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A 2D temporal incompressible stability analysis is carried out for lobed jets. The jet

base flow is assumed to be parallel and of a vortex-sheet type. The eigenfunctions of

this simplified stability problem are expanded using the eigenfunctions of a round jet.

The original problem is then formulated as an innovative matrix eigenvalue problem,

which can be solved in a very robust and efficient manner. The results show that the

lobed geometry changes both the convection velocity and temporal growth rate of the

instability waves. However, different modes are affected differently. In particular, mode

0 is not sensitive to the geometry changes, while modes of higher-orders can be changed

significantly. The changes become more pronounced as the number of lobes N and

the penetration ratio ε increase. Moreover, the lobed geometry can cause a previously

degenerate eigenvalue (λn = λ−n) to become non-degenerate (λn 6= λ−n) and lead to

opposite changes to the stability characteristics of the corresponding symmetric (n) and

antisymmetric (−n) modes. It is also shown that each eigen-mode changes its shape in

response to the lobes of the vortex sheet, and the degeneracy of an eigenvalue occurs

when the vortex sheet has more symmetric planes than the corresponding mode shape

(including both symmetric and antisymmetric planes). The new approach developed in

this paper can be used to study the stability characteristics of jets of other arbitrary

geometries in a robust and efficient manner.
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1. Introduction

Aircraft noise reduction is an urgent issue nowadays. Among the many noise sources

of an aircraft, jet noise is still a significant contributor. This is especially true when an

aircraft is taking off. While the exact role played by jet instabilities in noise generation is

still open to some debate for subsonic jets, recent studies (Cavalieri et al. 2014; Piantanida

et al. 2016; Lyu & Dowling 2016; Lyu et al. 2017) show that installed jet noise is
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dominated by the scattering of jet instability waves by the trailing edge of aircraft wings

or flaps. To suppress or reduce installed jet noise, one can examine the possibility of

controlling these instability waves. Since instability waves are closely related to jet mean

flows, one such an approach is to modify jet mean flows to become less axisymmetric.

The feasibility of this approach, however, hinges on the hope that the instability waves

can be somehow suppressed by using a less axisymmetric jet mean flow. This raises the

question of examining the stability characteristics of jets of general non-axisymmetric

geometries.

Though jet instability is among the most heavily studied areas in fluid mechanics (Mor-

ris 2010), the research on the characteristics of the instability waves of non-axisymmetric

jets is rather limited. Some of the early attempts include those on elliptic and rectangular

jets. These include some analytical (Crighton 1973), numerical (Morris 1988; Tam &

Thies 1993; Baty & Morris 1995) and some relevant experimental studies focusing on

the turbulence, mixing and acoustics of non-axisymmetric jets (Tam & Zaman 2000;

Li et al. 2002; Zaman et al. 2003; Miao et al. 2015; Li et al. 2001, 2002; Hu et al.

2002). The analytical work of Crighton (1973) showed that separable solutions can be

obtained for elliptic jets. The instability waves aligned with the major and minor axes

exhibit different behaviours. Not surprisingly, the instability waves of rectangular jets

share similar characteristics (Tam & Thies 1993). Analytical works normally assumed the

mean flow to be of a vortex sheet type to allow mathematical derivations to proceed. For

more realistic jet mean flows, numerical methods had to be adopted. For example, Morris

(1988) numerically solved the eigenvalue problem in the elliptic cylindrical coordinates

for the realistic mean flow in the initial mixing region of a jet. It was found that all

modes, no matter whether even or odd about the major axis, have similar spatial growth

rates.

Both elliptic and rectangular jets have two symmetric axes (or planes). From the noise

reduction point of view, however, it is desirable to promote instability waves of higher-

order azimuthal modes. Firstly, this is preferable to suppress isolated jet noise. Because

it has been shown that sound sources of lower-order modes are more efficient at low

frequencies for subsonic isolated jets due to the so-called radial compactness (Michalke

1970; Mankbadi & Liu 1984; Cavalieri et al. 2013). Secondly, this is beneficial to reduce

installed jet noise. It is known that high-order instability modes decay faster with radial

distance than those of low-orders, Hence, when they are scattered into sound by a sharp

edge placed nearby, faster decay implies weaker sound generation due to the scattering

of weaker instability waves.

