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ABSTRACT 

The validity of Damköhler’s first hypothesis, which relates the turbulent flame speed to turbulent flame 

surface area under the condition where the integral length scale of turbulence is greater than the flame 

thickness, has been assessed using three-dimensional Direct Numerical Simulations (DNS) of turbulent 

premixed Bunsen burner flames over a range of values of Reynolds number, pressure and turbulence 

intensity.  It has been found for the Bunsen configuration that the proportionality between volume-

integrated burning rate and the overall flame surface area is not strictly maintained according to 

Damköhler’s first hypothesis. The discrepancy is found to originate physically from the local stretch 

rate dependence of displacement speed, and this helps to explain differences observed previously 

between flames with and without mean curvature.  Approximating the local flame propagation speed 

with the unstrained laminar flame speed is shown to be inaccurate, and can have a significant influence 

on the prediction of the overall burning rate for flames with non-zero mean curvature. Using a two-

dimensional projection of the actual scalar gradient for flame area evaluation is shown to exacerbate 

the loss of proportionality between volume-integrated burning rate and the overall flame surface area. 

The current analysis identifies the conditions under which Damköhler’s hypothesis remains valid and 

the necessary correction for non-zero mean flame curvature. Further, it has been demonstrated that 

surface-weighted stretch effects on displacement speed need to be accounted for in order to ensure the 

validity of Damköhler’s hypothesis under all circumstances. Finally, it has been found that the volume-

integrated density-weighted scalar dissipation rate remains proportional to the overall burning rate for 

all flames considered here irrespective of the value of Reynolds number, pressure and turbulence 

intensity. However, this proportionality is lost when the scalar dissipation rate is evaluated using the 

two-dimensional projection of the actual scalar gradient. 

 

Keywords: Damköhler’s first hypothesis, burning rate, flame surface area, Bunsen burner premixed 

flame, Direct Numerical Simulations 
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1. INTRODUCTION 

In premixed turbulent combustion modelling, the turbulent flame speed 𝑆𝑆𝑇𝑇 is a quantity of 

fundamental importance. The turbulent flame speed is defined as 𝑆𝑆𝑇𝑇 = ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 /(𝜌𝜌0𝐴𝐴𝐿𝐿) where 

�̇�𝑤 is the production rate of the reaction progress variable c,  𝜌𝜌0 is the unburned gas density and 

𝐴𝐴𝐿𝐿 is the projected area in the direction of flame propagation. Several authors [1-10] have 

analysed the statistical behaviour of the turbulent flame speed and proposed models for it.  The 

modelling of 𝑆𝑆𝑇𝑇 often invokes Damköhler’s first hypothesis [11], which relates the turbulent 

flame speed to the turbulent flame surface area 𝐴𝐴𝑇𝑇 according to: 

                                                             𝑆𝑆𝑇𝑇 𝑆𝑆𝐿𝐿⁄ = 𝐴𝐴𝑇𝑇/𝐴𝐴𝐿𝐿                                                           (1) 

Here 𝑆𝑆𝐿𝐿 denotes the unstrained laminar burning velocity. Although eq. 1 was not referred to as 

first hypothesis in the original paper by Damköhler [11], this terminology has become 

commonly used in the literature [12-14]. In the flamelet regime of turbulent premixed 

combustion, it is often assumed that the burning rate per unit area can be approximated by the 

corresponding value for unstrained laminar premixed flames, which is given by 𝜌𝜌0𝑆𝑆𝐿𝐿. Thus, 

the turbulent burning rate can be approximated by 𝜌𝜌0𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇, which upon division by the mean 

projected area in the direction of flame propagation yields 𝜌𝜌0𝑆𝑆𝑇𝑇 and forms the basis of eq. 1.  

Thus the modelling of turbulent flame speed (and hence the overall burning rate) translates to 

the modelling of flame surface area. This is utilised in the Flame Surface Density (FSD) model 

[15] through the expression: 

                                                 �̇�𝑤 + ∇. (𝜌𝜌𝐷𝐷𝑐𝑐∇𝑐𝑐)�������������������� = (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔                                               (2) 

where 𝐷𝐷𝑐𝑐 is the diffusivity of the reaction progress variable, 𝑆𝑆𝑑𝑑 = |∇𝑐𝑐|−1(𝐷𝐷𝑐𝑐/𝐷𝐷𝐷𝐷) is the 

displacement speed,  Σ𝑔𝑔𝑔𝑔𝑔𝑔 = |∇𝑐𝑐|����� is the generalised FSD and (𝑄𝑄)�����𝑠𝑠 = 𝑄𝑄|∇𝑐𝑐|�������/|∇𝑐𝑐|����� is the 

surface-weighted value of a general variable 𝑄𝑄 with the overbar denoting a Reynolds averaging 
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or LES filtering operation as appropriate [15]. As the total turbulent flame area is invariant 

with respect to Reynolds averaging/LES filtering, 𝐴𝐴𝑇𝑇 can be expressed as: 𝐴𝐴𝑇𝑇 = ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 =

∫ |∇𝑐𝑐|�����𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉 . Often in experimental analyses [8,9,16-21] the flame area is 

determined by edge detection algorithms based on 2D measurements. However, Chen and 

Bilger [20] demonstrated that the associated errors can be considerable, which motivated them 

to measure 3D scalar gradients. In order to avoid any ambiguity, in the present analysis the 

flame area is evaluated by volume-integrating |∇𝑐𝑐| or Σ𝑔𝑔𝑔𝑔𝑔𝑔 . 

