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Abstract

Automatic understanding and analysis of groups has attracted increasing at-
tention in the vision and multimedia communities in recent years. However,
little attention has been paid to the automatic analysis of the non-verbal be-
haviors and how this can be utilized for analysis of group membership, i.e.,
recognizing which group each individual is part of. This paper presents a
novel Support Vector Machine (SVM) based Deep Specific Recognition Model
(DeepSRM) that is learned based on a generic recognition model. The generic
recognition model refers to the model trained with data across different condi-
tions, i.e., when people are watching movies of different types. Although the
generic recognition model can provide a baseline for the recognition model
trained for each specific condition, the different behaviors people exhibit in
different conditions limit the recognition performance of the generic model.
Therefore, the specific recognition model is proposed for each condition sepa-
rately and built on the top of the generic recognition model. We conduct a set
of experiments using a database collected to study group analysis while each
group (i.e., four participants together) were watching a number of long movie
segments. Our experimental results show that the proposed deep specific
recognition model (44%) outperforms the generic recognition model (26%).
The recognition of group membership also indicates that the non-verbal be-
haviors of individuals within a group share commonalities.

Keywords: Non-verbal behavior analysis, Group membership, Automatic
group analysis, Deep learning
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1. INTRODUCTION

Automatic analysis of a group of people has received much attention in
computer vision community for different research purposes. Gallagher and
Chen (2009) propose a framework to predict ages and genders of individu-
als in group images. Ibrahim et al. (2015) focus on group activity recog-
nition. More recently, other research fields, including emotion recognition,
have also started to shift their focus from individual to group settings Mou
et al. (2016a, 2015). Research works focusing on the analysis of social di-
mensions, such as engagement and rapport in group settings have also been
reported in Leite et al. (2015) and Hagad et al. (2011). Zhang and Hung
(2016) and Vascon et al. (2016) propose frameworks for F-formation detec-
tion in group conversations. Most of the aforementioned works analyze what
is happening within the group. Only recently, works on automatic analysis
of the relationship between the members of different groups have emerged.
Abdon Miranda-Correa et al. (2017) predict whether a person is being alone
or in a group utilizing neuro-physiological signals.

In this paper we investigate the prediction of group membership for each
individual, using non-verbal behaviors, when they are part of a group of four
participants sitting together and watching four movies. We form four groups,
each of which contains four participants, with no overlaps between the group
members (sixteen participants in total). Even though they are performing
the same task, individuals in different groups may behave very distinctly due
to differences in group composition and dynamics. According to research in
cognitive and behavioral science Barsade (2002), individuals in a particular
group tend to affect the behaviors of each other, i.e., mimic one another or
exhibit similarities in non-verbal behaviors. Such shared behaviors within the
group, and possible differences between different groups, allow the automatic
recognition of group membership Mou et al. (2016b).

Towards this direction, we propose a novel approach to the group mem-
bership recognition problem by introducing a novel specific recognition model
that is built on the top of a generic recognition model. In the proposed frame-
work the data at hand consists of recordings (videos) of different groups
watching different types of movies. We define four different conditions as
people are watching four different types of movies, namely, “horror”, “com-
edy”, “action”, and “adventure”, as shown in Table 1. The generic recogni-
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Table 1: The stimuli videos listed with their sources (video IDs are stated in parentheses
and used to refer to videos in the rest of the paper), the corresponding condition and the
video duration (in minutes).

Movie Condition Duration
Descent (N1) Horror 23:35
Mr. Bean (P1) Comedy 18:43
Batman the Dark Knight (B1) Action 23:30
Up (U1) Adventure 14:06

tion model, that was proposed in our previous work Mou et al. (2017), allows
the group membership recognition across all different conditions. However,
since group members may behave distinctly in different conditions (e.g., while
watching horror movies vs. comedies), the performance of generic recognition
model may be significantly limited. Addressing the membership recognition
problem with an independent recognition model, i.e., using solely the data
from the same condition, becomes very challenging due to the limited num-
ber of samples available from each video. Moreover, when the group members
are in different conditions, they may react differently; however, they are still
part of the same setting performing the same task (i.e., sitting in front of
the screen watching movies), which allows them to share some common be-
havioral characteristics. In light of these, we hypothesize that the generic
recognition model can provide a useful baseline for the optimization of the
specific recognition model. Therefore, we propose a specific recognition model
for each condition specifically, but we learn it on the top of the generic recog-
nition model.

