive clinical trial supply based on JIT technologies and near real-time product utilisation 
information across multiple locations. 

Keywords: clinical trials; data analytics; pharmaceutical supply chains; inventory simulation 

1. Introduction  

Global pharmaceutical companies spent approximatively USD 93.8 bn on Research and 
Development in 2017, a significant part of which was destined to support lengthy and inherently 
risky clinical trials (BMI, 2017). With the increasing downward pressure in healthcare spending 
due to the availability of generic (or multisource) medicines, the commercial viability of 
innovator brands has largely depended on the ability to invest in more comprehensive clinical 
trials for Investigational Medicinal Products (IMP), recouped through aggressive marketing and 
sales (Friedli, 2006). To achieve service levels such that clinical trials are carried out safely, 
ethically and in compliance with tight regulations across multiple locations globally, 
availability is often prioritised over efficiency across the Clinical Trial Supply Chain (CTSC), 
overcompensating stock-out risk with high inventory levels (DHL, 2017). On average, 45% of 
manufactured IMP gets all the way through packing, shipping, and dispensing to the patient 
(Lamberti et al., 2016). 

The development of automated and autonomous clinical supply capabilities is regarded by the 
UK industrial digitalisation strategy as key to reduce lead-times and enable more responsive 
clinical supply (Made Smarter Review, 2017). A leading pharmaceutical consortium has 
recently commissioned a prototype Just-In-Time (JIT) clinical pharmacy concept, providing 
packing supply and expedite release capabilities, which is now in the detailed design stage. 
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The aim of this paper is to provide an approach supporting the complex ex-ante assessment 
required for emerging technologies such as the JIT clinical pharmacy mentioned above. To 
achieve this aim, retrospective CTSC field data analysis is combined with multi-tier inventory 
simulation. The research question to be addressed through the proposed approach is as follows: 
RQ - “To what extent would a JIT clinical pharmacy concept reduce unused inventory and 
improve service levels across a CTSC?” 

The rationale for the research presented in this paper is that the assessment of specific 
technological interventions is often left outside the scope of CTSC modelling. Among the few 
exceptions, is the use of simulation to evaluate ‘smart labelling’ technologies in clinical supply 
(Paricio, 2016). More often, research aims at optimising inventory positioning across the CTSC 
with a focus on distribution networks, without detailing manufacturing and patient-dispensing 
activities (for example, Fleischhacker et al., 2015). More detailed models complement 
optimisation with simulation, but are less concerned with extensive analysis of empirical data 
(for example, Chen et al., 2012); or, when real-world data usage is claimed, their exploration 
and analysis is not made explicit (for example Abdelkafi et al., 2009). Conversely, purely data-
driven approaches employ statistical inference to estimate trade-offs between inventory overage 
and the risk of a clinical study experiencing shortage, while remaining agnostic to specific 
CTSC network configurations and manufacturing technologies (for example, Anisimov, 2009). 

In the reminder of this paper, the proposed approach is illustrated and applied to a hypothetical, 
simplified case underpinned by evidence from a completed clinical trial. Findings exemplify 
possible improvements on inventory and service levels assuming that clinical supply for the 
examined trial had occurred under conditions compatible with the JIT pharmacy concept. 

2. Materials and methods 

Supplying to clinical development programs exhibits characteristic operational challenges. 
Downstream, the demand is determined by the number of clinical centres participating in the 
study, the patients recruited and their usage profile. Variations in patient recruitment and 
dispensing patterns across centres can have significant repercussions on the design of supply 
and inventory strategy for an IMP (Anisimov, 2009). Upstream, an IMP is typically 
manufactured with methods that are still under development, and with limited evidence on its 
stability; for release to use, individual batches require quality assurance and must conform to 
global stewardship requirements, as well as, its nuanced regional variations (Rees, 2011). 

Reflecting these general characteristics, a ‘current state’ scenario was formulated based on data 
from a completed double-blind, multicentre Phase IIIa clinical trial provided by industry 
partners. The study involved 1,800+ patients recruited through 160+ clinical centres 
(henceforth just centres), and randomised to either a test product (IMP), or a comparator product 
and the corresponding placebos. All products were sourced by the centres from six distribution 
hubs across Eastern Asia, North America, Russia and Europe. The raw data cover the 
occurrence of the following events: 1) release of manufacturing jobs; 2) execution of shipment 
orders to clinics, either directly or via distribution hubs; and 3) dispensing to patients. 
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Patient recruitment events were outside the scope of the data provided, and hence only 
approximated. In the ‘future state’ scenario, a hypothetical ‘make-to-order’ manufacturing 
setting is introduced, reflecting assumptions regarding the operational capabilities of a JIT 
clinical pharmacy concept taken from expert judgment and detailed prototype design.  