Instability waves of high-order azimuthal modes may be expected to be promoted by

jet mean flows with more azimuthal periodic structures, such as lobe jets. One of the

simple lobed profiles can be described as σ = a(1 + ε cosNθ), where σ is the radius of

the lobed profile, a the mean radius, N the number of lobes and ε the penetration ratio

quantifying how large the lobes are. The open literature on the stability of lobed jets
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is however very sparse (Morris 2010). In a study carried out by Kopiev et al. (2004) on

supersonic jet noise, a spatial stability analysis was undertaken to examine the effects

of weak corrugation on the instability characteristics of a parallel vortex sheet with

supersonic flow speed. A leading-order asymptotic correction to the complex wavenumber

α for the round jet when ε→ 0 was obtained. The results showed that at low St, where

St is the Strouhal number based on the jet exit velocity U and a, a small ε may lead to

a O(ε) change to the spatial growth rate if the azimuthal mode number n is less than

the number of lobes N . More interestingly, it was shown that if the sum of the two

positive mode numbers is equal to N , the changes to the values of their α have opposite

tendencies. The asymptotic solution shown in this study, however, relies on numerically

solving transcendental equations and is therefore non-trivial to compute. Also, because

the correction is restricted to O(ε) or O(ε2) only when ε → 0, it remains to be seen to

what extent the corrugation can change the stability characteristics at a finite or large ε.

Of close relevance to the lobed jets are some recent studies on the stability character-

istics of chevron jets (Lajús Jr. et al. 2015; Sinha et al. 2016). This is because the mean

flow profiles of chevrons jets are very similar to those of lobed jets. The work of Lajús Jr.

et al. (2015) was based on numerically solving the compressible Rayleigh equation for an

azimuthally periodic base flow. This study explored the effects of azimuthal variations of

the shear layer thickness and flow radius of the mean flow on the stability characteristics.

Two types of base flow were used. The first was fitted based on a Mach 0.9 chevron

jet and the second on a Mach 0.4 micro-jet. For the chevron case, the results showed

that the variation of shear-layer thickness has opposite effect to that of the radius. The

combination of the two, however, results in a larger reduction of the spatial growth rates.

It was concluded that chevron is more effective in controlling jet noise. The last section

of this paper showed the effects of the number of lobes. The preliminary results showed

that the number of lobes is not very important to the mode 0 instability wave, which

will be seen to be consistent with the results obtained in this paper.

In the study of Sinha et al. (2016), a viscous spatial linear stability analysis was

performed numerically using the PSE (Parabolized Stability Equation) approach. The

solutions to the parallel-flow stability equations were obtained first to initiate the PSE.

The LST (Linear Stability Theory) results showed that the serrations reduce the spatial

growth rate of the most unstable eigen-modes of the jet, but their phase speeds are similar.

For example, the serrations appeared to reduce the spatial growth rate and increase the

convection velocity of the mode 0 instability wave. These effects are found to be in accord

with the findings to be shown in the rest of this paper. The PSE results were compared

with the POD (Proper Orthogonal Decomposition) modes of the near-field pressure

obtained experimentally. Favourable agreement was achieved. Similar agreement was

obtained to the results from a further investigation using an LES (Large Eddy Simulation)

database. It was concluded that the coherent hydrodynamic pressure fluctuations of
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jets from both round and serrated nozzles agree reasonably to the instability modes of

turbulent mean flows.

Given the sparse analytical work on the stability of lobed jets and that the majority of

studies on this are numerically based, it is desirable to perform some analytical studies,

hoping to unveil more of the physics of lobed jets’ instability waves, such as the effects

of varying N and ε on the instability waves of different mode numbers, and provide

more insight in understanding the jet physics. The following section performs such

an analysis within the temporal stability analysis framework, proposing an innovative

analytical method of studying how a general non-axisymmetric jet mean flow changes

the behaviour of instability waves. More importantly, the method does not involve solving

transcendental equations and would work for finite or even large values of ε. The method

can also be used to study a wide range of other problems in an efficient and robust

manner.