This paper is an extended version of our previous work Mou et al. (2017).
In Mou et al. (2017), we proposed a two-phase learning framework to solve
the group membership recognition problem, where we first trained a generic
recognition model using all videos across all conditions and, then optimized
the specific recognition model for each specific condition based on the opti-
mization results obtained from the generic recognition model. Different from
the aforementioned paper, in this work we unify the generic recognition model
and the specific recognition model under a single deep framework. Specifi-
cally, in this work we optimize the generic recognition model and the specific
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recognition model jointly. In this way, the framework is converted to an end-
to-end structure, which is easier for both training and testing. Furthermore,
we conduct new experiments with a larger dataset. In the rest of the paper,
we refer to the specific recognition model (as presented in our previous work
Mou et al. (2017)) as the two-phase Specific Recognition Model (SRM)
and to the proposed Deep Specific Recognition Model as the DeepSRM.

The rest of the paper is organized as follows. The related works are
reviewed in Section 2; the proposed framework is presented in Section 3;
the experiments and results are presented and discussed in Section 4; and
conclusions and future work are discussed in Section 5.

2. Related Work

Analysis of group-related phenomena has been studied for a long time
across various disciplines, such as psychology and computer science Goette
et al. (2006); Smith et al. (2007); Allen et al. (2017); Sanchez-Cortes et al.
(2012); Girard et al. (2017). It has applications in very diverse areas, such as
human-robot interaction Leite et al. (2015), security Saxena et al. (2008), and
marketing analysis Eberl (2010). In these works group is defined as consisting
of at least two members. However, at times dyads is separated as one category
as dyads often form and dissolve more easily than groups, and people show
different behaviors and experience different emotions in dyads than in groups
Reiter-Palmon et al. (2017). Group dynamics encompasses those behaviors
and psychological processes that occur within a group (intragroup dynamics)
or between groups (intergroup dynamics) Lehmann-Willenbrock et al. (2017).
Therefore, analysis in group settings is more difficult than that in individual
settings due to the complex dynamics. In addition, an important issue for
analysis in group settings is whether the analysis should be at group-level or
individual level Reiter-Palmon et al. (2017). Trust is typically in individual-
level Reiter-Palmon et al. (2017), while cohesion is in group-level. However,
emotion analysis can be both in individual-level Sariyanidi et al. (2015) and
group-level Barsade and Gibson (1998).

We will first review the literature for the analysis at individual-level and
group-level. We will then review the non-verbal cues for group analysis since
we focus on the analysis utilizing non-verbal behaviors. In addition, rep-
resentative works on group analysis using non-verbal cues are illustrated in
Table 2.
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Table 2: Representative works on group analysis.
Reference Analyzed

Phenom-
ena

Individual
or group
level

Number of
images or
frames

Data
Type

Data Source Features

Celiktutan
et al. (2017)

Engagement
& person-
ality

Individual
level

15,300
seconds

Dynamic
videos

Experiments Nonverbal-
audio &
visual &
physio-
logical
signals

Girard et al.
(2017)

Facial
action unit

Individual
level

172,800 Dynamic
videos

Experiments Face
features

Mou et al.
(2016b,a)

Emotion Individual
level

144,000 Dynamic
videos

Experiments Face &
body

Dhall et al.
(2015a),
Huang et al.
(2015)

Emotion Group
level

3,134 Static
images

Web Face &
scene

Dhall et al.
(2015b)

Emotion Group
level

504 Static
images

Web Face &
scene

Mou et al.
(2015)

Emotion Group
level

250 Static
images

Web Face,
body &
context

Leite et al.
(2015)

Engagement Individual
level

6,348
seconds

Dynamic
videos

Experiments Audio,
face,
body &
context

Gallagher
and Chen
(2009)

Age &
gender

Individual
level

5,080 Static
images

Web Context

Hung and
Gatica-Perez
(2010)

