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Abstract

In turbulent premixed flame propagation, the formation of isolated pock-

ets of reactants or products is associated with flame pinch–off events which

cause rapid changes in the flame surface area. Previous topological analysis

of these phenomena has been carried out based on Morse theory and Direct

Numerical Simulation (DNS) in two spatial dimensions. The present work

extends the topological analysis to three dimensions with emphasis on the

formation and subsequent burnout of reactant pockets. Singular behaviour

observed previously for terms of the Surface Density Function (SDF) trans-

port equation in the two–dimensional case is shown to occur also in three

dimensions. Further singular behaviour is observed in the displacement speed

close to reactant pocket burnout. The theory is compared against DNS data

from hydrogen–air flames and good agreement is obtained.
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1. Introduction

Premixed turbulent flames often consist of a thin and highly wrinkled

layer of reacting gas forming an interface between extended regions of re-

actant and products. The local geometry of the interface has a profound

influence on the propagation of the flame and hence on the overall turbulent

burning rate, which is a quantity of great interest in technological appli-

cations, for example in spark–ignition internal combustion engines and gas

turbines. The statistical geometry of the flame surface is commonly modelled

using the Flame Surface Density (FSD) [1] and G–equation [2] approaches,

both of which require fundamental information about the local evolution of

the interface. Previous work [3–5] has made use of topological concepts to

determine the range of possible geometrical configurations of the flame sur-

face and most importantly to provide estimates of their relative frequency of

occurrence.

Among the most important events in terms of its effect on the total flame

surface area is flame pinch–off. This occurs kinematically when two adjacent

flame surfaces collide, leading to the occurrence of a critical point and the

formation of a pocket. This process has been analysed in detail for the

two–dimensional case of head–on collision and the formation of a pocket of

reactants [4, 6]. It was shown that a singularity occurs at the critical point,

leading to rapid recession of the interface during pocket formation.

More recently, topological analysis [5] of three dimensional flame surfaces

has identified all of the possible surface topologies that can occur in the vicin-
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ity of a critical point at which the scalar gradient is equal to zero. The full

range of topologies is shown in Fig.1. Moreover, the analysis indicated that

there are four principal configurations which occur most frequently on the

flame surface. These are 1) reactant pockets and 2) product pockets, together

with 3) tunnel closure and 4) tunnel formation. A reactant pocket is topologi-

cally spherical and propagates inwards (see Fig.1, bottom right corner), while

a product pocket differs by propagating outwards (top left). Tunnel closure

involves inward propagation of a topologically cylindrical flame (bottom row,

third from right), while tunnel formation involves outward propagation (top

row, third from left).

Figure 1: All possible flame surface topologies. From [5]. The axes represent shape factors

derived from scaled eigenvalues of the Hessian of the reaction progress variable.

It is evident on physical grounds that tunnel closure may lead to pinch–

off and the formation of a reactant pocket. Hence this configuration offers

the opportunity to extend the previous two–dimensional analysis to three
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dimensions, and to gain some insight into the kinematics of the pinch–off

event and its effect on flame surface area. The other configurations of interest

are also amenable to similar treatment.

The purpose of the present paper is to analyse the four principal flame

configurations previously identified in three dimensions by Griffiths et al

[5], and to validate the findings of the theoretical analysis by using DNS

data for the particular case of reactant pocket formation. The previous two–

dimensional topological approach of Kollmann and Chen [4] is extended using

a similar theoretical basis [7] to the much richer topology accessible in three

dimensions. It is demonstrated that the theory remains valid in three di-

mensions despite the additional topological complexity and indeed allows for

similar physical conclusions. The results confirm that singular behaviour oc-

curs during three–dimensional pinch–off events, and during the final closure

of reactant pockets.

Mathematical background

A reaction progress variable cmay be defined (e.g.) in terms of normalised

product species mass fraction such that c = 0 in fresh reactants and c = 1 in

fully–burned products. A balance equation for c may be written as

ρ
∂c

∂t
+ ρuk

∂c

∂xk
= w +

∂

∂xk

(
ρD

∂c

∂xk

)
(1)

where ρ is the density, ui is the velocity, D is the diffusivity of c and w is the

chemical production rate of c.

The surface density function σ is defined as the magnitude of the gradient

of c, i.e. σ = |∇c|, while the normal vector to an isosurface of c is defined
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as n = −∇c/|∇c|, pointing down the gradient, i.e. in the direction of flame

propagation. The balance equation for σ may be stated [4] as

∂σ

∂t
+uk

∂σ

∂xk
= −ninkσ

∂ui
∂xk

+nk
∂

∂xk
(Dκσ)+nk

∂

∂xk

[
w

ρ
+
nj

ρ

∂

∂xj
(ρDσ)

]
(2)

where κ = ∂nk/∂xk is (twice) the curvature of the flame surface. The three

terms on the right–hand side of this equation are named respectively as the

strain rate term, the dissipation term and the kinematic restoration term [4].