2. Temporal stability analysis for non-axisymmetric jets

2.1. The governing equation for non-axisymmetric vortex-sheet flows

Following the routine procedure of stability analysis, we decompose the flow into base

and fluctuation parts. Note that the time-average mean flow is often taken as the base

flow, and hence in this paper we use the mean flow and base flow interchangeably. We

start with the incompressible Navier-Stokes equations since installed jet noise is relevant

primarily at low Mach numbers. At this stage, we write equations in a vector form to

avoid the introduction of coordinate systems. The momentum equation can be written

as

Dv

Dt
= −1

ρ
∇p+ ν∇2v, (2.1)

where, t denotes time, v the fluid velocity, ρ the flow density, p the pressure and ν the

dynamic viscosity. We assume that base flow is steady, with flow density, velocity, and

pressure to be ρ, U and p̄ respectively, and that that base flow satisfies

DU

Dt
= −1

ρ
∇p̄+ ν∇2U . (2.2)

The total flow field is given by the sum of the base flow and the small perturbation.

After substituting the total flow into equation 2.1 and ignoring second-order quantities,

we have the following linearized equation:

∂v′

∂t
+ U · ∇v′ + v′ · ∇U = −1

ρ
∇p′ + ν∇2v′, (2.3)

where the prime symbols denote the corresponding fluctuation quantities. When the

Reynolds number is high, we expect that the viscous term plays a negligible role. Hence
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the term ν∇2v′ can be neglected, i.e.

∂v′

∂t
+ U · ∇v′ + v′ · ∇U = −1

ρ
∇p′. (2.4)

Equation 2.4, together with the incompressible continuity equation

∇ · v′ = 0, (2.5)

governs the small-amplitude inviscid perturbations over a steady base flow.

The perturbation field is generally rotational for general shear base flows. Therefore,

it cannot be described using a potential function. However, for parallel flows of a vortex-

sheet type, the base flows inside and outside the vortex sheet are both irrotational. Hence

the perturbation should also be irrotational. This suggests the existence of a potential

function ψ for the velocity perturbations, i.e.

v′ = ∇ψ, (2.6)

on either side of the vortex sheet. The function ψ will be discontinuous across the shear

layer. From the equation 2.5, one can see that the velocity potential satisfies the Laplace

equation, i.e.

∇2ψ = 0. (2.7)

The pressure perturbation is effectively decoupled from the velocity potential and can be

easily obtained from equation 2.4.

The vortex-sheet simplification was used extensively in stability analysis, due in large

to the fact that an analytical dispersion relation can be generally found (Batchelor & Gill

1962; Crighton 1973; Kawahara et al. 2003). From these dispersion relation, one can gain

more insight than numerical simulations can offer. Besides, the vortex-sheet simplification

is often permissible, particularly for analysing low-frequency instability waves. Though a

realistic jet mean flow spreads slowly and has an increasingly thick mixing layer towards

downstream, the vortex-sheet simplification should serve as a good approximation to the

realistic flow close to the jet nozzle. Therefore, in this paper we assume the base flow to

be parallel and of a vortex-sheet type.

Since the velocity potentials exist for the vortex-sheet problem, we let ψ+ and ψ−

denote the potentials outside and inside of the vortex sheet, respectively, i.e.

v′
±

= ∇ψ±, (2.8)

where v′
+

and v′
−

denote the velocity perturbations outside and inside the vortex sheet,

respectively. Considering the parallel-flow assumption, we now introduce the cylindrical

coordinates σ, φ and z, as shown in figure 1. In this coordinate frame, the velocity

potentials ψ±(σ, φ, z, t) satisfy the following Laplace equation:

∇2ψ±(σ, φ, z, t) = 0. (2.9)

Note that we have not yet restricted the profiles of the vortex sheet. It therefore can be of
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Parallel vortex sheet

φ

z

σ

Figure 1: The cylindrical coordinate system: the z axis is parallel to the vortex sheet, the

origin is at the centre of the lobed profile and φ denotes the anticlockwise angle between

the radial axis and the horizontal dashed line.

arbitrary geometry, such as rectangular, elliptic or lobed. One can therefore let a general

function R(φ) denote the radius of the vortex sheet at polar angle φ. Consequently, the

profile of the vortex sheet can be specified as

F(σ, φ) = σ −R(φ) = 0. (2.10)

2.2. The eigenvalue problem

Without losing generality, one may assume

ψ± =

∞∑
m=−∞

AmE
±
m(σ, φ)eiαze−iωt, (2.11)

where Am are complex constants, α and ω are the streamwise wavenumber and frequency,

respectively. The functions E±m(σ, φ) are linearly independent of each other and each pair

of them at a given m satisfies both the governing equations and appropriate boundary

conditions. The functions E+
m(σ, φ) and E−m(σ, φ) are therefore defined in the two-

dimensional regions outside (σ > R(φ)) and inside (σ 6 R(φ)) the vortex-sheet profile,

respectively, as shown in figure 2.

