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Abstract. Given graphs G and H and a positive integer q, say that G is q-Ramsey for H,
denoted G Ñ pHqq, if every q-colouring of the edges of G contains a monochromatic copy of H.
The size-Ramsey number r̂pHq of a graph H is defined to be r̂pHq “ mint|EpGq| : G Ñ pHq2u.
Answering a question of Conlon, we prove that, for every fixed k, we have r̂pP k

n q “ Opnq, where P k
n

is the kth power of the n-vertex path Pn (i.e., the graph with vertex set V pPnq and all edges
tu, vu such that the distance between u and v in Pn is at most k). Our proof is probabilistic, but
can also be made constructive.

§1. Introduction4

Given graphs G and H and a positive integer q, say that G is q-Ramsey for H, denoted5

GÑ pHqq, if every q-colouring of the edges of G contains a monochromatic copy of H. When6

q “ 2, we simply write GÑ H. In its simplest form, the classical theorem of Ramsey [24] states7

that for any H there exists an integer N such that KN Ñ H. The Ramsey number rpHq of a8

graph H is defined to be the smallest such N . Ramsey problems have been well studied and many9

beautiful techniques have been developed to estimate Ramsey numbers. For a detailed summary10

of developments in Ramsey theory, see the excellent survey of Conlon, Fox and Sudakov [7].11

A number of variants of the classical Ramsey problem are also under active study. In particular,12

Erdős, Faudree, Rousseau and Schelp [12] proposed the problem of determining the smallest13

number of edges in a graph G such that GÑ H. Define the size-Ramsey number r̂pHq of a graph14

H to be15

r̂pHq :“ mint|EpGq| : GÑ Hu.

In this paper, we are concerned with finding bounds on r̂pHq in some specific cases.16

For any graph H it is not difficult to see that r̂pHq ď
`

rpHq
2
˘

. A result due to Chvátal (see,17

e.g., [12]) shows that in fact this bound is tight for complete graphs. For the n-vertex path Pn,18

Erdős [11] asked the following question.19

Date: 2018/10/23, 7:18pm.
The third author was partially supported by FAPESP (Proc. 2013/03447-6) and by CNPq (Proc. 459335/2014-6,

310974/2013-5). The fifth author was supported by FAPESP (Proc. 2013/11431-2, Proc. 2013/03447-6 and
Proc. 2018/04876-1) and partially by CNPq (Proc. 459335/2014-6). This research was supported in part by CAPES
(Finance Code 001). The collaboration of part of the authors was supported by a CAPES/DAAD PROBRAL grant
(Proc. 430/15).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162919736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 CLEMENS, JENSSEN, KOHAYAKAWA, MORRISON, MOTA, REDING, AND ROBERTS

Question 1.1. Is it true that20

lim
nÑ8

r̂pPnq

n
“ 8 and lim

nÑ8

r̂pPnq

n2 “ 0?

Answering Erdős’ question, Beck [3] proved that the size-Ramsey number of paths is linear,21

i.e., r̂pPnq “ Opnq, by means of a probabilistic construction. Alon and Chung [2] provided an22

explicit construction of a graph G with Opnq edges such that G Ñ Pn. Recently, Dudek and23

Prałat [10] gave a simple alternative proof for this result (see also [21]). More generally, Friedman24

and Pippenger [14] proved that the size-Ramsey number of bounded-degree trees is linear (see25

also [8, 15,17]) and it is shown in [16] that cycles also have linear size-Ramsey numbers.26

A question posed by Beck [4] asked whether r̂pGq is linear for all graphs G with bounded27

maximum degree. This was negatively answered by Rödl and Szemerédi, who showed that there28

exists an n-vertex graph H and maximum degree 3 such that r̂pHq “ Ωpn log1{60 nq. The current29

best upper bound for bounded-degree graphs is proved in [19], where it is shown that for every ∆30

there is a constant c such that for any graph H with n vertices and maximum degree ∆:31

r̂pHq ď cn2´1{∆ log1{∆ n.