 

Volume-integrating the left hand side of eq. 2 and using the definition of the turbulent flame 

speed yields 𝜌𝜌0𝑆𝑆𝑇𝑇𝐴𝐴𝐿𝐿 = ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ �̇�𝑤�𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉 , since ∫ ∇. (𝜌𝜌𝐷𝐷𝑐𝑐∇𝑐𝑐)��������������𝑑𝑑𝑑𝑑𝑉𝑉  

vanishes due to the divergence theorem. This gives rise to:  

              𝜌𝜌0𝑆𝑆𝑇𝑇𝐴𝐴𝐿𝐿 = ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ (𝜌𝜌𝑆𝑆𝑑𝑑)��������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑉𝑉𝑉𝑉

∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑉𝑉𝑉𝑉
∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ (𝜌𝜌𝑆𝑆𝑑𝑑)��������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑉𝑉𝑉𝑉

∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑉𝑉𝑉𝑉

𝐴𝐴𝑇𝑇                     (3) 

It is worth noting that (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 is often approximated as (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 = 𝜌𝜌0𝑆𝑆𝐿𝐿, which reduces eq. 3 to  

a statement of Damköhler’s first hypothesis, i.e. eq. 1.  Eqs. 1 and 3 suggest that for a given 

burner ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉  is expected to be proportional to ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  and their ratio is expected to be 

constant and equal to 𝜌𝜌0𝑆𝑆𝐿𝐿 for a given fuel-air mixture and unburned gas condition for 

(𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 = 𝜌𝜌0𝑆𝑆𝐿𝐿. However, it is worth noting that eq. 1 is strictly valid only when (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 =

𝜌𝜌0𝑆𝑆𝐿𝐿. In the context of Reynolds Averaged Navier Stokes (RANS) simulations �̇�𝑤�  is often 

expressed in terms of FSD as �̇�𝑤� = 𝐼𝐼0𝜌𝜌0𝑆𝑆𝐿𝐿Σ𝑔𝑔𝑔𝑔𝑔𝑔 [3,22] where 𝐼𝐼0 is the stretch factor. It is 

important to note that 𝐼𝐼0 is not a constant and depends on local mean values of strain rate and 

curvature [3,22]. This leads to 𝜌𝜌0𝑆𝑆𝑇𝑇𝐴𝐴𝐿𝐿 = ∫ �̇�𝑤�𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝐼𝐼0𝜌𝜌0𝑆𝑆𝐿𝐿Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑0 ≠

𝜌𝜌0𝐼𝐼0𝑆𝑆𝐿𝐿 ∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑0 (= 𝜌𝜌0𝐼𝐼0𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇).  Hence eq. 1 is not satisfied even if the unstrained flame 

speed is replaced with 𝐼𝐼0𝑆𝑆𝐿𝐿. Indeed, experimental data by Gülder [16] has demonstrated that 
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the ratio of ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉  and ∫ 𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  is not equal to unity in turbulent premixed Bunsen 

burner flames. 

 

In the flamelet regime, the mean reaction rate �̇�𝑤�  can be modelled instead using scalar 

dissipation rate 𝑁𝑁�𝑐𝑐 = 𝜌𝜌𝐷𝐷∇𝑐𝑐.∇𝑐𝑐������������/�̅�𝜌 as [23,24]: 

                                                     �̇�𝑤� = 2�̅�𝜌𝑁𝑁�𝑐𝑐/(2𝑐𝑐𝑚𝑚 − 1)                                                     (4) 

where 𝑐𝑐𝑚𝑚 = ∫ [�̇�𝑤𝑐𝑐]𝐿𝐿𝑓𝑓(𝑐𝑐)𝑑𝑑𝑐𝑐1
0 /[�̇�𝑤]𝐿𝐿𝑓𝑓(𝑐𝑐)𝑑𝑑𝑐𝑐, the subscript ‘L’ indicates laminar flame values 

and 𝑓𝑓(𝑐𝑐) is the burning mode probability density function (pdf). Bray [23] demonstrated that 

𝑐𝑐𝑚𝑚 does not depend significantly on the choice of 𝑓𝑓(𝑐𝑐) as long as a continuous function is 

presumed for 𝑓𝑓(𝑐𝑐). The quantity 𝑐𝑐𝑚𝑚 is constant for a homogeneous fuel-air mixture 

composition. Equation 4 implies that ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉  is proportional to ∫ �̅�𝜌𝑁𝑁�𝑐𝑐𝑑𝑑𝑑𝑑 = ∫ 𝜌𝜌𝑁𝑁𝑐𝑐𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉  and 

their ratio is expected to be constant and equal to 2/(2𝑐𝑐𝑚𝑚 − 1) for a given mixture 

composition. The main objectives of this paper are:  

• To discuss whether eq. 1 remains identically valid for a general situation and to determine 

its range of validity based on the simulations presented in this work 

• To discuss challenges which are encountered during experimental assessment of eq. 1 

 

In the present paper, the validity of eqs. 1, 3 and 4 is assessed based on Direct Numerical 

Simulation (DNS) data for turbulent premixed Bunsen flames within the flamelet regime of 

combustion for different values of pressure, Damköhler, Karlovitz and turbulent Reynolds 

numbers. The Bunsen flame configuration can be realised in laboratory-scale experiments [8, 

9,16-21] and is computationally affordable, despite being more computationally demanding 

than conventional decaying turbulence DNS in a box. 
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2. NUMERICAL IMPLEMENTATION 

For the purpose of this analysis, nine turbulent premixed Bunsen burner flames have been 

considered and these flames are taken from a database consisting of 15 different cases [25]. 

The chemical mechanism is simplified here using a single step irreversible reaction for the sake 

of computational economy in the interests of a detailed parametric analysis. It has been 

demonstrated in the past that flame propagation statistics obtained from detailed chemistry 

simulations [26,27] can be well captured using simple chemistry [28,29]. Furthermore, models 

which have been proposed based on the analysis of simple chemistry DNS of turbulent 

premixed flames with simplified transport have the potential to be valid even in the presence 

of detailed chemistry and transport (subject to minor adjustments) [30,31]. In summary, the 

assumption of a single step global reaction rate does not affect the qualitative nature of the 

results presented in this work because the essential physics affecting the local strain and 

curvature dependence of displacement speed can be captured using simple chemistry [28, 29].  