We choose to normalize the functions E−m(σ, φ) such that for any integer m

1

2π

∫ 2π

0

E−m(a, φ)E−m
∗
(a, φ)dφ = 1, (2.12)

where a, as defined in section 1 and shown in figure 2, is the mean radius of the vortex

sheet, which is defined by

a =
1

2π

∫ 2π

0

R(φ)dφ. (2.13)

We cannot normalize E+
m(σ, φ) according to equation 2.12, because E−m(σ, φ) and

E+
m(σ, φ) are not independent. In fact, either the dynamic or the kinematic boundary

condition is sufficient to determine E+
m(σ, φ) from a given E−m(σ, φ). Therefore, E+

m(σ, φ)
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Decaying towards inifinity

  Finite 

at center

Kinematic and dynamic boundary 

conditions across the vortex sheet

→ ∞σ

a=σ

Figure 2: The schematic illustration of the boundary conditions of the stability problem

of a parallel lobed vortex sheet.

has to be determined such that for the same mode number m, the functions E+
m(σ, φ)

and E−m(σ, φ) satisfy the boundary conditions. One should note that E−m(a, φ) are not

properly defined within some ranges of φ (because E−m(σ, φ) is defined for σ 6 R(φ) and

a > R(φ) in some ranges of φ, see figure 2 for example). However, they can be naturally

defined using analytical continuation, which will become clear at a later stage. Hence,

the normalization defined by equation 2.12 is valid.

Substituting E±m(σ, φ) into equation 2.9 yields the governing equation[
∂2

∂φ2
+ σ

∂

∂σ

(
σ
∂

∂σ

)
− α2σ2

]
E±m(σ, φ) = 0. (2.14)

Equation 2.14 is to be solved subject to appropriate boundary conditions. These are a

finite value of E−m(0, φ), a decay behaviour for E+
m(σ, φ) as σ →∞, and the kinematic and

dynamic boundary conditions across the vortex sheet (Batchelor & Gill 1962; Crighton

1973). Because all the function pairs E±m(σ, φ) satisfy both equation 2.14 and their

relevant boundary conditions, they are referred to as the eigenfunctions of this system.

The functions {E±m(σ, φ)} should form a complete set of basis for the Hilbert space

determined by the equation 2.14 and appropriate boundary conditions. The aim of

the next section is to calculate these eigenfunctions analytically (without discretizing

equation 2.14 and then solving it numerically).

2.3. The calculation of eigenfunctions

Due to the coupling of σ and φ of the boundary conditions, E±m(σ, φ) are not generally

expected to be of a separable form. However, in the case of a cylindrical vortex sheet

(round jet), the eigenfunctions E±m(σ, φ) are known to be separable. Before proceeding
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to the case of more general vortex sheets, it is instructive to review the characteristics of

E±m(σ, φ) for a cylindrical vortex sheet.

2.3.1. The solution for a cylindrical vortex sheet

For the cylindrical vortex-sheet flow, the solutions were derived by Batchelor & Gill

(1962) and we review them to introduce the notation, and more importantly, these

solutions form the basis for analysing more complicated geometries in the following

section. The potentials ψ± are known to be able to be expanded as

ψ± =

∞∑
n=−∞

Ψ±n (σ)einφeiαze−iωt, (2.15)

where the functions Ψ±n (σ) satisfy the modified Bessel equation

σ2 d2Ψ±n
dσ2

+ σ
dΨ±n
dσ
−
(
α2σ2 + n2

)
Ψ±n = 0. (2.16)

Considering the boundary condition at the centre of the mean flow and at infinity, one

can show that

Ψ−n (σ) = C−n
1

In(αa)
In(ασ),

Ψ+
n (σ) = C+

n

1

Kn(αa)
Kn(ασ).

(2.17)

where C−n and C+
n are arbitrary complex constants and In and Kn are the modified

Bessel functions of the first and second kinds, respectively.