In the absence of specific guidance on the retrospective analysis of CTSC data, an existing 
strategy proposed by Settanni et al. (2016) and originally meant for repairable airborne items 
has been adapted as shown in Figure 1. The strategy emphasises recurrence data, which are the 
empirical basis for modelling patterns in the occurrence of specific events as stochastic point 
processes. This strategy was applied to the raw data to analyse two types of recurrent events in 
a CTSC context: 1) arrival of shipment orders at distribution hubs, linked to individual 
manufacturing jobs; and 2) patients visit at clinics, and dispensing of the product they are 
randomised to. Insights obtained from the retrospective analysis of filed data were then used to 
simulate a range of performance levels for both ‘current’ and ‘future’ state CTSC scenarios, in 
terms of unused inventory and service level to the patient. Similarly to field data analysis, there 
is no widely-adopted approach to simulation in the specific context considered here. In general, 
the simulation of JIT manufacturing systems has received attention since the 1980s (for 
example Fallon and Browne, 1988). However, the application of JIT to pharmaceutical supply 
chains is still relatively under-researched, and largely associated with the concept of 
‘operational excellence’ in business practice (for example, Friedli, 2006). Strohhecker et al. 
(2013) provide one of the few applications of simulation within a pharmaceutical 
manufacturing site to investigate the viability of a decentralised, leaner, and demand-pull 
operations scenario. 

Discrete event simulation (DES) was deemed suitable to experiment with a new design that 
could create non-obvious interactions between a manufacturing system’s elements, with a focus 
on the occurrence of key, state-changing point events in time (Banks, 2010). To facilitate the 
engagement of industry partners, the simulation model was built and run using widely adopted, 
commercial-off-the-shelf software WITNESS [Lanner Group, UK]. A review of alternative 
tools for supply chain simulation is beyond the scope of this paper and can be found elsewhere 
(Terzi and Cavalieri, 2004). 

 
Figure 1. Strategy for the analysis of CTSC field data with a focus on recurrent events 
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3. Findings 

To keep the analysis concise and transparent, this section illustrates findings for a streamlined 
version of the CTSC investigated, employing a downsized excerpt from the original dataset. 
The subset consists of orders shipping events and patient dispensing events for two centres 
only, and is limited to the IMP (comparator and placebos are excluded from the example). 

3.1. Findings from field data analysis 

Large part of the field data considered here is a track record of recurrence time, such as the 
times at which patients are dispensed the IMP, or at which kits from specific manufacturing 
jobs are shipped. These can be regarded as point events from a random process. It is good 
practice to test whether a sequence of times to consecutive events exhibits a trend: in the 
presence of a trend it is legitimate to assume that the rate at which events occur is non-stationary 
over time as, for example, in a nonhomogeneous Poisson process - NHPP (Ascher, 1983).  

To illustrate this point, Figure 2 summarises the relevant empirical data (bottom half) and their 
statistical approximation (top half). Using an example subset of order shipping events, Table 1 
and 2 organise recurrence time data for the underpinning numerical analysis as follows:  

• Data are obtained from 𝑘𝑘 items – e.g. manufacturing jobs or patients. Each item 𝑞𝑞 
(𝑞𝑞 = 1, … , 𝑘𝑘) is observed from 𝑆𝑆𝑞𝑞 to 𝑇𝑇𝑞𝑞 – e.g., from regulatory release to the time of expiry 
suggested by the stability studies on the IMP; or from patient enrolment until the study 
terminates, or the patient drops out. Separate analysis of 𝑆𝑆𝑞𝑞 data in the case of patient 
enrolment is advisable (e.g. Anisimov and Fedorov, 2007). Due to restrictions on data-
sharing, the enrolment times used in this example are crude approximations. 