Note that the kinematic restoration term itself contains two contributions

arising from reaction and from normal restoration.

Considering only the local topology, it is possible to represent each of the

four principal configurations (reactant pocket RP, product pocket PP, tunnel

closure TC and tunnel formation TF) in scaled local coordinates x, y and z

for small deviations from the critical point. The expressions are:

(RP) c(x, y, z) = c0 +
1

2
x2 +

1

2
y2 +

1

2
z2 (3)

(PP) c(x, y, z) = c0 −
1

2
x2 − 1

2
y2 − 1

2
z2 (4)

(TC) c(x, y, z) = c0 −
1

2
x2 +

1

2
y2 +

1

2
z2 (5)

(TF) c(x, y, z) = c0 +
1

2
x2 − 1

2
y2 − 1

2
z2 (6)

where c0 is the value of the progress variable at the critical point. A reactant

pocket corresponds to a local minimum, with a low value of progress variable

in the centre with higher values all around. For this configuration the normal

vector is n = (−x/r,−y/r,−z/r)T and the curvature κ = −2/r, where the

radius r = (x2 + y2 + z2)1/2. For a product pocket the same quantities are

given by n = (x/r, y/r, z/r)T and κ = 2/r.
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A tunnel closure corresponds to a local saddle point with a maximum

on the central axis of the tunnel (taken here as the x direction) combined

with a minimum in the other two directions. The normal vector is n =

(x/r,−y/r,−z/r)T and the curvature is κ = −2x2/r3. For tunnel formation

the normal vector is n = (−x/r, y/r, z/r)T and the curvature is κ = 2x2/r3.

For all four configurations the SDF is given by σ = r.

For the tunnel closure configuration, it is interesting to examine the be-

haviour of the last two terms in the SDF balance equation (2). The dissipa-

tion term can be expanded as

nk
∂

∂xk
(Dκσ) = nk(κσ)

∂D

∂xk
+ nkD

∂(κσ)

∂xk
(7)

and the two terms in the right–hand side may be evaluated close to the

critical point as

nk(κσ)
∂D

∂xk
= −2x2

r3

(
x
∂D

∂x
+ y

∂D

∂y
+ z

∂D

∂z

)
(8)

nkD
∂(κσ)

∂xk
= −8D

(
x2y2 + x2z2

r5

)
(9)

In the limit of small r, as the critical point is approached, the first term (eq.

8) remains bounded but the second term (eq. 9) becomes singular, behaving

like 1/r as r → 0. This result is consistent with the previous two-dimensional

analysis [4].

A similar examination may be carried out for the kinematic restoration

term. It may be shown readily that the reactive restoration term remains

bounded close to the critical point for all configurations. The normal restora-

tion term may be decomposed into five terms according to

nk
∂

∂xk

[
nj

ρ

∂

∂xj
(ρDσ)

]
= Dnk

∂nj

∂xk

∂σ

∂xj
+Dnknj

∂2σ

∂xk∂xj
+ nk

∂nj

∂xk

σ

ρ

∂

∂xj
(ρDσ)
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+ nknj
∂D

∂xk

∂σ

∂xk
+ nknj

∂

∂xk

[
σ

ρ

∂

∂xj
(ρD)

]
(10)

All of these terms may be evaluated using the expressions for ni and σ as

stated above. For the tunnel closure configuration, the last three terms

remain bounded. The first two terms may be evaluated together as

Dnk
∂nj

∂xk

∂σ

∂xj
+Dnknj

∂2σ

∂xk∂xj
= 4D

(
x2y2 + x2z2

r5

)
+ 4D

(
x2y2 + x2z2

r5

)
(11)

In the limit of small r, these terms become singular, again behaving like 1/r

as r → 0. Moreover, together they cancel exactly with the singular term

arising from the dissipation (see eq. 9). Hence the balance equation for σ

remains bounded, and indeed σ → 0 in the limit. Again, these findings are

consistent with the previous two-dimensional analysis [4]. Similar singular

behaviour may be observed in the tunnel formation case.

By contrast, no singularities arise in the terms of the σ equation for either

of the pocket configurations even for the final burnout of a reactant pocket.