Applying the kinematic and dynamic boundary condition on the vortex sheet, one

obtains  (ω − αU)
∂Ψ+

n

∂σ
= ω

∂Ψ−n
∂σ

, (2.18a)

ωΨ+
n = (ω − αU)Ψ−n , (2.18b)

where use is made of the fact that the function set {einφ} is orthogonal. For a non-trivial

pair of solutions to exist (C−n C
+
n 6= 0), equations 2.18a and 2.18b can be rearranged to

yield the dispersion relation (αU
ω
− 1
)2

=
I ′n(αa)Kn(αa)

In(αa)K ′n(αa)
. (2.19)

In this special case, one can verify that the eigenfunctions, E+
n (σ, φ) and E−n (σ, φ),

take the separable form of

E−n (σ, φ) =
1

In(αa)
In(ασ)einφ,

E+
n (σ, φ) =

(
1− αU

ω

) 1

Kn(αa)
Kn(ασ)einφ,

(2.20)

where (1 − αU/ω) is obtained from equation 2.19. Here, E±n (σ, φ) take these simple

forms because the boundary condition involves no coupling between σ and φ (separable),
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and therefore these separable solutions are just the eigenfunction of the mathematical

problem.

2.3.2. The solution for a vortex sheet of arbitrary geometry

For the case of a non-axisymmetric vortex sheet, the perturbations outside and inside

the vortex sheet still remain determined by the Laplace equation. However, the boundary

condition is now more complicated. If we were to find an orthogonal coordinate system in

which the vortex-sheet profile can be represented by one of the constant coordinate axes,

we may be able to find a separable solution. For elliptic profiles, such a coordinate system

exists and eigenfunctions of separable form can be obtained (Crighton 1973). However,

it seems rather unlikely to find such a coordinate system for a general profile.

However, in light of the completeness of the orthogonal function set {einφ}, we are still

able to write the solutions inside and outside the vortex sheet as

ψ− =

∞∑
−∞

C−n
1

In(αa)
In(ασ)einφeiαze−iωt,

ψ+ =

∞∑
−∞

C+
n

1

Kn(αa)
Kn(ασ)einφeiαze−iωt,

(2.21)

respectively. We must emphasize here that neither the solution In(ασ)einφ/In(αa) nor

that Kn(ασ)einφ/Kn(αa) is the eigenfunction for this problem, since they do not satisfy

the boundary conditions on the vortex sheet (although they satisfy equation 2.14).

However, since they form a complete set, a suitable combination of these separable

solutions which satisfies the boundary conditions will be the eigenfunction that we aim

to obtain in this section. There may be multiple such combinations, corresponding to

eigenfunctions of different orders. For a more compact presentation of the rest of the

derivation, let

C̄−n = C−n
1

In(αa)
, (2.22)

C̄+
n = C+

n

1

Kn(αa)
. (2.23)

Hence, equation 2.21 becomes

ψ− =

∞∑
−∞

C̄−n In(ασ)einφeiαze−iωt,

ψ+ =

∞∑
−∞

C̄+
nKn(ασ)einφeiαze−iωt.

(2.24)

Equation 2.24 needs to satisfy both the kinematic and dynamic boundary conditions

on the vortex sheet, i.e. when σ = R(φ). The two boundary conditions can be shown to

be (see more details in Appendix A),{
(ω − αU)∇ψ+ · n = ω∇ψ− · n, (2.25a)

ωψ+ = (ω − αU)ψ−, (2.25b)
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(a) The weakly lobed profiles when ε = 0.1. (b) Strongly lobed profiles when ε = 0.2.

where n denotes the unit vector normal to the surface of the vortex sheet.

3. Analysis for lobed vortex sheets

Generally, R can be an arbitrary function of φ. Since we are mostly concerning with

the stability of lobed jets, which have a number of identical lobes, it follows that the

function R is a periodic function of φ. This suggests that R can be readily expanded

using Fourier series. As a starting point, we restrict our attention to the simplest case

mentioned in section 1, in which case R is given by

R(φ) = a (1 + ε cosNφ) . (3.1)

For weakly lobed nozzles, ε � 1, while ε ∼ 0.2 represents a strongly lobed profile.

Figure 3a shows some relatively weakly lobed profiles when ε = 0.1, while figure 3b

shows some strongly lobed profiles when ε = 0.2. In either case, we see that ε is a small

quantity, and this suggests that the Taylor expansion of a well-behaved function around

ε = 0 should converge sufficiently quickly. For more general lobed profiles, function cosNφ

can be replaced by a sum over m of terms with φ dependence cosmNφ and sinmNφ.