• A generic item experiences a total of 𝑁𝑁𝑞𝑞 events, and each event 𝑖𝑖 �𝑖𝑖 = 1, … ,𝑁𝑁𝑞𝑞� occurs 
after a certain amount of time-on-study 𝑋𝑋𝑖𝑖𝑞𝑞 has elapsed. The time-on-study is measured 
on a common timeline originating at the earliest item entry time. Table 2 also reports the 
time-on-study for each item at each event, taking into account the item’s staggered entry. 
Inter-arrival times are times between two consecutive events for a given item. 

Table 1. Manufacturing jobs data layout for recurrence time analysis 

q Start 
time 𝑆𝑆𝑞𝑞 

Stop 
time 𝑇𝑇𝑞𝑞 ln𝑆𝑆𝑞𝑞 ln𝑇𝑇𝑞𝑞 𝑆𝑆𝑞𝑞

𝛽𝛽�  𝑇𝑇𝑞𝑞
𝛽𝛽�  𝑇𝑇𝑞𝑞

𝛽𝛽� − 𝑆𝑆𝑞𝑞
𝛽𝛽�  

𝑇𝑇𝑞𝑞
𝛽𝛽� ln𝑇𝑇𝑞𝑞

− 𝑆𝑆𝑞𝑞
𝛽𝛽� ln𝑆𝑆𝑞𝑞 

𝑁𝑁𝑞𝑞 

1 - 222.726 - 5.406 - 430.712 430.712 2,328.404 18 
2 0.009 374.726 -4.722 5.926 0.005 772.135 772.130 4,575.845 2 
3 12.411 374.726 2.519 5.926 16.875 772.135 755.260 4,533.321 13 
4 20.384 374.726 3.015 5.926 29.445 772.135 742.690 4,487.054 18 
5 266.241 619.726 5.584 6.429 526.193 1,357.790 831.598 5,791.141 2 

       3,532.389 21,715.765 53 
 
Notes. q: patient id; 𝑁𝑁𝑞𝑞: events per patient in Table 2; �̂�𝛽 is computed as described in the main text. 
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Figure 2. Recurrence time analysis of field data on shipment and patient dispensing events. Mean value functions computed as described in main text. 
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Table 2. Order shipping events linked to manufacturing jobs – layout for recurrence time analysis 

i q TOS 
𝑋𝑋𝑖𝑖𝑞𝑞 

ln𝑋𝑋𝑖𝑖𝑞𝑞 MVF 
�̂�𝜆𝑋𝑋𝑖𝑖𝑞𝑞𝛽𝛽

�  
T IAT Item’s time-on-study at event Cumul. 