 

The simulation parameters are listed in Table 1. These include the Reynolds number 𝑅𝑅𝑅𝑅 =

𝑈𝑈𝐵𝐵𝐷𝐷/𝜈𝜈𝑢𝑢 based on the bulk inlet velocity 𝑈𝑈𝐵𝐵, nozzle diameter 𝐷𝐷, and the unburned-gas 

kinematic viscosity 𝜈𝜈𝑢𝑢; the turbulent Reynolds number 𝑅𝑅𝑅𝑅𝑡𝑡 = 𝑢𝑢′𝑙𝑙/𝜈𝜈𝑢𝑢; the normalised turbulent 

root-mean-square (rms) velocity fluctuation 𝑢𝑢′/𝑆𝑆𝐿𝐿; normalized mean inlet velocity 𝑈𝑈𝐵𝐵/𝑆𝑆𝐿𝐿; 

integral length scale to thermal flame thickness ratio 𝑙𝑙/𝛿𝛿𝑡𝑡ℎ; integral length scale to Bunsen 

burner nozzle diameter ratio 𝑙𝑙/𝐷𝐷; Damköhler number 𝐷𝐷𝐷𝐷 = 𝑙𝑙𝑆𝑆𝐿𝐿/𝛿𝛿𝑡𝑡ℎ𝑢𝑢′; and Karlovitz number 

𝐾𝐾𝐷𝐷 = (𝑢𝑢′/𝑆𝑆𝐿𝐿)3/2(𝑙𝑙/𝛿𝛿𝑡𝑡ℎ)−1/2. Here 𝛿𝛿𝑡𝑡ℎ = (𝑇𝑇𝑎𝑎𝑑𝑑 − 𝑇𝑇0)/ max|∇𝑇𝑇|𝐿𝐿  is the thermal flame 

thickness with the adiabatic flame temperature 𝑇𝑇𝑎𝑎𝑑𝑑 and the reactant temperature 𝑇𝑇0. Note that 

the subscript ‘L’ refers to the unstrained laminar flame quantities. The heat release parameter 

𝜏𝜏 = (𝑇𝑇𝑎𝑎𝑑𝑑 − 𝑇𝑇0)/𝑇𝑇0 and the Zel’dovich number 𝛽𝛽 = 𝑇𝑇𝑎𝑎𝑐𝑐(𝑇𝑇𝑎𝑎𝑑𝑑 − 𝑇𝑇0)/𝑇𝑇𝑎𝑎𝑑𝑑2  are taken to be 4.5 and 

6.0 respectively, and 𝑇𝑇𝑎𝑎𝑐𝑐 is the activation temperature. Standard values of Prandtl number 
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(𝑃𝑃𝑃𝑃 = 0.7) and ratio of specific heats (𝛾𝛾𝑔𝑔 = 1.4) have been used. All non-dimensional numbers 

are quoted as the inlet values.  

 

The high pressure Bunsen flames have been simulated by adjusting the viscosity and the 

Arrhenius parameters in such a way that 𝑆𝑆𝐿𝐿 ∼ 𝑃𝑃−0.5, and 𝜈𝜈𝑢𝑢 ∼ 𝑃𝑃−1 are satisfied, similar to the 

behaviour of methane-air flames [32]. As a result of this, the Zeldovich flame thickness 

𝛿𝛿𝑍𝑍 scales as 𝛿𝛿𝑍𝑍~𝑃𝑃−0.5 (where 𝛿𝛿𝑍𝑍 = 𝛼𝛼𝑇𝑇0/𝑆𝑆𝐿𝐿 with 𝛼𝛼𝑇𝑇0 being the thermal diffusivity in the 

unburned gas) and the numerical resolution must be adjusted accordingly. The dimensions of 

the simulation domain are kept unchanged for all cases considered here.  The cubic domain is 

of size  50 𝛿𝛿𝑡𝑡ℎ × 50 𝛿𝛿𝑡𝑡ℎ × 50 𝛿𝛿𝑡𝑡ℎ for the 𝑃𝑃 = 𝑃𝑃0 flame,  112 𝛿𝛿𝑡𝑡ℎ × 112 𝛿𝛿𝑡𝑡ℎ × 112 𝛿𝛿𝑡𝑡ℎ for 𝑃𝑃 =

5𝑃𝑃0 and 159 𝛿𝛿𝑡𝑡ℎ × 159 𝛿𝛿𝑡𝑡ℎ × 159 𝛿𝛿𝑡𝑡ℎ for 𝑃𝑃 = 10𝑃𝑃0. The corresponding uniform Cartesian 

meshes contain 250×250×250, 560×560×560 and 795×795×795 points. The burner nozzle 

diameter corresponds roughly to half the domain length. It can be seen from Table 1 that cases 

A-C have different values of 𝑅𝑅𝑅𝑅𝐷𝐷 and 𝑅𝑅𝑅𝑅𝑡𝑡 in spite of having same set of values of 𝑢𝑢′/𝑆𝑆𝐿𝐿, 𝑈𝑈𝐵𝐵/𝑆𝑆𝐿𝐿, 

and 𝑙𝑙/𝐷𝐷 because of the change in kinematic viscosity with pressure. The low pressure cases D 

and E have the same value of 𝑅𝑅𝑅𝑅𝑡𝑡 as that of the high pressure case C and in order to match the 

turbulent Reynolds number the value of 𝑢𝑢′/𝑆𝑆𝐿𝐿 is modified for case D, whereas 𝑙𝑙/𝐷𝐷 is modified 

in case E. Cases C and E have same values of 𝑢𝑢′/𝑆𝑆𝐿𝐿 and 𝑙𝑙/𝛿𝛿𝑡𝑡ℎ, and thus they occupy the same 

location on the regime diagram. The high pressure cases E-I are chosen in such a manner that 

the effects of 𝑢𝑢′/𝑆𝑆𝐿𝐿 and 𝑙𝑙/𝐷𝐷 variations can be analysed. The relative positions of these cases 

on the combustion regime diagram by Peters [33] are shown in Fig. 1. Cases A, B, C, E, H and 