Here, further insight can be gained by considering the displacement speed Sd

defined with reference to the right–hand side of the c–equation (1) according

to

ρSdσ = w +
∂

∂xk

(
ρD

∂c

∂xk

)
(12)

The displacement speed may be split into contributions arising from reaction,

normal diffusion and curvature according to

Sr =
w

ρσ
; Sn = −nk

ρσ

∂

∂xk
(ρDσ); St = −Dκ (13)

The contribution due to normal diffusion may be further decomposed as

Sn = −nk

ρ

∂

∂xk
(ρD)− nkD

σ

∂σ

∂xk
(14)
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Evaluation for the tunnel closure configuration indicates that the first term

remains bounded. The second term may be combined with the curvature

term to yield

Sn + St = −D
[
x2

r3
− y2

r3
− z2

r3

]
+ 2D

x2

r3
=
D

r
(15)

which becomes singular as r → 0 provided that D remains non–zero in the

limit. Note that the reactive term also becomes singular provided that w

remains non–zero in the limit. Hence the displacement speed is unbounded

during tunnel closure. Similar behaviour is evident in the displacement speed

during reactant pocket burnout. It is important to note that the quantity Sdσ

remains bounded in all configurations, and hence both the progress variable

equation and the SDF equation remain well–behaved.

DNS dataset

Here the analysis is carried out using the DNS data of Hawkes et al. [8]

generated for two initially planar lean H2–air flames propagating towards

each other in a high intensity shear–driven turbulent flow. The equiva-

lence ratio was 0.7 and the mixture was preheated to 700K. A 9–species

21–step reaction mechanism was employed [9]. The dataset was produced

using the DNS code S3D [10] which employs an 8th order spatial finite–

difference scheme and 4th order explicit Runge–Kutta time–stepping. The

computational domain was a cuboid of physical size 16H×20H×12H, discre-

tised using 2400 × 1600 × 1800 mesh points. The value of H was 5.4mm, and

the mesh spacing was 36 µm. The integral length scale was H/3. Boundary

conditions were set to be periodic in the streamwise and spanwise directions,

8



with outflow in the direction perpendicular to the flames. The full dataset

involves two different Damköhler numbers denoted as Da- (Da=0.13) and

Da+ (Da = 0.54). Only the Da+ data is used for the present study, and a

small subsection of the entire dataset was enough to find sufficient numbers

of critical point for analysis. The temperature field for this subset is shown

in Fig.2.

Figure 2: Subset of Da+ dataset from Hawkes et al. [8]

It can be seen that the flame is highly wrinkled, but it should be noted

that the flame structure remains intact, i.e., the reactants and products are

separated by a continuous flame surface. No broken reaction zones were

observed.

Results and discussion

For the purposes of analysis, a reaction progress variable is defined based

on O2 mass fraction according to

c =
YO2,R − YO2

YO2,R − YO2,P

(16)

The value of the progress variable thus defined rises monotonically from zero

in the reactants to unity in the products. The progress variable gradient is
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used to evaluate quantities such as the flame normal n, curvature κ and SDF

σ. Hence it is possible to evaluate the terms of the SDF balance equation,

and especially the dissipation and kinematic restoration terms in the vicinity

of each critical point (see eqs. 9 and 11). Similarly it is possible to evaluate

the different contributions to the displacement speed (see eq. 15).

Tunnel closure

The analysis was carried out on small subsets of the entire Da+ dataset

varying in size from 30 points cubed to 80 points cubed, selected from the

dataset based on a high density of occurrence of tunnel closure events. Each

subset was scanned to find all the critical points, and each critical point was

classified according to the analysis of Griffiths et al. [5]. Critical points with

the tunnel closure topology were selected for further analysis.

Figure 3 shows one such sub–domain (left) and a slice taken through a

plane in the middle (right), showing a clear tunnel closure event leading to

flame pinch–off and the formation of a reactant pocket. For several such

tunnel closure events, the dissipation and kinematic restoration terms were

evaluated at DNS mesh points along the mesh line nearest to the critical

point. This procedure avoids the need for interpolation, and allows all quan-

tities to be evaluated directly from the DNS data. Both terms were then

compared with the theory from section 2. It should be noted that the theory

is valid only close to each critical point, and that the spatial extent of its

validity is not known a priori.

Each tunnel closure event was found to have its own and possibly unique

large–scale geometry. Four different examples are provided in Fig. 4, which

shows two–dimensional slices taken close to the critical point (left side) to-
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Figure 3: Example of a tunnel closure event. Colour scale runs from blue in reactants to

red in products.

gether with corresponding plots of the dissipation and kinematic restoration

terms (right side).

Figure 4a shows the same slice as in Fig 3b. The white contour on each

slice represents a progress variable isosurface that corresponds as closely as

possible to the tunnel closure event captured on this plane, while the straight

black line indicates an axis that passes close to the tunnel closure point.

Along this axis, the dissipation term (eq. 9) and the kinematic restoration

term (eq. 11) were evaluated.

It is clear from the plots in the right column of Fig.4 that both the dissipa-

tion term and the kinematic restoration term reach their highest magnitudes

in the vicinity of a critical point. Furthermore, the terms form a rough mirror

image, having similar magnitudes but opposite signs, thus tending to can-

cel one another. This result is in good agreement with the theory and also

with the two–dimensional DNS results of Kollmann and Chen [4]. Indeed

the magnitudes of each term are similar to those found previously.
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The lack of complete cancellation between the dissipation and kinematic

restoration terms is an indication that the axis of evaluation does not pass

exactly through the location of the critical point. This is to be expected,

since in general the critical point location will not lie on a DNS mesh line.