For further results on size-Ramsey numbers the reader is referred to [5, 18,25].32

Given an n-vertex graph H and an integer k ě 2, the kth power Hk of H is the graph with33

vertex set V pHq and all edges tu, vu such that the distance between u and v in H is at most k.34

Answering a question of Conlon [6] we prove that all powers of paths have linear size-Ramsey35

numbers. The following theorem is our main result.36

Theorem 1.2. For any integer k ě 2,37

r̂pP k
n q “ Opnq. (1.3)

Since Ck
n Ď P 2k

n , the next corollary follows directly from Theorem 1.2.38

Corollary 1.4. For any integer k ě 2,39

r̂pCk
nq “ Opnq. (1.5)

Throughout the paper we use big O notation with respect to n Ñ 8, where the implicit40

constants may depend on other parameters. For a path P , we write |P | for the number of vertices41

in P . For simplicity, we omit floor and ceiling signs when they are not essential.42

The paper is structured as follows. In Section 2 we introduce some preliminary definitions and43

give an outline of the proof. The proof of Theorem 1.2 is given in Section 3. In Section 4, we44

mention some related open problems.45

§2. Outline of the proof46

To prove Theorem 1.2, we will show that there exists a graph G with Opnq edges such47

that GÑ P k
n .48
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To construct G we begin by taking a pseudo-random graph H with bounded degree. The49

existence of such an H will be proved in Lemma 3.1. Given Hk, we then take a complete blow-up,50

defined as follows.51

Definition 2.1. Given a graph H and a positive integer t, the complete-t-blow-up of H, denoted52

Ht is the graph obtained by replacing each vertex v of H by a complete graph with rpKtq vertices,53

the cluster Cpvq, and by adding, for every tu, vu P EpHq, every edge between Cpuq and Cpvq.54

Note that we replace each vertex with a clique on rpKtq vertices rather than t vertices as might55

have been expected.56

The following immediate fact states that complete blow-ups of powers of bounded-degree graphs57

have a linear number of edges. This makes them valid candidates for showing r̂pP k
n q “ Opnq.58

Fact 2.2. Let k, t, a and b be positive constants. If H is a graph with |V pHq| “ an and ∆pHq ď b,59

then |EpHk
t q| “ Opnq.60

The heart of the proof is to show that, given any 2-colouring of the edges of Hk
t , we can find a61

monochromatic copy of Pn. To do this we will use the fact that H satisfies a particular property62

(Lemma 3.2). We shall also make use of the following result.63

Theorem 2.3 (Pokrovskiy [23, Theorem 1.7]). Let k ě 1. Suppose that the edges of Kn are64

coloured with red and blue. Then Kn can be covered by k vertex-disjoint blue paths and a65

vertex-disjoint red balanced complete pk ` 1q-partite graph.66

We remark that we do not need the full strength of this result, in the sense that we do not67

need the complete pk ` 1q-partite graph to be balanced; it suffices for us to know that the vertex68

classes are of comparable cardinality. Such a result can be derived easily by iterating Lemma 1.569

in [23], for which Pokrovskiy gives a short and elegant proof (see also [22, Lemma 1.10]).70

We shall also use the classical Kővári–T. Sós–Turán theorem [20], in the following simple form.71

Theorem 2.4. Let G be a balanced bipartite graph with t vertices in each vertex class. If G72

contains no Ks,s, then G has at most 4t2´1{s edges.73

Let us now give a brief outline of how we find our monochromatic copy of P k
n in a 2-edge74

coloured Hk
t . Suppose the edges of Hk

t have been coloured red and blue by an arbitrary colouring χ.75

Recall that Hk
t is obtained by blowing up Hk; in particular, the vertices v of Hk become large76

complete graphs Cpvq in Hk
t . By the choice of parameters, Ramsey’s theorem tells us that each77

such Cpvq contains a monochromatic copy Bpvq of Kt. We may assume without loss of generality78

that at least half of the Bpvq are blue.79

Let F be the subgraph of H induced by the vertices v such that Bpvq is blue. We shall define80