Group
cohesion

Group
level

14,400
seconds

Dynamic
videos

Experiments Audio &
visual
activity

Our work Group
Member-
ship

Group
level

1,792,575
(71,703
seconds)

Dynamic
videos

Experiments Body
features
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Individual-level analysis. Mou et al. (2016b) proposed a framework
for individual affect analysis in group videos along arousal and valence. Leite
et al. (2015) studied the individual engagement estimation in group settings
in the context of human-robot interaction. Celiktutan et al. (2017) inves-
tigated personality and engagement in dyadic interaction and human-robot
interactions. Hagad et al. (2011) automatically predicted rapport in dyadic
interactions based on posture and congruence. Gallagher and Chen (2009)
introduced a framework to perform individual analysis, i.e., age and gender
recognition by using contextual features that captured the structure of peo-
ple in the image instead of using features from each individual. Ramanathan
et al. (2013) proposed to recognize the social roles played by individuals in
an event, e.g., instructor and student. In addition to these works that an-
alyze what happens within a group, there are also works focusing on the
analysis of the relationship between members across different groups, such
as group membership analysis from a social psychological perspective Goette
et al. (2006); Williams (2001). However, little attention has been paid to
automatic analysis of group membership of the individuals.

Group-level analysis. From a psychological perspective, a large num-
ber of group analysis focus on group emotion Smith et al. (2007) and group
cohesion Salas et al. (2015). Automatic analysis of emotions has also moved
from individual-level to group-level. Pioneering works on affect recognition
analyzed the overall affect displayed by the whole group Dhall et al. (2012,
2015a,b); Mou et al. (2015); Huang et al. (2015). In addition, some previous
works on group-level analysis focused on group activity recognition Lan et al.
(2012a,b). Although information about the member was used to predict the
group-level attributes, all of these works aim to analyze the collective at-
tributes expressed by the whole group rather than analyze non-verbal cues
displayed by each individual.

Non-verbal cues for group analysis. Non-verbal behaviors are very
important cues for group analysis Barsade (2002). The most frequently used
non-verbal behaviors include gaze patterns, body motion, head movements,
and facial expressions Sanchez-Cortes et al. (2012); Avci and Aran (2014).
Sanchez-Cortes et al. (2012) used nonverbal behaviors (using both audio
and visual modalities) in order to automatically identify emergent leaders
in small group scenarios. Hung and Gatica-Perez (2010) did group cohesion
estimation by utilizing non-verbal behaviors, e.g., activity of each person
and motion information. Mou et al. (2016b) analyzed the affect of individu-
als and group membership by using the non-verbal face and body cues and
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reported that body behaviors showed better performance for group member-
ship recognition. Consequently, in this work we focus on body behaviors for
group membership analysis and recognition.

3. Proposed framework

In this work, we propose a novel framework for the recognition of group
membership in group videos by analyzing body behaviors. The proposed
framework is illustrated in Fig. 1. We propose a novel deep learning based
specific recognition model built upon a generic recognition model. The generic
recognition model uses all data across all conditions, as shown in Fig. 1 (the
generic SVM layer). The specific recognition model (1) utilizes data from only
one specific condition, i.e., “horror”, “comedy”, “action”, or “adventure”, (2)
is built based on the generic recognition model and (3) is trained jointly with
the generic recognition model. As the data across different conditions are
all under the same scenario, that is, sitting in front of the screen watching
movies, we hypothesize that the two recognition models share some common
knowledge and therefore the generic recognition model can provide a baseline
for optimizing the specific recognition model.

3.1. The Generic Recognition Model

The generic recognition model uses the standard linear SVM and a stochas-
tic gradient descent (SGD) algorithm. In this model, we use all of the avail-
able training samples, which are from all subjects across all conditions. We
denote this training set as X = {(xi, zi), i = 1, . . . , `}, where xi denotes the
feature representation of the i-th training sample and zi the corresponding
ground truth label, being equal to +1 if the sample belongs to the respective
class, or −1 otherwise. The generic optimization problem, which we denote
as Pgeneric, can be cast as follows:

Pgeneric : min
w0,b0

λ

2
‖w0‖2 +

1

`

∑̀
i=1

L(w0, b0; (xi, zi)), (1)

where λ is a regularization parameter, w0 and b0 are the optimization pa-
rameters, and L denotes the hinge loss function that is given as