Instead, the analysis method identifies the nearest DNS mesh line as the axis

of evaluation, and therefore does guarantee that the critical point lies within

a minimum distance corresponding to one–half of the DNS mesh spacing.

Interpolation within a DNS mesh cell could be used to reduce the minimum

distance and may well improve the degree of cancellation. Nevertheless, even

in the present work, the axis of evaluation appears to be sufficiently close to

the critical point for the theory to hold.

Figure 4b shows a different subdomain containing a different tunnel clo-

sure event. Again, the same terms were evaluated along a line passing

through the approximate location of the critical point. In this case it can be

seen that there are two locations of interest on the same line, Again, both

terms have large magnitudes close to each critical point and again the terms

tend to cancel each other at both locations.

Figure 4c and 4d show further subdomains containing different tunnel

closure events, with planar views taken in different coordinate orientations.

The terms are evaluated along the y-coordinate in Fig.4c and along the z-

coordinate in Fig.4d. Again the results are consistent with the theory showing

high magnitudes close to the critical point and a tendency to cancel each

other.

It would be desirable to carry out a more complete statistical survey of

the available critical points in order to confirm the generality of the results.
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Figure 4: Examples of tunnel closure events (left column) together with (right column)

the corresponding dissipation terms (in blue) and kinematic restoration terms (in red).
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This would be a major undertaking due to the large number of tunnel closure

events, as well as the variety of scales, orientations and detailed geometrical

features that are observed. Development of an automated procedure for this

purpose is left to future work.

Reactant pocket burnout

In order to investigate the behaviour of displacement speed close to re-

actant pocket burnout, another subdomain was selected containing a fully

formed reactant pocket. The displacement speed is evaluated on isosurfaces

of progress variable in the vicinity of the critical point in the centre of the

pocket. Linear interpolation in each coordinate direction is used to determine

the location of the isosurface, and the corresponding value of displacement

speed. Figure 5 (top) shows a slice through a reactant pocket burnout event

with a set of progress variable isosurfaces (white contours) surrounding the

critical point during a reactant pocket burnout event.

Figure 5 (bottom) shows the displacement speed Sd plotted against progress

variable. Here the values of Sd have been averaged over each progress vari-

able isosurface. It is clear that Sd takes large values close to the critical point

and falls sharply with increasing progress variable. This is consistent with

the behaviour expected from theory, as expressed by eq. 15.

Conclusion

Flame pinch–off leading to the formation of pockets has been investigated

using both theory and DNS data. Previous work on topological analysis

of the flame surface has identified four frequently–occurring configurations

which are relevant to the pinch–off process. Using these configurations, a
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Figure 5: (Top) progress variable isosurfaces close to a critical point during reactant pocket

burnout. (Bottom) Variation of displacement speed Sd close to reactant pocket burnout

previous mathematical analysis of the balance equation for SDF carried out

in two dimensions using Morse theory has been extended to three dimensions.

The main conclusions of the previous two–dimensional study are shown to

be valid also in three dimensions, despite the greatly increased topological

richness introduced by the extra dimension. The new analysis indicates that

flame pinch–off occurs by means of a tunnel closure event leading to the

formation of a reactant pocket. Conversely, a tunnel formation event may

lead to the creation of a product pocket.
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Moreover, singular behaviour identified in the previous two–dimensional

analysis is shown to occur also in three dimensions for both tunnel closure and

tunnel formation events. Again the correspondence between two–dimensional

and three–dimensional results is remarkable. Singularities arise at a critical

point during pinch–off in the dissipation and kinematic restoration terms,

and are shown to cancel each other out. A singularity is also shown to occur

in the displacement speed at the critical point during the final burnout of a

reactant pocket.

The predictions of the theory have been tested by comparison with a

well–established DNS dataset for hydrogen-air flames. Several tunnel closure

and reactant pocket burnout events have been identified and extracted from

the dataset, and the relevant terms have been evaluated. The results indicate

that large magnitudes of the dissipation and kinematic restoration terms are

indeed observed close to the critical point during tunnel closure, and that

the terms tend to cancel one another, in agreement with the theory. Large

values of displacement speed are also observed close to the critical point

during reactant pocket burnout, again in agreement with the theory.

Future work will focus on improving the DNS postprocessing techniques

to capture the critical points more accurately in space and time, and to collect

more data on the local scalar and velocity fields. An automated procedure

will be required to handle the large number and variety of critical points. The

implications of the observed behaviour for the modelling of flame propagation

with rapid area change will be considered in greater detail.
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