an auxiliary edge-colouring χ1 of F k. By using Theorem 2.3 we shall be able to find either (i) a81

blue Pn in F k under χ1 or (ii) a Pn in F (not in F k) with certain additional properties. The82

path in (ii) will be found applying Lemma 3.2 with the sets Ai being the vertex classes of a83
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red complete pk ` 1q-partite subgraph of F k. This red complete pk ` 1q-partite subgraph of F k84

will be found using Theorem 2.3, applied to a suitable red/blue coloured complete graph (we85

complete F k with its auxiliary colouring χ1 to a red/blue coloured complete graph by considering86

non-edges of F k red).87

In case (i), where we find a blue Pn in F k under the colouring χ1, we shall be able to find a88

blue P k
n in Hk

t . In case (ii), the properties of the path Pn found in F will ensure the existence89

of a red P k
n in F k. It will then be easy to find a red P k

n in F k
t Ď Hk

t . The idea of defining an90

auxiliary graph on monochromatic cliques as above was used in [1].91

§3. Proof of Theorem 1.292

Our first lemma guarantees the existence of bounded-degree graphs with the pseudo-randomness93

property we require.94

Lemma 3.1. For every positive constants ε and a, there is a constant b such that, for any large95

enough n, there is a graph H with vpHq “ an such that:96

(1) For every pair of disjoint sets S, T Ď V pHq with |S|, |T | ě εn, we have |EHpS, T q| ą 0.97

(2) ∆pHq ď b.98

Proof. Fix positive constants ε and a. Let c “ 4a{ε2 and b “ 4ac and consider a sufficiently99

large n. Let G “ Gp2an, pq be the binomial random graph with p “ c{n. By Chernoff’s inequality,100

with high probability we have |EpGq| ă p4a2cqn. Moreover, with high probability G satisfies (1)101

(with H “ G) by the following reason: Let XG be the number of pairs of disjoint subsets of V pGq102

of size εn with no edges between them. Then, from the choice of c and using Markov’s inequality,103

we have104

PrXG ě 1s ď ErXGs ď

ˆ

2an
εn

˙2
´

1´ c

n

¯pεnq2

ă 24an ¨ e´cε2n “ op1q.

Thus, there is a graph G with |EpGq| ă p4a2cqn and XG “ 0.105

Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum degree106

until exactly an vertices remain. Then ∆pHq ď b, as otherwise, from the choice of b we would107

have deleted more than b ¨ an ą |EpGq| edges from G during the iteration, which contradicts108

property (1). Moreover, as H is an induced subgraph of G, (1) is maintained. This completes the109

proof of the lemma. �110

We now show that any graph satisfying the hypothesis of Lemma 3.1 and property (1) also111

satisfies an additional property.112

Lemma 3.2. For every integer k ě 1 and every ε ą 0 there exists a0 ą 0 such that the113

following holds for any a ě a0. Let H be a graph with an vertices such that for every pair114

of disjoint sets S, T Ď V pHq with |S|, |T | ě εn we have |EHpS, T q| ą 0. Then, for every115

family A1, . . . , Ak`1 Ď V pHq of pairwise disjoint sets each of size at least εan, there is a path116

Pn “ px1, . . . , xnq in H with xi P Aj for all 1 ď i ď n, where j ” i pmod k ` 1q.117
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Algorithm 1:
Input : a graph H with vpHq “ an satisfying (1) and sets Ai Ď V pHq (1 ď i ď k ` 1)

with Ai XAj “ ∅ for all i ‰ j and |Ai| ě εan for all i.
Output : a path Pn “ px1, . . . , xnq in H with xi P Aj for all i, where j ” i pmod k ` 1q.