L(w0, b0; (xi, zi)) = max(0, 1− zi(w>
0 xi + b0)). (2)
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Speci�c

SVM Layer

Generic

SVM Layer

Input

Input Video Fisher Vectors SVM Layers

Figure 1: An illustration of the proposed framework. It consists of three parts, i.e., input,
representations, and prediction. The prediction part contains SVM layers, both generic
SVM layer and the specific SVM layers. In this way, we learn the generic recognition model
in generic SVM layer and learn the specific recognition model in specific SVM layer. For
the specific recognition model, as we have four different conditions, we have n = 4 specific
problems and optimize them based on the optimized weight, w0, obtained from the generic
recognition model. More details of the computation of the loss can refer to Fig. 2.

For solving the above optimization problem we use a SGD algorithm and
we arrive at the optimal solution (w0, b0), which describes the separating
hyperplane H0 : w0

>x + b0 = 0. Then, we use the optimal w0 to construct
the set of specific recognition models, as described below.

3.2. The Specific Recognition Model

As discussed above, the proposed framework also includes the learning
of a specific recognition model for each condition, i.e., “horror”, “comedy”,
“action”, or “adventure”. Each specific recognition model is built using the
outputs obtained from the generic recognition model. That is, we use the
value for w0 (by solving the optimization problem in (1) in order to construct
the specific optimization problem, which for the j-th condition we denote as
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Pjspecific and is cast as follows

Pjspecific : min
wj ,bj

µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

+
1

|Xt|
∑

(xi,zi)∈Xt

L(wj, bj; (xi, zi)), j = 1, . . . , 4
(3)

where Xt is a subset of the original training set, µj and νj are regularization
parameters, and L denotes the hinge-loss. The term

νj
2
‖wj − w0‖2 is used

to bias wj to be close to w0. When νj is equal to 0, the model becomes the
standard linear SVM, while when νj tends to infinity, wj tends to be equal
to w0. The optimal values for µj and νj are obtained using cross-validation
(for instance, K-fold or leave-one-out).

For solving Pjspecific, as proposed in Mou et al. (2017), we use a variant of
the Pegasos SGD algorithm. That is, the proposed algorithm receives two
parameters as input: (1) the number of iterations, T , and (2) the number of

examples to be used for calculating sub-gradients, k. Initially, we set w
(1)
j to

any vector whose norm is at most 1/
√
νj and b

(1)
j = 0. On the t-th iteration,

we randomly choose a subset of X , of cardinality k, i.e., Xt ⊆ X , where
|Xt| = k and set the learning rate to ηt = 1

νjt
. We approximate the objective

function of Pjspecific with

Pjspecific : J (wj, bj) =
µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

+
1

k

∑
(xi,zi)∈Xt

L(wj, bj; (xi, zi)), j = 1, . . . , 4.
(4)

The update rules are given as follows

w
(t+1)
j ← w

(t)
j −

ηt
k

∂J
∂wj

, b
(t+1)
j ← b

(t)
j −

ηt
k

∂J
∂bj

,

where the first derivatives of J with respect to wj and bj are given respec-
tively as

∂J
∂wj

= µjwj + νj(wj −w0) +
1

k

∑
(xi,zi)∈Xt

∂L
∂wj

(5)

and
∂J
∂bj

=
1

k

∑
(xi,zi)∈Xt

∂L
∂bj

. (6)
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The first derivatives of the hinge loss with respect to wj and bj are given
respectively as

∂L
∂wj

=

{
−zixi if 1 > zi(w

>
j xi + bj),

0 if 1 < zi(w
>
j xi + bj).

(7)

and
∂L
∂bj

=

{
−zi if 1 > zi(w

>
j xi + bj),

0 if 1 < zi(w
>
j xi + bj).

(8)

Finally, we project w
(t+1)
j onto the ball of radius 1/

√
νj, i.e., the set B =

{wj : ‖wj‖ ≤ 1/
√
νj}. The output of the algorithm is the pair of w

(T+1)
j ,

b
(T+1)
j .