When R is given by equation 3.1, we see that

n =
∇F
|∇F| , (3.2)

and

∇F = eσ + eφ
a

σ
εN sinNφ, (3.3)

where eσ and eφ denote the unit vectors in the radial and azimuthal directions, respec-

tively. Substituting equations 2.24, 3.1 and 3.2 into equations 2.25a and 2.25b yields
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(
1− αU

ω

)( ∞∑
n=−∞

C̄+
nK

′
n(αa(1 + ε cosNφ))einφ

+
εN sinNφ

αa(1 + ε cosNφ)2

∞∑
n=−∞

C̄+
n (in)Kn(αa(1 + ε cosNφ))einφ

)
=( ∞∑

n=−∞
C̄−n I

′
n(αa(1 + ε cosNφ))einφ

+
εN sinNφ

αa(1 + ε cosNφ)2

∞∑
n=−∞

C̄−n (in)In(αa(1 + ε cosNφ))einφ

)
,

∞∑
n=−∞

C̄+
nKn(αa(1 + ε cosNφ))einφ =

(
1− αU

ω

) ∞∑
n=−∞

C̄−n In(αa(1 + ε cosNφ))einφ.

(3.4)

3.1. Weakly lobed profile

For weakly lobed profile, ε � 1, therefore we may expand both left and right hand

sides of equation 3.4 around ε = 0 and keep only the first order without causing too

much error. In doing so, the first-order equations can be obtained and, after collecting

the terms of the same einφ, written as



∞∑
n=−∞

[
C̄+
nK

′
n(αa) + C̄+

n−N

(
K ′′n−N (αa)

αa

2
+Kn−N (αa)

(n−N)N

2αa

)
ε

+ C+
n+N

(
K ′′n+N (αa)

αa

2
−Kn+N (αa)

(n+N)N

2αa

)
ε

]
einφ =(

1

1− αU
ω

) ∞∑
n=−∞

[
C̄−n I

′
n(αa) + C̄−n−N

(
I ′′n−N (αa)

αa

2
+ In−N (αa)

(n−N)N

2αa

)
ε

+ C̄−n+N

(
I ′′n+N (αa)

αa

2
− In+N (αa)

(n+N)N

2αa

)
ε

]
einφ,

∞∑
n=−∞

(
C̄+
nKn(αa) + C̄+

n−NK
′
n−N (αa)

αa

2
ε+ C̄+

n+NK
′
n+N (αa)

αa

2
ε
)

einφ =

(
1− αU

ω

) ∞∑
n=−∞

(
C̄−n In(αa) + C̄−n−NI

′
n−N (αa)

αa

2
ε+ C̄−n+NI

′
n+N (αa)

αa

2
ε
)

einφ.

(3.5)

The above equations can be written in a more compact matrix form, from which the

effects of lobed jets can be seen more clearly. Let K(αa) denote the diagonal matrix

K(αa) = diag(· · ·K−1(αa), K0(αa), K1(αa) · · · ), (3.6)
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and let Kc(αa) and Ks(αa) to be

Kc(αa) =


. . . . . .

. . .K−N−1(αa) . . .KN−1(αa) . . . . . . . . .

. . . . . .K−N (αa) . . . . . .KN (αa) . . . . . .

. . . . . . . . .K−N+1(αa) . . . . . . . . .KN+1(αa) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 , (3.7)

and

Ks(αa) =


. . . . . .

. . .K−N−1(αa)(−N − 1) . . .−KN−1(αa)(N − 1) . . . . . . . . .

. . . . . .K−N (αa)(−N) . . . . . .−KN (αa)N . . . . . .

. . . . . . . . .K−N+1(αa)(−N + 1) . . . . . . . . .−KN+1(αa)(N + 1) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 . (3.8)

Clearly, each element of the matrices K(αa), Kc(αa) and Ks(αa) is a function of αa,

and consequently, these matrices are essentially function matrices with an argument αa.

We can therefore define the nth derivative of a matrix to be the matrix formed by the

nth derivative of each element function. For example, the first derivative of Kc(αa) is

K ′c(αa) =


. . . . . .

. . .K ′−N−1(αa) . . .K ′N−1(αa) . . . . . . . . .

. . . . . .K ′−N (αa) . . . . . .K ′N (αa) . . . . . .