1 foreach 1 ď i ď k ` 1 do
2 Ui Ð Ai; Di Ð ∅

3 while |Di| ď |Ai|{2 for all i do
4 pick x1 P U1 and let P “ px1q; r Ð 1; U1 Ð U1 r tx1u

5 while 1 ď |P | ă n do
// P “ px1, . . . , xrq with r ě 1

6 if Du P Ur`1 with txr, uu P EpHq then
7 xr`1 Ð u; Ur`1 Ð Ur`1 r tuu
8 P Ð px1, . . . , xr, xr`1q; r Ð r ` 1
9 else

10 Dr Ð Dr Y txru

11 P Ð px1, . . . , xr´1q; r Ð r ´ 1

12 if |P | “ n then
13 return P // path has been found

14 STOP with failure // this will not happen

To prove Lemma 3.2, we analyse a depth first search algorithm, adapting a proof idea in [5,118

Lemma 4.4]. More specifically, we run an algorithm (stated formally as Algorithm 1). Our119

algorithm receives as input a graph H with vpHq “ an satisfying property (1), and a family of120

pairwise disjoint sets A1, . . . , Ak`1 Ď V pHq with |Ai| ě εan for all i. The output of A is a path121

Pn “ px1, . . . , xnq in H with xi P Aj for all i, where j ” i pmod k ` 1q.122

As it runs, the algorithm builds a path P “ px1, . . . , xrq with xi P Aj for all i and j with j ” i123

pmod k` 1q. Furthermore, it maintains sets Uj and Dj Ď Aj for all j, with the property that Uj ,124

Dj , and V pP q XAj form a partition of Aj for every j. The cardinality of the sets Uj decrease as125

the algorithm runs, while the Dj increase. As the algorithm runs, we have r “ |P | ă n and it126

searches for an edge txr, uu P EpHq where u belongs to the set Ur`1 of unused vertices in Ar`1.127

If such a vertex u P Ur`1 is found, then P is made one vertex longer by adding u to it. If there is128

no such vertex u, then xr is declared a dead end and it is put into Dr. Moreover, the path P is129

shortened by one vertex; it becomes P “ px1, . . . , xr´1q. Our algorithm iterates this procedure.130

If we find a path P with n vertices this way, then we are done.131

We now analyse Algorithm 1.132
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Proof of Lemma 3.2. We will prove that Algorithm 1 returns a path P on line 13 as desired,133

instead of terminating with failure on line 14.134

Fix an integer k ě 1 and ε ą 0. Let135

a0 “ 2` 4
εpk ` 1q , (3.3)

fix a ě a0 and let n be sufficiently large. Let H be a graph with an vertices satisfying property (1),136

i.e., for every pair of disjoint sets S, T Ď V pHq with |S|, |T | ě εn we have |EHpS, T q| ą 0. Let137

A1, . . . , Ak`1 Ď V pHq be a family of pairwise disjoint sets each of size at least εan.138

First recall that Ui, Di, and V pP q XAi form a partition of Ai for every i. Since the path P is139

always empty on line 4, at this point we have |U1| ě |A1| ´ |D1| ě |A1|{2 ą 0. Then, line 4 is140

always executed successfully.141

Suppose now that A stops with failure on line 14. Then, for some i, say i “ r, the set Di “ Dr142

became larger than |Ar|{2 ě εan{2 ě εn. Furthermore, we have |P | ă n and |Dr`1| ď |Ar`1|{2143

(indices modulo k ` 1) and hence,144

|Ur`1| ě |Ar`1| ´ |Dr`1| ´ |V pP q XAr`1| ě
1
2 |Ar`1| ´

R

n

k ` 1

V

ě
1
2εan´

2n
k ` 1 ą εn.