age 𝑥𝑥𝑖𝑖 1 2 3 4 5 
1 1 110.85 4.70 2.95 S 110.85 110.85 110.84 98.44 90.47 - 410.59 
2 1 117.73 4.76 3.16 S 6.88 117.73 117.72 105.32 97.34 - 438.10 
3 1 118.73 4.77 3.19 S 1.00 118.73 118.72 106.32 98.34 - 442.10 
4 1 119.43 4.78 3.21 S 16.80 119.43 119.42 107.02 99.04 - 444.90 
5 1 124.73 4.82 3.37 S 5.30 124.73 124.72 112.32 104.34 - 466.10 
6 1 125.48 4.83 3.39 S 17.97 125.48 125.47 113.06 105.09 - 469.10 
7 1 127.85 4.85 3.46 S 2.37 127.85 127.84 115.44 107.46 - 478.59 
8 1 138.95 4.93 3.80 S 11.10 138.95 138.94 126.54 118.56 - 522.99 
9 1 139.14 4.93 3.81 S 4.50 139.14 139.13 126.72 118.75 - 523.74 
10 1 139.81 4.94 3.83 S 16.14 139.81 139.80 127.40 119.42 - 526.43 
11 1 146.93 4.99 4.05 S 7.12 146.93 146.92 134.52 126.55 - 554.91 
12 1 147.66 4.99 4.07 S 17.58 147.66 147.65 135.25 127.28 - 557.84 
13 1 149.05 5.00 4.11 S 1.39 149.05 149.05 136.64 128.67 - 563.42 
14 1 149.29 5.00 4.12 S 5.76 149.29 149.29 136.88 128.91 - 564.38 
15 1 153.74 5.03 4.26 S 4.45 153.74 153.74 141.33 133.36 - 582.17 
16 1 154.01 5.03 4.27 S 6.26 154.01 154.00 141.59 133.62 - 583.22 
17 1 155.88 5.04 4.33 S 1.87 155.88 155.87 143.47 135.50 - 590.71 
18 1 159.49 5.07 4.44 S 3.61 159.49 159.48 147.07 139.10 - 605.14 
19 4 161.84 5.08 4.51 S 141.46 161.84 161.83 149.43 141.46 - 614.57 
20 4 162.08 5.08 4.52 S 5.59 162.08 162.07 149.66 141.69 - 615.50 
21 4 167.39 5.12 4.69 S 5.32 167.39 167.38 154.98 147.01 - 636.76 
22 4 173.76 5.15 4.89 S 6.37 173.76 173.75 161.35 153.37 - 662.23 
23 4 174.42 5.16 4.91 S 15.94 174.42 174.41 162.01 154.04 - 664.89 
24 4 175.12 5.16 4.93 S 16.63 175.12 175.11 162.70 154.73 - 667.66 
25 4 180.21 5.19 5.09 S 5.10 180.21 180.21 167.80 159.83 - 688.06 
26 4 182.43 5.20 5.16 S 2.22 182.43 182.42 170.02 162.05 - 696.93 
27 4 190.62 5.25 5.42 S 8.19 190.62 190.62 178.21 170.24 - 729.70 
28 4 194.16 5.26 5.54 S 3.54 194.16 194.16 181.75 173.78 - 743.85 
29 4 194.21 5.26 5.54 S 1.07 194.21 194.20 181.80 173.83 - 744.03 
30 4 197.39 5.28 5.64 S 3.18 197.39 197.38 184.98 177.00 - 756.74 
31 4 202.48 5.31 5.80 S 5.09 202.48 202.47 190.07 182.09 - 777.11 
32 4 207.75 5.33 5.97 S 5.27 207.75 207.74 195.33 187.36 - 798.18 
33 4 216.36 5.37 6.25 S 8.62 216.36 216.35 203.95 195.98 - 832.65 
34 4 219.43 5.39 6.35 S 3.07 219.43 219.42 207.02 199.05 - 844.93 
- 1 {222.73} - - EO {63.24} 222.73 222.72 210.32 202.34 - {858.10} 

35 4 224.00 5.41 6.50 S 4.56 - 223.99 211.59 203.61 - 639.19 
36 4 224.42 5.41 6.51 S 10.08 - 224.41 212.01 204.03 - 640.45 
37 3 230.80 5.44 6.72 S 218.39 - 230.79 218.39 210.42 - 659.60 
38 3 231.27 5.44 6.74 S 11.13 - 231.26 218.85 210.88 - 660.99 
39 3 238.80 5.47 6.98 S 7.53 - 238.79 226.39 218.42 - 683.59 
40 3 239.69 5.47 7.01 S 21.29 - 239.68 227.28 219.30 - 686.26 
41 3 243.37 5.49 7.13 S 3.69 - 243.36 230.96 222.99 - 697.32 
42 3 245.97 5.50 7.22 S 2.60 - 245.96 233.56 225.59 - 705.12 
43 3 246.27 5.50 7.23 S 7.08 - 246.26 233.86 225.89 - 706.00 
44 3 247.24 5.51 7.26 S 23.23 - 247.23 234.83 226.85 - 708.91 
45 3 259.90 5.56 7.68 S 12.66 - 259.89 247.49 239.51 - 746.89 
46 3 264.52 5.57 7.83 S 4.62 - 264.51 252.11 244.13 - 760.75 
47 3 273.02 5.61 8.12 S 8.50 - 273.01 260.61 252.64 6.78 793.03 
48 3 301.15 5.70 9.06 S 28.13 - 301.14 288.74 280.77 34.91 905.56 
49 3 312.91 5.74 9.46 S 11.76 - 312.90 300.50 292.53 46.67 952.60 
50 2 327.68 5.79 9.96 S 327.67 - 327.67 315.26 307.29 61.43 1,011.66 
51 2 331.48 5.80 10.09 S 3.80 - 331.47 319.07 311.10 65.24 1,026.87 
- 4 {374.73} - - EO {61.82} - 374.72 362.32 354.34 108.49 {1,199.86} 
- 3 {374.73} - - EO {150.31} - 374.72 362.32 354.34 108.49 {1,199.86} 
- 2 {374.73} - - EO {43.25} - 374.72 362.32 354.34 108.49 {1,199.86} 