Once the optimal values of the parameters wj and bj are learned, an
unseen testing datum, xt, can be classified to one of the two classes according
to the sign of the (signed) distance between xt and the separating hyperplane.
That is, the predicted label of xt is computed as yt = sgn(dt), where dt =
w>
j xt + bj. The posterior class probability, i.e, a probabilistic degree of

confidence that the testing sample belongs to the class to which it has been
classified, can be calculated using the Platt scaling algorithm Platt et al.
(1999) for fitting a sigmoid function, S(dt) = 1/(1 + eσAdt+σB). The scaling
parameters σA, σB are obtained by applying the Platt scaling approach after
solving the generic recognition model. Platt scaling is a well-known technique
that has been shown to be particularly effective for max-margin methods
such as SVMs (e.g., see Chang and Lin (2011)) for evaluating a sample’s
class membership at the testing phase.

3.3. The Deep Specific Recognition Model

In the above method, which was originally presented in our previous
work Mou et al. (2017), the generic recognition model and the various spe-
cific recognition models were trained separately. Specifically, we first trained
a generic recognition model, obtaining an optimal value of the parameter w0

based on Pgeneric, as shown in (1), and then we trained a set of specific recog-
nition models based on the optimized generic recognition model, as shown
in (3). In this paper, we propose a novel end-to-end approach to train the
generic recognition model and all the specific recognition models simultane-
ously, simplifying the whole procedure significantly. The joint optimization
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Figure 2: Illustration of the computation of the loss.

problem we solve is cast as follows

Pdeep-specific : min
w0,b0

wj ,bj ,j=1,...,4

λ

2
‖w0‖2 + +

4∑
j=1

(µj
2
‖wj‖2 +

νj
2
‖wj −w0‖2

)

+
1

`

∑̀
i=1

L(w0, b0; (xi, zi)) +
1

`t

4∑
j=1

 ∑
(xit,zit)∈Xt

L(wj, bj; (xit, zit))

 ,

(9)

where Xt = {(xit, zit), it = 1, . . . , `t} is a subset of the original training set,
w0, b0, wj, bj are the optimization parameters (for the generic and the j-th
specific model, respectively), λ, µj, and νj, j = 1, . . . , 4 are regularization
hyper-parameters (j = 1, . . . , 4), and L denotes the hinge-loss.

As shown in the above optimization problem, besides the standard regu-
larization scheme, where we try to constrain the norms of wj and w0 so as
to prevent overfitting, we also add the term

νj
2
‖wj − w0‖2 so as to bias wj

to be close to w0, for all j = 1, . . . , 4.

3.4. Feature Extraction

3.4.1. Low-level Feature Extraction

Some previous works showed that body features outperform facial fea-
tures for group membership recognition Mou et al. (2016b); therefore, we
use the body features in this work. In order to extract person-based repre-
sentations we first need to apply a person detector. In our simplified setting
with a fixed number of individuals and a static camera, we use an ad-hoc
scheme that divides the frame into equally-sized parts. Then, dense trajec-
tories Wang et al. (2013) are extracted and, subsequently, HOF descriptors
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HOF

t 
t+1 

t+L-1 

(a) Dense trajectories (b) HOF feature extraction 

Figure 3: Illustration of the approach to extract the body HOF feature. (a) Dense trajec-
tory detection results. (b) Dense trajectory is in the spatial scale over L frames. Motion
information over a local neighborhood of N ×N pixels along the each trajectory point are
extracted. In order to embed the structure information, the local volume is subdivided
into a spatio-temporal grid of size nτ × nσ. Based on Wang et al. (2013), nτ = 3, nσ = 2
and L = 15.

are obtained around each trajectory. HOF descriptors are computed in the
spatio-temporal volume aligned with the trajectories as shown in Fig. 3.
HOF orientations are quantized into eight bins with full orientations. An
additional zero bin is added for pixels with optical flow magnitudes lower
than the threshold (i.e., nine bins in total). Thus, the final descriptor size is
108 with the trajectory length L = 15 frames. More details on this procedure
can be found in Wang et al. (2013).