I fall on the boundary of the wrinkled flamelets and corrugated flamelets regimes, whereas case 

F represents the corrugated flamelets regime and cases D and G represent the thin reaction 

zones regime.  
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Table 1 

The turbulence inlet flow parameters for the considered cases  

Case 𝑷𝑷/𝑷𝑷𝟎𝟎 𝑹𝑹𝒆𝒆𝑫𝑫 𝑹𝑹𝒆𝒆𝒕𝒕 𝑼𝑼𝑩𝑩/𝑺𝑺𝑳𝑳 𝒖𝒖𝒊𝒊𝒊𝒊𝒊𝒊𝒆𝒆𝒕𝒕′ /𝑺𝑺𝑳𝑳 𝒊𝒊/𝑫𝑫 𝒊𝒊/𝜹𝜹𝒕𝒕𝒕𝒕 𝑲𝑲𝑲𝑲 𝑫𝑫𝑲𝑲 

A 1.0 399 13.30 6.0 1.0 1/5 5.20 0.45 5.00 
B 5.0 892 29.26 6.0 1.0 1/5 11.40 0.30 11.40 
C 10.0 1262 41.22 6.0 1.0 1/5 16.13 0.25 16.13 
D 1.0 399 41.22 6.0 3.1 1/5 5.20 2.40 1.670 
E 1.0 399 41.22 6.0 1.0 3/5 16.13 0.25 16.13 
F 10.0 1262 82.45 6.0 2.0 1/5 16.13 0.7 8.00 
G 10.0 1262 164.9 6.0 4.0 1/5 16.13 2.00 4.00 
H 10.0 1262 10.31 6.0 1.0 1/20 3.87 0.51 3.87 
I 10.0 1262 164.9 6.0 1.0 4/5 61.90 0.13 61.90 

 

The simulations have been conducted using the compressible 3D DNS code SENGA [34] in 

which the governing equations are solved in non-dimensional form. The spatial differentiation 

for internal grid points is carried out using a 10th order central differencing scheme which 

gradually reduces to a one-sided 2nd order scheme at non-periodic boundaries. Time-

advancement is carried out using a 3rd order explicit low storage Runge-Kutta scheme. Inflow 

data has been generated using a modified version of the methodology proposed by Klein et al. 

[35] where the Gaussian filter in the axial direction has been replaced by an autoregressive 

AR1 process in order to avoid excessive filter length in this direction caused by the small time 

step in the compressible flow solver. The reacting flow field is initialised using an unstrained 

premixed laminar flame solution which is specified as a function of radius from the nozzle 

centre resulting in a hemispherical scalar field located at the inflow. The mean velocity profile 

after the nozzle exit has been approximated by a hyperbolic-tangent like distribution. The other 

boundaries are taken to be partially non-reflecting and are specified using the Navier-Stokes 

Characteristic Boundary Conditions (NSCBC) formulation [36]. The simulation time, when 

statistics are first considered, is chosen to be larger than the maximum of two flow-through and 

two eddy-turnover times.  
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Fig. 1: The inlet conditions of Bunsen burner flames on the combustion regime diagram. 

 

3. RESULTS & DISCUSSION 

Description of turbulent reacting flow field 

Instantaneous views of reaction progress variable 𝑐𝑐 isosurfaces for cases A, C and E, and the 

corresponding distributions of normalised velocity magnitude |𝑢𝑢�⃗ | 𝑆𝑆⁄ 𝐿𝐿 at the central mid-plane 

are shown in Fig. 2. It can be seen that the flame becomes increasingly wrinkled from case A 

to case C (case B is not shown for brevity) with an increase in both Reynolds number and 

pressure. Moreover, the nature of flame wrinkling in case C is different from case E in spite of 

both cases C and E sharing the same location on the regime diagram. It has been discussed 

elsewhere [25] that an increase in pressure reduces the normalised cut-off length for Darrieus-

Landau (DL) instability given by 𝜆𝜆𝑐𝑐/𝐷𝐷 (𝜆𝜆𝑐𝑐/𝛿𝛿𝑍𝑍). Thus the effects of DL instability are likely to 

be prominent for flames at elevated pressures (e.g. case C) but these effects are absent in flames 

at low pressures (e.g. cases A and E). The distribution of |𝑢𝑢�⃗ | 𝑆𝑆⁄ 𝐿𝐿 shows high values at the flame 

tip. This is due to the focussing of heat at the flame tip giving rise to significant flow 

acceleration, and a qualitatively similar behaviour has been observed in other cases.   
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Fig. 2: Instantaneous view of (a) reaction progress variable 𝒄𝒄 (1st column) and (b) 
normalised velocity magnitude |𝒖𝒖��⃗ | 𝑺𝑺⁄ 𝑳𝑳 (2nd column) in the central mid-plane for cases A, 
C and E. 
 

Overall burning rate and flame surface area and their inter-relations 

Figure 3 shows the mean values of normalised burning rate Ω = ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 /𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2 (open 

circles) and normalised flame surface area 𝑆𝑆 = ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 /𝐷𝐷2  (star symbols) based on 

averaging different realisations in time for all cases considered here. Here, Ω is evaluated using 

∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 /𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2 in order to avoid any uncertainty in the evaluation of projected flame surface 

area.  According to eq. 1, the quantities Ω and 𝑆𝑆 are expected to be identical to each other but 

Fig. 3 shows that these quantities remain close but not identical to each other. This can further 

be verified from Fig. 4 where the values of 〈Ω〉/〈𝑆𝑆〉  are shown (dark blue columns) where 〈… 〉 
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indicates the average over different realisations. The value of 〈Ω〉/〈𝑆𝑆〉 is greater than unity for 

all cases, and the deviation from unity is almost 10% for some cases. The disagreement between 

〈Ω〉 and 〈𝑆𝑆〉 is consistent with previous experimental observations by Gülder [16], in which the 

magnitude of the discrepancy is somewhat larger.   