52 5 382.75 5.94 11.86 S 116.51 - - - - 116.51 116.51 
53 5 383.24 5.94 11.88 S 11.81 - - - - 117.00 117.00 

- 5 {619.73} - - EO {236.49} - - - - 353.49 {353.49} 
  10,686.83 278.58         34,016.49 

Notes: q: patient id; TOS: time on study on a common timeline; MVF: mean value function; T: event type; IAT: inter-arrival time; 
S: shipment; EO: end of observations for item q; Times in curl brackets excluded from summations; �̂�𝛽: see main text.  
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The remaining columns in Table 1 and 2 provide values for use in the following computations: 

1. Checking data for trends: This is achieved by computing the following test statistics, 
known as Laplace or centroid test (Ascher, 1983): 

𝑈𝑈 =
√12𝑛𝑛
𝑡𝑡𝑎𝑎

�
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
−
𝑡𝑡𝑎𝑎
2
� (1) 

where 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are 𝑛𝑛 observed recurrence times from a given item over a period of 
length 𝑡𝑡𝑎𝑎 (𝑡𝑡𝑎𝑎 ≠ 𝑥𝑥𝑛𝑛). A set of items can be tested aggregately as an “equivalent” single 
item. In this case the following values for use in (1) can be obtained from the layout 
shown in Table 2: 𝑛𝑛 = 53; ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 =  34,016.49 ; 𝑡𝑡𝑎𝑎 = 1,199.86 (max cumulative age); 
and 𝑈𝑈 ≅ 0.88. The test score is positive and less than one, suggesting that, across the 
manufacturing jobs considered, the times between successive shipment events do not 
exhibit significant trend. While details are not shown here, patients dispensing events 
(𝑛𝑛 = 81) exhibit a negative trend (𝑈𝑈 ≅ −5.23, significant at 0.5%). 

2. Estimating the average number of events that is likely to occur at a given time: Event 
recurrence times can be modelled by continuous approximation using a mean value 
function (MVF). An NHPP is an example of parametric MVF often used to describe 
recurrence time data in the presence of trends – such as patient dispensing events in the 
illustrative case described here. An NHPP-based MVF is the rate of event occurrence 
�̂�𝜆𝑋𝑋𝑖𝑖𝑞𝑞𝛽𝛽

�  computed in Table 2. Maximum likelihood estimators �̂�𝜆 and �̂�𝛽 are obtained by 
numerical approximation through the following procedure (Crow, 1990): 

�̂�𝜆 =
∑ 𝑁𝑁𝑞𝑞𝑘𝑘
𝑞𝑞=1

∑ �𝑇𝑇𝑞𝑞
𝛽𝛽� − 𝑆𝑆𝑞𝑞

𝛽𝛽��𝑘𝑘
𝑞𝑞=1

 (2) 

�̂�𝛽 =
∑ 𝑁𝑁𝑞𝑞𝑘𝑘
𝑞𝑞=1

�̂�𝜆 ∑ �𝑇𝑇𝑞𝑞
𝛽𝛽� ln𝑇𝑇𝑞𝑞 − 𝑆𝑆𝑞𝑞

𝛽𝛽� ln𝑆𝑆𝑞𝑞� − ∑ ∑ ln𝑋𝑋𝑖𝑖𝑞𝑞
𝑁𝑁𝑞𝑞
𝑖𝑖=1

𝑘𝑘
𝑞𝑞=1

𝑘𝑘
𝑞𝑞=1

 (3) 

Through the combined use of Table 1 and 2, one obtains the necessary values to solve 
the equations: ∑ �𝑇𝑇𝑞𝑞

𝛽𝛽� − 𝑆𝑆𝑞𝑞
𝛽𝛽��𝑘𝑘

𝑞𝑞=1 ≅ 3,532.39; ∑ �𝑇𝑇𝑞𝑞
𝛽𝛽� ln𝑇𝑇𝑞𝑞 − 𝑆𝑆𝑞𝑞

𝛽𝛽� ln𝑆𝑆𝑞𝑞� ≅𝑘𝑘
𝑞𝑞=1 21,715.76; 