3.4.2. Fisher Vector Encoding

Fisher vector (FV) encoding Sánchez et al. (2013) has been widely used in
computer vision problems, such as action recognition Wang et al. (2013) and
depression analysis Jain et al. (2014); Dhall and Goecke (2015). It encodes
both the first- and the second-order statistics between the low-level (local)
video/image descriptors and a Gaussian Mixture Model (GMM). To reduce
the dimensionality, Principal Component Analysis (PCA) is first applied to
the HOF descriptors. A GMM is then fitted to HOF descriptors. The number
of Gaussians is set to K = 256 and a subset of 256000 descriptors is randomly

12



Group 1 in condition 2, watching “comedy” movie

Group 4 in condition 3, watching “action” movie

Group 2 in condition 1, watching “horror” movie

Group 3 in condition 4, watching “adventure” movie

Figure 4: Representative frames from the database under different conditions.

sampled to fit a GMM. Subsequently, each clip is represented by a (2D+1)K-
dimensional Fisher Vector, where D is the dimensionality of the descriptor
after performing PCA. We obtain the Fisher Vectors (FVs) from body HOF
descriptors.

4. Experiments and analysis

4.1. Data

Experiments are conducted using a database collected to study group
analysis from multimodal cues while each group (i.e., four participants) were
watching a number of long movie segments Abdon Miranda-Correa et al.
(2017). They were arranged into four groups with four participants in each
group watching all of the four videos listed in Table 1 together. Videos were
recorded at 1280 × 720 resolution, 25fps. Four representative frames from
the database are shown in Fig. 4. Here we use two sub-datasets from the
full database, namely Data-I and Data-II, which are different in terms of the
number of samples and the method of getting the small clips from the long
videos.
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Data-I. It includes data from three groups (twelve subjects) with record-
ings in four different conditions (N1, P1, B1 and U1 movies, see Table 1). As
a result, there were twelve subjects from twelve recordings in total. During
each recording, each group watched one movie. From each recording, we used
the last 10-seconds clips extracted every 2 minutes. The number of short clips
from each recording varies with the length of the movies, i.e., 12 clips for N1
and B1, 9 clips for P1, and 7 clips for U1. Therefore, the total number of clips
we used in the experiments is (12×4×3)+(12×4×3)+(9×4×3)+(7×4×3) =
480.

Data-II. This dataset contains data from four groups (with sixteen par-
ticipants, 8 females and 8 males) with recordings under four different con-
ditions (N1, P1, B1 and U1 movies, see Table 1). As a result, there were
sixteen subjects from fifteen recordings in total. During each recording, each
group watched one movie. Each recording was segmented into 20-seconds
clips with no overlap between the clips. Each clip was used as a single sam-
ple. The number of short clips from each recording varies with the length
of the movies, i.e., 70 clips for N1 and B1, 56 clips for P1, and 42 clips
for U1. Therefore, the total number of clips we used in the experiments is
(70× 4× 4) + (70× 4× 4) + (56× 4× 3) + (42× 4× 4) = 3584.

4.2. Experiments

4.2.1. Implementation details

The network is implemented using Theano Theano Development Team
(2016) and Lasagne Dieleman et al. (2015) libraries. All the parameters of
the network, i.e., for the generic SVM layer and the four specific SVM layers
(see Fig. 1), are learned using the standard back-propagation technique.

4.2.2. Experimental setup

We used both Data-I and Data-II to test our models. On one hand, we
compared the proposed specific recognition model with two other models,
(1) the generic recognition model that trained across all different conditions
and (2) the independent recognition model that trained directly in each spe-
cific condition. We also compared this new framework (DeepRSM) to the
framework proposed in our previous work Mou et al. (2017) (we refer this
two-phase specific recognition model in the rest of the paper as SRM).

In order to avoid subject-dependency problem, group membership recog-
nition models were trained by applying leave-one-subject-out cross-validation.
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Table 3: Data-I tested on both SRM and DeepSRM with group membership recognition
results obtained using different models, the proposed specific recognition model, generic
recognition model and independent recognition model. The average recognition accuracy of
all subjects obtained from leave-one-subject-out cross-validation and statistical significance
test (p-value) obtained for comparisons with chance level = 33% are also provided. ACC
refers to recognition accuracy.