. . . . . . . . .K ′−N+1(αa) . . . . . . . . .K ′N+1(αa) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 . (3.9)

If one replaces the modified Bessel function of the second kind Kn(αa), in matrices

K(αa), Kc(αa) and Ks(αa), with function In(αa), the matrices I(αa), Ic(αa) and

Is(αa) can be similarly defined. Upon defining the vector

C̄± =
[
. . . , C̄±−n, . . . , C̄

±
0 , . . . , C̄

±
n , . . .

]T
, (3.10)

where [ ]T denotes the transpose of matrix [ ], equation 3.5 can be readily written as

(
1− αU

ω

)[
K ′(αa) + ε

(
K ′′c (αa)

αa

2
+ Ks(αa)

N

2αa

)]
C̄

+
=[

I ′(αa) + ε

(
I ′′c (αa)

αa

2
+ Is(αa)

N

2αa

)]
C̄
−
,[

K(αa) + εK ′c(αa)
αa

2

]
C̄

+
=
(

1− αU

ω

) [
I(αa) + εI ′c(αa)

αa

2

]
C̄
−
.

(3.11)

Equation 3.11 represents the dispersion relation for the considered lobed jet to the first-

order accuracy. It is worth noting that both K(αa) and I(αa) are diagonal matrices.

Therefore, in the case of ε = 0, i.e. the axisymmetric vortex sheet, equation 3.11 represents

a set of decoupled dispersion relation equations. Consequently, stability analysis can be

performed for each mode individually and the results are identical to those obtained
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by Batchelor & Gill (1962), as shown above. When ε 6= 0, the equations governing the

dispersion relations are coupled equations, hence the equations must be solved together.

Before proceeding to solve these equations, it is informative to examine how lobed

vortex-sheet profiles affect the characteristic matrices. Firstly, one can see that the

coupling only occurs between modes n, n − N and n + N . Had we included higher

order terms (ε2, ε3 . . . ), the coupling would involve modes n ± kN (k = 0,±1,±2 . . . ).

This shows that the lobed profile affects the instability waves by modulating them with

its own periodicity. Secondly, the modulating effects occur in two ways: modifying the

radial length scales and changing the normal directions of vortex sheet. The effects of

modifying the radial length scales are represented by the K(i)
c (αa) and I(i)

c (αa) matrices

(i here denotes the ith derivative). Take the strongly-lobed profile of N = 2, as shown

in figure 3b, as an example. At such a large value of ε, the lobe profile resembles that

of an elliptic vortex sheet. Hence, the radial length scales of the major and the minor

axes are different. It is known that this causes different behaviour for instability waves

orientated with different axes (Crighton 1973). In the dynamic boundary conditions

shown in equation 3.11, the K ′c(αa) and I ′c(αa) terms account for the different length

scales (to the first order accuracy) and ensure pressure is continuous across the vortex

sheet. The Ks(αa) and Is(αa) matrices, on the other hand, account for changing of the

restrictions on the normal perturbation velocities across the vortex sheet. Equation 2.25a

shows that it is the normal (to the vortex sheet) perturbation velocities that have to

satisfy the jump condition. From equation 3.3 it is evident that the use of lobed nozzles

can significantly change the local normal directions of the vortex sheet and hence the

instability characteristics. Also, it is clear from equation 3.3 that the normal direction

changes more pronouncedly as N increases.

To solve equation 3.11, we write the two matrix equations in a more compact form as
(

1− αU

ω

)
KkC̄

+
= IkC̄

−
, (3.12a)

KdC̄
+

=
(

1− αU

ω

)
IdC̄

−
. (3.12b)

The definitions of Kk, Ik, Kd and Ik should be obvious when compared with equa-

tion 3.11, and from now on we omit the argument αa of relevant matrices for brevity.

Equations 3.12a and 3.12b are in terms of C̄±, it is necessary to obtain an equation

in terms of C± (C± is the column vector with elements C±n rather than C̄±n ). This is

because C±n are the coefficients in front of normalized functions, and hence represent the

proper amplitudes of their corresponding eigenfunctions. On the other hand, C̄±n denote

the non-normalized coefficients, hence their values would depend on the amplitudes of

their eigenfunctions. For example, because the value of In(αa) at a fixed αa decreases

exponentially as n increases, C̄−n would have to increase exponentially as n increases in

order to ensure a physically meaningful result is obtained. This is clearly not suitable

for any numerical evaluations at a later stage. Therefore, it is essential to rewrite the
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above two equations in terms of C±. It is straightforward to show C+ = KC̄
+

and

C− = IC̄
−

. Since both I and K are diagonal matrices, it is trivial to calculate their

inverse matrices I−1 and K−1. Equations 3.12a and 3.12b can be easily changed to
(