∑ 𝑁𝑁𝑞𝑞𝑘𝑘
𝑞𝑞=1 = 53; and ∑ ∑ ln𝑋𝑋𝑖𝑖𝑞𝑞

𝑁𝑁𝑞𝑞
𝑖𝑖=1

𝑘𝑘
𝑞𝑞=1 ≅ 278.58. Since equations (2) and (3) cannot be 

solved in closed form, the estimator �̂�𝛽 is found iteratively by arbitrarily choosing an 
initial value 𝛽𝛽∗ for use in equation (3), and then minimising 𝑑𝑑 = �̂�𝛽 −  𝛽𝛽∗ to a desired 
level of accuracy (e.g., 0 ≤ 𝑑𝑑 ≤ 0.000001). This can be accomplished using off-the-
shelf solvers such as those commonly embedded in electronic spreadsheets. In the 
shipment order events example considered here, �̂�𝜆 ≅ 0.015 and �̂�𝛽 ≅ 1.121 (which is 
close to 1 and hence consistent with the absence of trend highlighted by the Laplace 
centroid test). Conversely, for the patient dispensing event �̂�𝜆 ≅ 0.076 and �̂�𝛽 ≅ 0.698. 
These values underpin the curves shown in the upper half of Figure 2. 
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3.2. Findings from discrete-event simulation 

For the sake of simplicity, the developed model is informally described, making reference to 
widely-used concepts in DES (Banks, 2010). The overall model is broken down in modules 
(collections of building-blocks) representing the streamlined CTSC considered here for 
illustrative purposes. Variables are referred to in squared brackets, details in the Appendix. 

Clinical centre module: Figure 3 shows a clinical centre as it appears in an interactive visual 
simulation created using WITNESS. Underneath, an equivalent statechart visualisation is 
provided to illustrate the dynamic behaviour of the modelled entity ‘patient’, with an indication 
of its states. The system’s behaviour is as follows. Patients enrol following staggered arrivals: 
in the absence of data on enrolment, the time between consecutive events is approximated 
through a random uniform variable [v01]. The total number of patients to enrol is a random 
variable [v02] set when the model is initialised. In reality, some centres might fail to enrol 
patients. A fixed time window [v03] and a random delay [v04] separate the start of the clinical 
study from the start of IMP production. Once enrolled, the patient can be in only to states: either 
at the clinic, or away. When at the clinic, the patient is either served if the IMP inventory on 
hand allows dispensing, or not served in case of shortage. The amount of time a patient spends 
away from the clinic is a random variable consistent with the distribution of inter-recurrence 
times in the field data [v05]. For each patient, this variable is updated each time a visit is 
completed. A simplification had to be introduced at this point because the nonstationary process 
for dispensing events discussed in the previous section could not be used ‘as is’ in the chosen 
DES software tool. While not ideal, probability density functions (pdf) were fitted to the inter-
recurrence times, instead. Maximum-likelihood estimators for the parameters of three 
alternative pdfs were determined using the MASS package (Venables and Ripley, 2002) for the 
statistical programming language R (R Development Core Team, 2008). The results are shown 
in Figure 4 along with the significance of the Kolmogorov–Smirnov (K-S) goodness-of-fit test 
associated with them. 

Manufacturing site module: In the current-state scenario, a pre-determined number of 
manufacturing job requests enter the model at consecutive, staggered times. The variability in 
the arrival of job requests [v07], in the processing and release of individual jobs [v08] is 
informed by the descriptive analysis of field data summarised in Figure 5. Upon completion, 
each jobs is available to fulfil shipment orders, and assigned the following attributes: 1) a shelf 
life expressed in days, randomly generated based on an observed range [v09]; and 2) an 
indication of the country for which it is released (for simulation purposes, each job has equal 
probability of being released for either clinical centre). These attributes are inherited by the 
simulation entities representing the individual IMP kits included in each job, the number of 
which is a random variable sampled form an empirical distribution [v10]. To simulate inventory 
build-up dynamics, IMP kits are held in lists (buffers) within each module. The residual useful 
life of each kit residing in a list is updated after a maximum residence time elapses (one day): 
if the expiry date for the corresponding lot is sufficiently distant, the kit is kept in the list; 
otherwise it is marked as expired and moved in a separate list and disposed of. The kits on hand 
are matched with shipment orders from the clinics as they arrive. In the base-case scenario, the 
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Figure 3. Example module for a clinical centre - screenshot from WITNESS dynamic display (a); Statechart-type equivalent view for the patient entity (b) 
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Figure 4. Fitting probability density functions to inter-recurrence time data for dispensing events 
 