Different Models Acc (p-value)
chance level = 33%
SRM

Acc (p-value)
chance level = 33%
DeepSRM

Generic recognition model
(ν →∞)

34% (p=0.40) 34% (p=0.54)

Independent recognition
model (ν = 0)

33% (p=0.42) 33% (p=0.52)

Specific recognition model 43% (p<0.05) 40% (p<0.05)

Leave-one-subject-out refers to, in each fold, using eleven subjects for training-
validation and the remaining one subject for testing. Each time the param-
eters of the model were optimized over the training-validation samples. The
experimental results of the membership recognition were evaluated by the
recognition accuracy. In addition, we performed statistical significance anal-
ysis to see the significance of the results obtained.

4.2.3. Experimental results and analysis

The recognition results in terms of recognition accuracy by applying leave-
one-subject-out cross-validation are shown in Table 3 and Table 4. From both
Table 3 and 4, we can clearly see that the proposed specific recognition model
outperforms the other two models in terms of recognition accuracy under
both SRM and DeepSRM setups. Recognition accuracy of 43% is obtained
for the specific recognition model with Data-I tested on two-phase SRM, while
34% and 33% are obtained from generic recognition model and independent
recognition model respectively. A recognition accuracy of 40% is obtained for
the specific recognition model with Data-I tested on DeepSRM, while 34% and
33% are obtained from generic recognition model and independent recognition
model respectively. A recognition accuracy of 38% is obtained for the specific
recognition model with Data-II tested on two-phase SRM, while 26% and
32% are obtained from generic recognition model and independent recognition
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Table 4: Data-II tested on both SRM and DeepSRM with group membership recognition
results obtained using different models, the proposed specific recognition model, generic
recognition model and independent recognition model. The average recognition accuracy of
all subjects obtained from leave-one-subject-out cross-validation and statistical significance
test (p-value) obtained for comparisons with chance level = 25% are also provided. ACC
refers to recognition accuracy.

Different Models Acc (p-value)
chance level=25%
SRM

Acc (p-value)
chance level=25%
DeepSRM

Generic recognition model
(ν →∞)

26% (p=0.79) 26% (p=0.50)

Independent recognition
model (ν = 0)

32% (p=0.08) 32% (p=0.07)

Specific recognition model 38% (p<0.05) 44% (p<0.05)

model respectively. A recognition accuracy of 44% is obtained for the specific
recognition model with Data-I tested on two-phase SRM, while 26% and
32% are obtained from generic recognition model and independent recognition
model respectively. We also perform a t-test to see the statistical significance,
which is also listed in Table 3 and 4. The statistical significance tests show
that the results obtained with the proposed specific recognition model are
significantly better than chance level, but not for generic recognition model
and independent recognition model.

We also compared the performance obtained with the specific recognition
model between the two-phase SRM and the DeepSRM. As we tested the
models using different data and the chance levels are different, it is difficult to
compare them directly. Therefore, we divided the recognition accuracy by the
corresponding chance level and the results are illustrated in Fig. 5. From Fig.
5, we can see that the DeepSRM tested with Data-II performs better than
two-phase SRM, while for Data-I two-phase SRM performs better than the
DeepSRM. It is possibly because that compared to the non-deep framework,
i.e., two-phase SRM, more parameters are learned at once while training the
deep neural network, therefore, more data is needed to train the DeepSRM.
In our experiments, in Data-I, there are 480 samples, while in Data-II, there
are 3,584 samples, which is more than 7 times as many as Data-I. We can
see that the best performance is obtained from the deep framework tested
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Figure 5: The recognition accuracy obtained from the proposed specific recognition model
divided by the chance level for all different setups, i.e., Data-I tested on two-phase SRM and
DeepSRM models respectively as well as Data-II tested on two-phase SRM and DeepSRM
models respectively.

with Data-II, which outperforms the two-phase framework while tested with
both Data-I and Data-II. In addition, the deep framework can be trained
more easily compared to the non-deep framework, which needs to be trained
by two steps, first generic recognition model and then specific recognition
model. However, the deep framework can be trained in one step, which can
simplify the problem in terms of implementation but provide better results.
The computational cost in terms of time for the DeepSRM and the two-phase
SRM is presented in Table 5. Although the cost is lower for DeepSRM, we
have to bear in mind that DeepSRM has been trained on a machine with
GPU.