 
 

Fig. 3: Variations of 〈𝛀𝛀〉, 〈𝑺𝑺〉, 〈𝑺𝑺𝟐𝟐𝑫𝑫〉, 〈𝑵𝑵〉, 〈𝑵𝑵𝟐𝟐𝑫𝑫〉 for cases A-I based on averaging different 

realisations.  

 

For the sake of completeness, it is worth noting that the results presented in this paper do not 

change if the normalised flame surface area 𝑆𝑆 is evaluated based on the fine-grained FSD Σ =

|∇𝑐𝑐|𝛿𝛿(𝑐𝑐 − 𝑐𝑐∗)����������������� [37] using the expression  𝑆𝑆 = ∫ Σ𝑑𝑑𝑑𝑑/𝐷𝐷2
𝑉𝑉 . This has been checked for the 

isosurfaces 𝑐𝑐∗ = 0.5 and 0.8 (not shown here).  Moreover, the maximum difference between 

the flame areas evaluated using  ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉  and by careful, DNS data based, edge detection of 

𝑐𝑐∗ = 0.5 and 0.8 isosurfaces has been found to be within 2-3% for the cases considered here. 

 

Fig. 4: Variations of 〈𝛀𝛀〉/〈𝑺𝑺〉, 𝝅𝝅〈𝛀𝛀〉/𝟒𝟒〈𝑺𝑺𝟐𝟐𝑫𝑫〉 ,〈𝛀𝛀〉/〈𝑵𝑵〉 and 𝝆𝝆𝟎𝟎𝑺𝑺𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎 for cases A-I. 
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It is often difficult to carry out three-dimensional measurements of the scalar gradient 

magnitude, and thus it is worthwhile to consider the implications of two-dimensional 

measurements (e.g. Refs. [1,3,8,9,16-19,21] and references therein). The magnitude of the two-

dimensional projection of the actual gradient of reaction progress variable is evaluated here 

using the instantaneous radial and axial gradients of 𝑐𝑐. The mean values of 𝑆𝑆2𝐷𝐷 =

∫ |∇𝑐𝑐|2𝐷𝐷𝑑𝑑𝑑𝑑𝑉𝑉 /𝐷𝐷2 for all cases are shown in Fig. 3 (cross symbols), where the subscript ‘2D’ 

denotes quantities evaluated using 2D gradients. However, the absence of the gradient in one 

direction reduces the magnitude of 𝑆𝑆2𝐷𝐷 in comparison to 𝑆𝑆. Thus, 〈Ω〉/〈𝑆𝑆2𝐷𝐷〉 takes a value which 

is significantly greater than unity (not shown).  It has been shown elsewhere in previous semi-

analytical and DNS studies [38,39] that the ratio of actual generalised FSD to its 2D counterpart 

is given by 4/𝜋𝜋 and it can be seen  from Fig. 4 that 𝜋𝜋〈Ω〉/4〈𝑆𝑆2𝐷𝐷〉 (pale  blue columns) is indeed 

close to 〈Ω〉/〈𝑆𝑆〉 (dark blue columns) although a notable underprediction is visible especially 

for cases C, F and I. It is worth noting that the correction factor 4/𝜋𝜋 was derived based on the 

assumption of isotropy of the angle between the local flame normal and the normal vector of 

the measurement plane [34,35], but this may not be valid in the flames where the effects of DL 

instability are strong [25]. Thus, 𝜋𝜋〈Ω〉/4〈𝑆𝑆2𝐷𝐷〉 underpredicts 〈Ω〉/〈𝑆𝑆〉 in cases C, F and I but 

this is not prominent for cases G and H because of high turbulence intensity and small length 

scale, respectively. The experimental analysis by Zhang et al. [21] indicated a considerable 

variation of the correction factor between 2D and 3D measurements of FSD, under the 

assumption that Damköhler’s first hypothesis is valid.   This assumption may not be strictly 

true and moreover, the uncertainty associated with experimental determination of flame area 

based on 2D edge detection [20] may act to increase the observed variation still further. 
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Finally, it is shown in Fig. 3 that the quantity 𝑁𝑁 = 2∫ 𝜌𝜌𝑁𝑁𝑐𝑐𝑑𝑑𝑑𝑑𝑉𝑉 [(2𝑐𝑐𝑚𝑚 − 1)𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2]� =

2∫ 𝜌𝜌𝐷𝐷𝑐𝑐|∇𝑐𝑐|2𝑑𝑑𝑑𝑑𝑉𝑉 [(2𝑐𝑐𝑚𝑚 − 1)𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2]�  (right-pointing triangles) satisfactorily captures the 

behaviour of Ω = ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 /𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2 (open circles) irrespective of the values of 𝑃𝑃, 𝑢𝑢′/𝑆𝑆𝐿𝐿 and 

𝑙𝑙/𝛿𝛿𝑡𝑡ℎ.  The ratio  〈Ω〉/〈𝑁𝑁〉 is shown in Fig 4 and is seen to be close to unity for all cases.  By 

contrast,  𝑁𝑁2𝐷𝐷 = 2∫ 𝜌𝜌𝐷𝐷𝑐𝑐|∇𝑐𝑐|2𝐷𝐷2 𝑑𝑑𝑑𝑑𝑉𝑉 [(2𝑐𝑐𝑚𝑚 − 1)𝜌𝜌0𝑆𝑆𝐿𝐿𝐷𝐷2]�  (Fig 3, left-pointing triangles) 

significantly underpredicts Ω (open circles).  The results for reaction rate closure based on 

scalar dissipation rate (SDR) indicate that according to �̇�𝑤� = (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔 = 2�̅�𝜌𝑁𝑁𝑐𝑐� (2𝑐𝑐m − 1)⁄   

the volume-integrated �̇�𝑤�   remains directly proportional to the volume-integrated value of �̅�𝜌𝑁𝑁𝑐𝑐�, 

whereas volume-integrated �̇�𝑤�  does not remain strictly proportional to volume-integrated Σ𝑔𝑔𝑔𝑔𝑔𝑔 

because (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 does not necessarily remain constant.  Indeed the local and area-weighted 

stretch rate dependence of displacement speed needs to be accounted for in order to interlink 

the volume-integrals of Σ𝑔𝑔𝑔𝑔𝑔𝑔 and �̇�𝑤� . This will be explained in the next section. 