Note that this is the only place where the exact value of a0 is used. Applying property (1)145

to the pair pDr, Ur`1q, we see that there is an edge tx, uu P EpHq with x P Dr and u P Ur`1.146

Consider the moment in which x was put into Dr. This happened on line 10, when P had x as147

its foremost vertex and A was trying to extend P further into Ur`1. At this point, because of148

the edge tx, uu P EpHq, we must have had u R Ur`1 (see line 6). Since the set Ur`1 decreases149

as A runs, this is a contradiction and hence A does not terminate on line 14.150

Since
ř

1ďiďk`1
`

|Di| ´ |Ui|
˘

increases as Algorithm 1 runs, we know the algorithm terminates.151

Therefore, we conclude that it returns a suitable path P as claimed. �152

We are now ready to complete the proof of Theorem 1.2.153

Proof of Theorem 1.2. Fix k ě 1 and let ε “ 1{3pk ` 1q. Let a0 be the constant given by an154

application of Lemma 3.2 with parameters k and ε. Set a “ maxt6k, a0u and let b be given by155

Lemma 3.1 for this choice of a. Moreover, let H be a graph with |V pHq| “ an and ∆pHq ď b be156

as in Lemma 3.1. Finally, put t “ p64kq2k and s “ 2k.157

Let Hk
t be a complete-t-blow-up of Hk, as in Definition 2.1, and let χ : EpHk

t q Ñ tred,blueu be158

an edge-colouring of Hk
t . We shall show that Hk

t contains a monochromatic copy of P k
n under χ.159

By the definition of Hk
t , any cluster Cpvq contains a monochromatic copy Bpvq of Kt. Without160

loss of generality, the set W :“ tv P V pHq : Bpvq is blueu has cardinality at least vpHq{2. Let161

F :“ HrW s be the subgraph of H induced by W , and let F 1 be the subgraph of F k
t Ď Hk

t induced162

by
Ť

wPW V pBpwqq.163

Given the above colouring χ, we define a colouring χ1 of F k as follows. An edge tu, vu P EpF kq164

is coloured blue if the bipartite subgraph F 1rV pBpuqq, V pBpvqqs of F 1 naturally induced by the165

sets V pBpuqq and V pBpvqq contains a blue Ks,s. Otherwise tu, vu is coloured red.166
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Claim 3.4. Any 2-colouring of EpF kq has either a blue Pn or a red P k
n .167

Proof. We apply Theorem 2.3 to F k, where if an edge is not present in F k, then we consider it168

to be in the red colour class. If F k contains a blue copy of Pn, then we are done. Hence we may169

assume F k contains a balanced, complete pk ` 1q-partite graph K with parts A1, . . . , Ak`1 on at170

least vpF kq ´ kn ě an{2 ´ kn vertices, with no blue edges between any two parts. As a ě 6k,171

each one of these parts has size at least172

1
k ` 1

ˆ

1
2a´ k

˙

n ě εan. (3.5)

By Lemma 3.2 applied to the collection of sets of vertices A1, . . . , Ak`1 of F Ď H (specifically173

F and not F k), we see that F rV pKqs contains a path with n vertices such that any consecutive174

k ` 1 vertices are in distinct parts of K. Therefore F krV pKqs contains a copy of P k
n in which175

every pair of adjacent vertices are in distinct parts of K. By the definition of K, such a copy is176

red. �177

By Claim 3.4, F k contains a blue copy of Pn or a red copy of P k
n under the edge-colouring χ1.178

Thus, we can split our proof into these two cases.179

Case 1. First suppose F k contains a blue copy px1, . . . , xnq of Pn. Then, for every 1 ď i ď n´1,180

the bipartite graph F 1rV pBpxiqq, V pBpxi`1qqs contains a blue copy ofKs,s, with, say, vertex classes181

Xi Ď V pBpxiqq and Yi`1 Ď V pBpxi`1qq. As |Xi| “ |Yi| “ s “ 2k for all 2 ď i ď n ´ 1, we can182

find sets X 1i Ď Xi and Y 1i Ď Yi such that |X 1i| “ |Y 1i | “ k and X 1i X Y 1i “ ∅ for all 2 ď j ď n´ 1.183