The recognition accuracy at training and testing stages against the num-
ber of epochs for different subjects is illustrated in Fig. 6. The corresponding
subject can be found in Fig. 7 based on the subject ID. From Fig. 6, we
can see that the recognition accuracy of the group membership varies among
different subjects. For example, the membership of subjects 1, 3, 13 and 16
is better recognized than that of subjects 8 and 9. For subject 8, we can see
from Fig. 7 (b) that subject 8 showed a very different behavior from the other
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Table 5: The computational cost for training SRM and DeepSRM models while testing
with Data-I and Data-II, respectively. SRM is implemented on a computer with 16G RAM
and Intel Core i7-4790S CPU, while DeepSRM is implemented on a computer with Titan
X GPU and 32G RAM.

SRM DeepSRM
Data-I 808 seconds 432 seconds
Data-II 45,716 seconds 4,320 seconds

group members. Specifically, we can see that subjects 5, 6, and 7 seemed to
be very happy or excited and tend to move a lot, but not subject 8. Thus,
in this case, it is difficult to recognize the group membership of subject 8,
which also causes difficulties in membership recognition of the other group
members. The results could be due to the fact that she did not like this
movie. Therefore, in order to improve the recognition accuracy of the group
membership, in addition to the performance obtained for each participant in
the video, it is also helpful to have some contextual information, such as the
preferences to the movies. For group 3, subjects 9, 10 and 11 were friends
and classmates prior to participating in the experiments. However, subject 9
is new to this group and in this case, he was possibly sharing less non-verbal
cues with the other three group members. Considering this, data should be
collected with people that are unacquainted prior to attending the recording
as has been done in Girard et al. (2017).

5. Conclusions and future work

In this paper, we proposed a novel specific recognition model that is
learned jointly with a generic recognition model for the problem of group
membership recognition, using non-verbal behaviors of each group’s mem-
ber, under different conditions, i.e., when people are watching different types
of movies (i.e., “horror”, “comedy”, “action”, and “adventure”). The generic
recognition model is trained using all data across conditions, which allows for
group membership recognition across all different conditions. However, since
group members may behave distinctly in different conditions, the perfor-
mance of generic recognition model is limited. To address this, we propose
a specific recognition model for each specific condition built on the top of
the generic recognition model, so as to use the generic recognition model to
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Figure 6: The recognition accuracy at training and testing stages against the number of
epochs for different subjects obtained from the proposed specific recognition model using
deep framework and tested on Data-II. The blue line is for training and the green line is
for testing.
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          (a) Group 1 

          (c) Group 3

     (b) Group 2

      (d) Group 4
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Subject 9     Subject 10        Subject 11      Subject 12 Subject 13 Subject 14    Subject 15 Subject 16

Figure 7: Four illustrative frames from four groups of data and the ID of each subject.

provide a baseline. We conducted a set of experiments for group membership
recognition on two datasets that include different groups, with each group
comprising four participants watching affective stimuli.

The experimental results showed that the proposed specific recognition
model outperformed the compared approaches, i.e., generic recognition model
and independent recognition model, as shown in our previous work Mou et al.
(2017). However, compared to Mou et al. (2017), the newly proposed Deep-
SRM can be trained at once by learning both the generic recognition model
and all the specific recognition models simultaneously, rather than learning
them separately. In this way, the framework for DeepSRM is simplified, while
at the same time its performance is improved when there is sufficient data.
On the other hand, as group membership can be recognized using non-verbal
behaviors (i.e., body behaviors), our results indicate that individuals affect
each other’s behaviors within a group and their nonverbal behaviors share
commonalities. Our results also show that capitalizing on shared informa-
tion in a generic recognition problem is important for learning the specific
problem at hand, and this optimization approach can be possibly transferred
to other recognition domains.
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Despite the promising results obtained in the experiments, analysis of
group membership remains a challenging problem. As future work, we plan
to experiment with other feature representation. It is also important to use
different contextual information to assist the recognition process, such as
personality, movie preference, and the personal relationships between group
members. In addition, we also plan to apply this learning approach to other
recognition problems.
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