 

 

 
 

Figure 5. Visual summary of variability in manufacturing cycle time data  
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arrival of shipment orders is characterised as follows: 1) orders arrive stochastically, following 
an interarrival times distribution [v11] fitted to the field data as shown in Figure 6: this was 
deemed appropriate because no significant trend was detected, and a lognormal distribution 
was chosen based on a K-S goodness-of-fit test; 2) the total number of orders arrival is fixed 
[v12], to reflect the observed data; 3) the first arrival [v13] is consistent with the study start 
date, considering possible delays; 4) the size of each order is sampled from an empirical 
distribution. The time it takes to processes and ship an order is sampled form an empirical 
distribution [v14] (the data does not suggest variation in order fulfilment and dispatch time with 
the size of an order). 

Modules changes under a JIT scenario: While in the base-case scenario, shipment orders 
arrived at random based on evidence form empirical data, in a JIT scenario the clinics and the 
manufacturing modules are linked through a ‘Kanban’-like replenishment system to 
operationalise a ‘make-to-order’ concept. Each clinical centre module replenishes its inventory 
by presenting to the manufacturing module a fixed-size withdrawal Kanban for the IMP [v16]. 
The first manufacturing run endows each clinic with initial inventory ahead of patient 
recruitment, whereas the follow-up runs are pulled by demand: as patients are recruited and the 
IMP is dispensed to them, the inventory on hand at clinic falls below a fixed level equal to the 
Kanban size, triggering replenishment. Upstream of the clinical centres modules, a hypothetical 
JIT clinical pharmacy with automated quality release responds to demand signals as they arrive 
(unlike the base-case). The estimated cycle time and throughput, with the associated variability, 
are estimated based on expert judgment based and prototype design. Comparison between the 
two scenarios is carried out by running both models for 900 time units, and perturbing the 
parameters listed underneath the column SA (Sensitivity Analysis) in the Appendix within a 
given range. For each combination, the model is run 5 times. The key response variables 
monitored were 1) number of times the patient was not served at any clinic due to IMP shortages 
(a state involving the simultaneous occurrence of a patient visiting the clinic, and no IMP kit 

 
Figure 6. Fitting probability density functions to shipment orders interarrival times 
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being on hand); and 2) number of kits disposed of because unused or expired at the end of the 
evaluation period. The results are summarised in Figure 7. 

4. Discussion 

Although with reference to a simplified numerical example, the previous section generates a 
combination of ‘top-down’ and ‘bottom-up’ insights into the behaviour of a CTSC, that help to 
address the initial RQ (“To what extent would a JIT clinical pharmacy concept reduce unused 
inventory and improve service levels across a CTSC?”). Overall, the simulation experiments 
suggest that the JIT concept provides consistently lower level of unused inventory across all 
experimental runs, as well as, reduced variability of the response in terms of unused inventory 
to perturbation in simulation parameters (Figure 7, right-hand side). An independent-samples 
t-test was conducted to compare the mean values obtained under the base-case (M = 312.1, 
S.D. = 119.7) and JIT (M = 47.8, S.D. = 21.35) scenario, supporting the hypothesis of 
significantly higher unused inventory of waste in the former; 𝑡𝑡(397.76), 𝑝𝑝 <  0.001. 

While based on limited evidence, a potential reduction in unused inventory or waste between 
67% and up to over 80% is achievable, on average, based upon the preliminary assessment 
presented. For the illustrative example with two clinical centres, a Kanban size 10 generates 
best service response compared to lower and higher sizes but also higher variability in unused 
inventory. While the JIT scenario is associated to an overall improvement in lower bound of 
disservice to patients’ range, the upper bound worsened off compared to the current state. In 
the base-case scenario, a reduction of the number of simulated manufacturing jobs also reduces 
unused inventory suggesting a possible overlapping area of performance with the other 
scenario. However, this option systematically worsens service (marks with darker colours in 
Figure 7, left-hand side). In the base-case scenario, disservice also occurs with both high and 
low unused inventory levels (darker marks on interval extremes). This might be due to fewer 
runs occurring far apart from dispensing, which might have a negative impact on shelf life. 