 

Physical explanations for the observed behaviour 

The displacement speed in turbulent premixed flames is affected by local strain rate and 

curvature [26-29] and thus (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 should not be treated as a constant quantity. This can be 

substantiated from Fig. 5 where the variations of the mean values of 𝜌𝜌𝑆𝑆𝑑𝑑|∇𝑐𝑐| and 𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐| 

conditional upon 𝑐𝑐 are shown for cases A and C together with the corresponding standard 

deviations. Figure 5 shows that the mean values of 𝜌𝜌𝑆𝑆𝑑𝑑|∇𝑐𝑐| and 𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐| are not equal to each 

other and the extent of agreement between 𝑆𝑆𝑑𝑑|∇𝑐𝑐| and 𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐| changes within the flame 

brush. Furthermore, Fig. 5 shows that the standard deviations of 𝜌𝜌𝑆𝑆𝑑𝑑|∇𝑐𝑐| and 𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐|  are 

significantly different and hence the local behaviours of these quantities are expected to be 

considerably different. Fig. 5 is based on the samples taken from the whole flame but the results 

look qualitatively similar if different axial locations are considered. 
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Fig. 5: 𝝆𝝆𝑺𝑺𝒎𝒎|𝛁𝛁𝒄𝒄| × 𝜹𝜹𝒕𝒕𝒕𝒕/𝝆𝝆𝟎𝟎𝑺𝑺𝑳𝑳  and  𝝆𝝆𝟎𝟎𝑺𝑺𝑳𝑳|𝛁𝛁𝒄𝒄| × 𝜹𝜹𝒕𝒕𝒕𝒕/𝝆𝝆𝟎𝟎𝑺𝑺𝑳𝑳 conditional upon 𝒄𝒄 for cases A 

and C. The bars indicate the standard deviation of the respective quantities. 

 

Hence the volume integral ∫ (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉  leads to 𝜌𝜌0𝑆𝑆𝐿𝐿′ ∫ Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜌𝜌0𝑆𝑆𝐿𝐿′𝐴𝐴𝑇𝑇 where 𝑆𝑆𝐿𝐿′   is 

a modified flame speed given by: 

                                           𝑆𝑆𝐿𝐿′ = ∫ (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠Σ𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑉𝑉     ∫ 𝜌𝜌0Σgen𝑑𝑑𝑑𝑑𝑉𝑉�                                     (5i) 

This expression implicitly accounts for the volume-integrated FSD-weighted stretch rate 

dependence of the local displacement speed. Moreover, in the context of the reaction rate 

closure model �̇�𝑤� = 𝐼𝐼0𝜌𝜌0𝑆𝑆𝐿𝐿Σ𝑔𝑔𝑔𝑔𝑔𝑔 the modified flame speed  𝑆𝑆𝐿𝐿′  is given by 

                                            𝑆𝑆𝐿𝐿′ = 𝑆𝑆𝐿𝐿 ∫ 𝐼𝐼0Σgen𝑑𝑑𝑑𝑑𝑉𝑉 ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉�                                              (5ii) 

which suggests that 𝑆𝑆𝐿𝐿′  becomes identical to 𝑆𝑆𝐿𝐿 when ∫ 𝐼𝐼0Σgen𝑑𝑑𝑑𝑑𝑉𝑉 ≈ ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉 .  

 

It is worth noting a flame speed similar to 𝑆𝑆𝐿𝐿′  was used by Chakraborty and Cant [40] for LES 

modelling of FSD. Furthermore, this is consistent with recent findings by Sabelnikov et al. [41] 

which suggest that the assumption (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 = 𝜌𝜌0𝑆𝑆𝐿𝐿 yields incorrect behaviour of FSD. Thus, it 

is more appropriate to express turbulent flame speed as 𝑆𝑆𝑇𝑇 = 𝑆𝑆𝐿𝐿′𝐴𝐴𝑇𝑇/𝐴𝐴𝐿𝐿 instead of using eq. 1. 
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However, it has been shown in several previous DNS studies involving statistically planar 

flames that ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉  remains almost equal to 𝜌𝜌0𝑆𝑆𝐿𝐿 ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  even for large values of 𝑢𝑢′ 𝑆𝑆𝐿𝐿⁄  

[42-44].  It is worth noting that statistically planar flames also experience stretch under 

turbulent conditions, but the closeness of ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉  and 𝜌𝜌0𝑆𝑆𝐿𝐿 ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  in these cases suggests 

that the stretch rate dependence of 𝐼𝐼0 mostly disappears upon evaluating the integral 

∫ 𝐼𝐼0Σgen𝑑𝑑𝑑𝑑𝑉𝑉 , and hence ∫ 𝐼𝐼0Σgen𝑑𝑑𝑑𝑑𝑉𝑉 ≈ ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉  in planar flames.  However, the inequality 

between Ω and 𝑆𝑆 in turbulent Bunsen burner flames suggests that the assumption 

∫ 𝐼𝐼0Σgen𝑑𝑑𝑑𝑑𝑉𝑉 ≈ ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉  is rendered invalid when the flame has a mean curvature. In fact 

the experimental data of Zhang et al. [21] indicated that 𝐼𝐼0 may show considerable variation 

even though its mean value remains of the order of unity.  The dependence of 𝑆𝑆𝑑𝑑 on flame 

curvature 𝜅𝜅𝑚𝑚 can be modelled according to 𝜌𝜌𝑆𝑆𝑑𝑑 = 𝜌𝜌0(𝑆𝑆𝐿𝐿 − 𝐷𝐷𝑀𝑀 𝜅𝜅𝑚𝑚) where 𝐷𝐷𝑀𝑀 is the Markstein 

diffusivity [45] and 𝜅𝜅𝑚𝑚 = 1/2∇. (−∇𝑐𝑐 |∇𝑐𝑐|⁄ ), defined such that positive curvature is convex 

towards the reactants. Hence it is possible to approximate ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   as ∫ 𝜌𝜌0(𝑆𝑆𝐿𝐿 −𝑉𝑉