Let X 11 “ X1 and Y 1n “ Yn.184

We now show that the set U :“
Ťn´1

i“1 X
1
i Y

Ťn
i“2 Y

1
i provides us with a blue copy of P k

2kn185

in F 1 Ď Hk
t . Note first that |U | “ 2k ` 2kpn ´ 2q ` 2k “ 2kn. Let u1, . . . , u2kn be an ordering186

of U such that, for each i, every vertex in X 1i comes before any vertex in Y 1i`1 and after every187

vertex in Y 1i . By the definition of the sets X 1i and Y 1i and the construction of F 1 Ď F k
t Ď Hk

t , each188

vertex uj is adjacent in blue to tuj1 P U : 1 ď |j ´ j1| ď ku. Thus, U contains a blue copy of P k
2nk,189

as claimed.190

Case 2. Now suppose F k contains a red copy P of P k
n . That is, F k contains a set of vertices191

tx1, . . . , xnu such that xi is adjacent in red to all xj with 1 ď |j ´ i| ď k. We shall show that,192

for each 1 ď i ď n, we can pick a vertex yi P V pBpxiqq so that y1, . . . , yn define a red copy of P k
n193

in F 1 Ď F k
t Ď Hk

t . We do this by applying the local lemma [13, p. 616] (a greedy strategy also194

works).195

We have to show that it is possible to pick the yi (1 ď i ď n) in such a way that tyi, yju is a196

red edge in F 1 for every i and j with 1 ď |i ´ j| ď k. Let us choose yi P V pBpxiqq (1 ď i ď n)197

uniformly and independently at random. Let e “ txi, xju be an edge in P Ď F k. We know that e198

is red. Let Ae be the event that tyi, yju is a blue edge in F 1. Since the edge e is red, we know199

that the bipartite graph F 1rV pBpxiqq, V pBpxjqqs contains no blue Ks,s. Theorem 2.4 then tells200

us that PrAes ď 4t´1{s.201
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The events Ae are not independent, but we can define a dependency graph D for the collection202

of events Ae (e P EpP q) by adding an edge between Ae and Af if and only if e X f ‰ ∅.203

Then ∆pDq ď 4k. Given that204

4∆PrAes ď 64kt´1{s “ 1 (3.6)

for all e, the Local Lemma tells us that P
“
Ş

ePEpP q Āe

‰

ą 0, and hence a simultaneous choice of205

the yi (1 ď i ď n) as required is possible. This completes the proof of Theorem 1.2. �206

Throughout our proof we have used probabilistic methods to show the existence of G. We now207

briefly discuss how our proof could be made constructive. For instance, it suffices to take for H a208

suitable pn, d, λq-graph as in Alon and Chung [2], namely, it is enough to have λ “ Op
?
dq and d209

large enough with respect to k and 1{ε.210

§4. Open questions211

We make no attempts to optimise the constant given by our argument, so the following question212

is of interest.213

Question 4.1. For any integer k ě 2, what is lim supnÑ8 r̂pP
k
n q{n?214

It is also interesting to consider what happens when more than two colours are at play. For215

q P N, let r̂qpHq denote the q-colour size-Ramsey number of H, that is, the smallest number of216

edges in a graph that is q-Ramsey for H.217

Conjecture 4.2. For any q, k P N we have r̂qpP
k
n q “ Opnq.218

It is conceivable that in hypergraphs the size-Ramsey number (defined analogously as for219

graphs) of tight paths may be linear. Let Hpkqn denote the tight path of uniformity k on n vertices;220

that is, V pHpkqn q “ rns and EpH
pkq
n q “

 

t1, . . . , ku, t2, . . . , k ` 1u, . . . , tn ´ k ` 1, . . . , nu
(

. The221

following question appears as Question 2.9 in [9].222

Question 4.3. For any k P N, do we have r̂pHpkqn q “ Opnq?223

Finally, we note that for fixed k, our main result implies the linearity of the size Ramsey224

number for the grid graphs Gk,n, the cartesian product of the paths Pk and Pn. Indeed our main225

result implies the linearity of the size Ramsey number for any sequence of graphs with bounded226

bandwidth. For the d-dimensional grid graph Gd
n, obtained by taking the cartesian product of d227

copies of Pn, we raise the following question.228

Question 4.4. For any integer d ě 2, is r̂pGd
nq “ Opndq?229
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