Despite being widely-known in manufacturing, the JIT concept is relatively new in the CTSC, 
hence the academic research does not provide much guidance on this specific topic. In general, 
simulation is increasingly used to support CTSC design, although it is not as widespread as 
deterministic models (Abdelkafi et al., 2009). Unlike previous works using simulation in 
CTSC, the findings presented here illustrate how the exploration of field data informs a DES 
model design; and some of the simplifying assumptions that might be necessary to implement 
the model through specific software platforms. 

While it is intuitively evident that different choices in representing recurrence times may affect 
the overall outcome of a simulation, especially in the presence of trend, this point is seldom 
highlighted in the academic literature, and difficult to verify in the absence of bespoke analysis. 
Similarly, the impact of an IMP shelf life is seldom taken into account. Here, it is shown that 
this modelling aspect can be insidious as it potentially undermines otherwise effective inventory 
reduction strategies. 
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Figure 7. Visual summary of simulation experiments: base-case (left) and JIT scenarios (right) 
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5. Conclusion 

This paper has proposed and illustrated a combination of CTSC field data analysis, and a proof-
of-concept inventory profile simulation to evaluate alternative JIT manufacturing and 
distribution capabilities for an IMP. While a number of simplifying assumptions were made for 
illustrative purposes, the proposed combination of field data analysis and simulation is one of 
the few attempts to generate actionable knowledge from quantitative evidence that is typically 
available to businesses. Such knowledge can facilitate an otherwise challenging, ‘ex-ante’ 
evaluation emerging technologies such as the concept of JIT ‘Automated Clinical Pharmacy’. 

 This research represents only an initial attempt to help assess the value proposition of having 
ultimate flexibility and late stage customisation in relation to the future needs/wants of clinical 
trial design. Further work aimed at validating and verifying key assumptions needs to be 
conducted through an iterative process of engagement with industry. While not meant for 
generalisation, preliminary results provide an initial feel for the necessary depth and breadth of 
analysis which is necessary to establish how automated and autonomous capabilities may fulfil 
the emerging needs of future clinical supply chain. Once scaled-up and refined, the analysis has 
potential to complement the technical advancements made by a leading pharmaceutical 
consortium. 
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Appendix 

Module/ 
Variable id 

Description Value or Expression 
Base-case scenario JIT scenario Unit SA* Data pedigree 

Clinic      
 v01 Time between enrolments Uniform (1,5) 

As in base-case 

[d]  Low 
 v02 Patients enrolled Int. Uniform (5,12) n.a.  Medium 
 v03 Study start 215 [d] Y Medium 
 v04 Delay in enrolment 30 [d] Y Medium 
 v05 Time until next visit NegExp (50.13) [d]  High 
  Kits dispensed per visit Empirical: 1-3 (90%); 

4+ (10%) 
[each]  High 

Manufacturing      
  No of jobs Pre-determined Model output  Y  
 v07 Time between job requests Uniform (13,167) Model output [d]  Medium 
 v08 Mfg. order cycle time Triangle (42,72,81) Triangle (5,7,14) [d]  High 
 v09 Shelf life Triangle (217,369,500) As in base-case [d]  High 
 v10 Lot size (kits per job) Empirical: 50-60 (50%), 

80-100 (50%) 
Empirical: 10-20 
(90%); 21-40 (10%) 

[each]  Low 

 v11 Time between ship. orders Lnorm(1.224,2.142) Model output [d]  High 
 v12 Max order arrivals 300 Model output n.a. Y High 
 v13 First arrival V04 + V05 As in base-case [d]   
 v14 Shipment order size Empirical: 4-16 (90%); 

16-36 (10%) 
see V16 [each]  High 

 v15 Time to fulfil order & dispatch Empirical: 2-6 (83%); 
6-10 (13%) 

As in base-case [d]  High 

 v16 Withdrawal Kanban, per clinic n.a. 10 [each] Y Low 
 v17 Mfg. Kanban, per clinic n.a. 10 [each] Y Low 
*SA: values that are iteratively changed in the sensitivity analysis to test the simulation response 

 