𝐷𝐷𝑀𝑀𝜅𝜅𝑚𝑚)|∇𝑐𝑐|𝑑𝑑𝑑𝑑.  The integral ∫ 𝜌𝜌0(𝑆𝑆𝐿𝐿 − 𝐷𝐷𝑀𝑀𝜅𝜅𝑚𝑚)|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  becomes equal to 𝜌𝜌0𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇 for 

statistically-planar unity Lewis number flames when 𝜌𝜌𝑆𝑆𝑑𝑑 = 𝜌𝜌0(𝑆𝑆𝐿𝐿 − 𝐷𝐷𝑀𝑀 𝜅𝜅𝑚𝑚) is used because 

∫ 𝜌𝜌0𝐷𝐷𝑀𝑀 𝜅𝜅𝑚𝑚|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  can be written as: ∫ 𝜌𝜌0𝐷𝐷𝑀𝑀 𝜅𝜅𝑚𝑚|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 ≈ 𝜌𝜌0𝐷𝐷𝑀𝑀〈𝜅𝜅𝑚𝑚〉𝑠𝑠𝐴𝐴𝑇𝑇 (where 〈𝜅𝜅𝑚𝑚〉𝑠𝑠 =

∫  𝜅𝜅𝑚𝑚|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 /∫  |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  is the global surface-weighted curvature) and 𝜌𝜌0𝐷𝐷𝑀𝑀〈𝜅𝜅𝑚𝑚〉𝑠𝑠𝐴𝐴𝑇𝑇 

disappears because of the vanishingly small values of 〈𝜅𝜅𝑚𝑚〉𝑠𝑠 resulting from the weak correlation 

between |∇𝑐𝑐|  and 𝜅𝜅𝑚𝑚  [28,29]. However, ∫ 𝜌𝜌0𝐷𝐷𝑀𝑀 𝜅𝜅𝑚𝑚|∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉   does not vanish for flames with 

a non-zero mean curvature. Although mean curvature is not huge in comparison to curvature 

fluctuations, a cylindrical Bunsen flame must have a notable negative mean curvature because 

of its underlying geometry. The negative mean curvature leads to ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉 > 𝜌𝜌0𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇, which 

is reflected in 〈Ω〉 〈𝑆𝑆〉⁄ > 1 in Fig. 4. Figure 4 also shows that the expression 𝜌𝜌0𝑆𝑆𝐿𝐿𝑚𝑚𝑚𝑚𝑑𝑑 =
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𝜌𝜌0(𝑆𝑆𝐿𝐿 − 𝐷𝐷𝑀𝑀 〈𝜅𝜅𝑚𝑚〉𝑠𝑠), for the Bunsen flames under consideration, represents a good 

approximation of 〈Ω〉 〈𝑆𝑆〉⁄ . The correlation coefficient between 〈Ω〉 〈𝑆𝑆〉⁄  and 𝜌𝜌0𝑆𝑆𝐿𝐿𝑚𝑚𝑚𝑚𝑑𝑑 has been 

found to be close to unity (i.e. 0.98) for the cases considered here and it is worth noting that 

the correlation coefficient decreases (to 0.84 instead of 0.98) if the laminar burning velocity is 

corrected by stretch instead of curvature. It is worth indicating (not shown) that the results do 

not change greatly if the mean global curvature 〈𝜅𝜅𝑚𝑚〉𝑣𝑣 = ∫  𝜅𝜅𝑚𝑚𝑑𝑑𝑑𝑑𝑉𝑉 /𝑑𝑑 is used instead of 

surface area weighted-global curvature 〈𝜅𝜅𝑚𝑚〉𝑠𝑠 for these cases due to the weak correlation 

between |∇𝑐𝑐| and 𝜅𝜅𝑚𝑚.  

 

A comparison between eqs. 5i and 5ii reveals that 𝐼𝐼0 can be exactly expressed as 𝐼𝐼0 =

(𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 𝜌𝜌0𝑆𝑆𝐿𝐿⁄ = 𝑆𝑆𝐿𝐿′/𝑆𝑆𝐿𝐿 but high-fidelity modelling of (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 remains difficult which in turn 

makes a-priori evaluation of 𝑆𝑆𝐿𝐿′  difficult. Based on this discussion it can be expected that 

curvature stretch effects are more pronounced if the mean curvature is not dominated by 

turbulent curvature fluctuations. It has been shown elsewhere [25] that the width of the 

curvature PDFs scales approximately with the reciprocal of thermal flame thickness 𝛿𝛿𝑡𝑡ℎ which 

in the context of this work scales as 𝛿𝛿𝑡𝑡ℎ~𝑃𝑃−0.5.  This suggests that low pressure flames might 

be more sensitive to mean curvature stretch effects which is consistent with the present 

observations, as shown in Fig. 3. 

 

It is worth noting that eq. 4 is obtained based on the equilibrium between the reaction rate 

contribution (i.e. 2[�̇�𝑤𝑐𝑐���� − �̇�𝑤��̃�𝑐]) and the scalar dissipation rate (i.e. −2�̅�𝜌𝜀𝜀�̃�𝑐 = −2[𝜌𝜌𝐷𝐷𝑐𝑐∇𝑐𝑐.∇𝑐𝑐������������� −

�̅�𝜌𝐷𝐷�𝑐𝑐∇�̃�𝑐.∇�̃�𝑐]) contributions to reaction progress variable variance (i.e. 𝑐𝑐′′2� = 𝑐𝑐2� − �̃�𝑐2) transport 

in the flamelet regime of combustion. It has been shown elsewhere [23] that eq. 4 can be 

derived for 𝐷𝐷𝐷𝐷 ≫ 1 combustion and a scaling analysis was utilised elsewhere [44, 46] to 

demonstrate that this equilibrium is indeed maintained in an order of magnitude sense for 
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flamelet combustion with 𝐷𝐷𝐷𝐷 < 1. More information on the scalar dissipation rate modelling 

can be found in Refs. [10,23,24,44,46,47] and references therein. Thus, eq. 4 does not depend 

on any assumptions involving the evaluation of flame surface area or the choice of flame speed 

and as a result 〈𝑁𝑁〉 satisfactorily predicts 〈Ω〉 for all cases considered here (see Figs. 3 and 4).   

 

4. CONCLUSIONS 

The applicability of Damköhler’s first hypothesis which relates turbulent burning rate (or 

turbulent flame speed) to turbulent flame area has been assessed based on DNS data for 

turbulent Bunsen burner flames. It has been found that the proportionality between turbulent 

burning rate and flame area, expressed respectively as the integrated reaction rate ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   and 

the integrated flame surface density ∫ Σgen𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 , does not hold well for turbulent 

Bunsen flames.  By contrast, several previous analyses using statistically planar flames have 

indicated that ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   and 𝜌𝜌0𝑆𝑆𝐿𝐿 ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉  are in good agreement.  Detailed physical 

explanations have been provided for the observed discrepancy between ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   and 

𝜌𝜌0𝑆𝑆𝐿𝐿 ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 , and it has been shown that the assumption of (𝜌𝜌𝑆𝑆𝑑𝑑)�������𝑠𝑠 = 𝜌𝜌0𝑆𝑆𝐿𝐿 yields inaccurate 

results especially for flames with a non-zero mean curvature.  It has been demonstrated also 

that the evaluation of the two-dimensional reaction progress variable gradient in experimental 

analyses can considerably amplify the discrepancy between ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   and  𝜌𝜌0𝑆𝑆𝐿𝐿 ∫ |∇𝑐𝑐|2𝐷𝐷𝑑𝑑𝑑𝑑𝑉𝑉 .  

It has been found that 2∫ 𝜌𝜌𝑁𝑁𝑐𝑐𝑑𝑑𝑑𝑑𝑉𝑉 [(2𝑐𝑐𝑚𝑚 − 1)]�  satisfactorily captures the behaviour of 

∫ �̇�𝑤�𝑑𝑑𝑑𝑑𝑉𝑉  but that the evaluation of 2∫ 𝜌𝜌𝐷𝐷|∇𝑐𝑐|2𝐷𝐷2 𝑑𝑑𝑑𝑑𝑉𝑉 [(2𝑐𝑐𝑚𝑚 − 1)]�  based on a 2D projection 

of the actual reaction progress variable gradient gives rise to an inaccurate estimation of the 

overall burning rate ∫ �̇�𝑤�𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜌𝜌0𝑆𝑆𝑇𝑇𝐴𝐴𝐿𝐿 and turbulent flame speed 𝑆𝑆𝑇𝑇. This analysis offers a 

derivation of an expression of the Damköhler’s first hypothesis from first principles and 
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suggests replacement of 𝑆𝑆𝐿𝐿 by 𝑆𝑆𝐿𝐿′  , which accounts for volume-integrated, surface area-

weighted stretch effects. Furthermore it enables Damköhler’s first hypothesis to be valid in 

general in the flamelet regime, provided turbulent burning rate and flame area are well 

represented by the integral values of  ∫ �̇�𝑤𝑑𝑑𝑑𝑑𝑉𝑉   and ∫ |∇𝑐𝑐|𝑑𝑑𝑑𝑑𝑉𝑉 . This, together with the fact that 

experimental determination of flame area is mostly based on two dimensional slices, suggests 

that an experimental assessment of Damköhler’s first hypothesis remains a challenging task 

with current state of the art measurement techniques.  
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FIGURE CAPTIONS 

Fig. 1: The inlet conditions of Bunsen burner flames on the combustion regime diagram. 

Fig. 2: Instantaneous view of (a) reaction progress variable 𝑐𝑐 (1st column) and (b) normalised 

velocity magnitude |𝑢𝑢�⃗ | 𝑆𝑆⁄ 𝐿𝐿 (2nd column) in the central mid-plane for cases A, C and E. 

Fig. 3: Variations of 〈Ω〉, 〈𝑆𝑆〉, 〈𝑆𝑆2𝐷𝐷〉, 〈𝑁𝑁〉, 〈𝑁𝑁2𝐷𝐷〉 for cases A-I based on averaging different 

realisations.  

Fig. 4: Variations of 〈Ω〉/〈𝑆𝑆〉, 𝜋𝜋〈Ω〉/4〈𝑆𝑆2𝐷𝐷〉 ,〈Ω〉/〈𝑁𝑁〉 and 𝜌𝜌0𝑆𝑆𝐿𝐿𝑚𝑚𝑚𝑚𝑑𝑑 for cases A-I. 

Fig. 5: 𝜌𝜌𝑆𝑆𝑑𝑑|∇𝑐𝑐| × 𝛿𝛿𝑡𝑡ℎ/𝜌𝜌0𝑆𝑆𝐿𝐿  and  𝜌𝜌0𝑆𝑆𝐿𝐿|∇𝑐𝑐| × 𝛿𝛿𝑡𝑡ℎ/𝜌𝜌0𝑆𝑆𝐿𝐿 conditional upon 𝑐𝑐 for cases A and C. 

The bars indicate the standard deviation of the respective quantities. 

 

 

 

 