1− αU

ω

)
K̃kC

+ = ĨkC
−, (3.13a)

K̃dC
+ =

(
1− αU

ω

)
ĨdC

−, (3.13b)

where K̃k = KkK
−1, K̃d = KdK

−1, Ĩk = IkI
−1, Ĩd = IdI

−1. These tilde matrices

can be calculated quickly since both I−1 and K−1 are diagonal.

From equation 3.13b, we see that

C+ =
(

1− αU

ω

)
K̃
−1
d ĨdC

−. (3.14)

Substituting equation 3.14 into equation 3.13a, we have

(
1− αU

ω

)2
K̃kK̃

−1
d ĨdC

− = ĨkC
−. (3.15)

Upon multiplying Ĩ
−1
k on both sides of equation 3.15 and defining A = Ĩ

−1
k K̃kK̃

−1
d Ĩd,

we obtain the following eigenvalue problem

AC− = λC−, (3.16)

where

λ =
(

1− αU

ω

)−2
. (3.17)

The matrix A is of an infinite dimension. In order to calculate its eigenvalues in

practical cases, we may drop all the modes higher than M (and less than −M). Though

we expect results to become inaccurate for large modes close to M , it may yield

satisfactory results for relatively low-order modes when M is taken to be adequately

large. These low-order modes are of our primary interest in this study, since high-order

modes vanish sufficiently quickly according to experimental results (Tinney & Jordan

2008). Besides, the vortex-sheet assumption would fail for high-order modes anyway.

By truncating high-order terms, we obtain a matrix of (2M + 1) × (2M + 1), and

there are 2M + 1 eigenvalues (degenerate eigenvalues are counted more than once) and

their corresponding eigenvectors. For each obtained eigenvector C−, we can obtain the

corresponding C+ easily from equation 3.14. The fact that the non-zero eigenvector

C− satisfies equation 3.16 entails that the non-trivial velocity potential ψ−, determined

by C−, and the corresponding ψ+, determined by C+, satisfy both the kinematic and

dynamic boundary conditions on the vortex sheet. Therefore, each eigenvector represents
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an eigenfunction of the lobed problem, i.e.

E−n (σ, φ) =

∞∑
n=−∞

C−n
1

In(αa)
In(ασ)einφ,

E+
n (σ, φ) =

∞∑
n=−∞

C+
n

1

Kn(αa)
Kn(ασ)einφ.

(3.18)

One can readily verify that, when C− is normalized such that (C−)∗TC− = 1 and C+ is

obtained from the dynamic boundary conditions shown in equation 3.14, both E−n (σ, φ)

and E+
n (σ, φ) are normalized as described in Section 2.2.

3.2. The mode labelling strategy

When ε = 0, there is a well-defined mode number for each mode. For example, mode

n can be defined as the eigenvector

C− =
[
. . . 0, . . . , 0, . . . , C−n = 1, . . .

]T
. (3.19)

When ε 6= 0, however, the eigenvector does not posses this simple property. Instead, the

resulting eigenvector has other non-vanishing elements besides C−n . We need to develop

an unambiguous strategy to label the eigen-modes.

We can show that the eigenvector C− can be always defined as either symmetric or

antisymmetric (with respect to the element of index 0). This is due to the rotationally

symmetric property possessed by the matrix A, and for brevity we have placed detailed

derivation in Appendix B.

Based on this property, we define an eigenvector to have a mode number n if it is

symmetric and

||C− −G|| =

√√√√ M∑
j=−M

(|C−j | −Gj)2 (3.20)

yields a minimum value when n varies from −M to M and

G =
[
. . . , g−n =

√
2/2, . . . , 0, . . . , gn =

√
2/2, . . .

]T
, (3.21)

where gn is the element of the gauge vector G. For anti-symmetric eigenvectors we label

it as −n in a similar manner. For n = 0, it is trivial to label its mode number and it

can be shown that it is a symmetric vector. By labelling the eigenvectors in this way,

equation 3.18 implies that all nonnegative eigenfunctions are even functions of φ and

negative ones odd.

In the following analysis, the mode number for the obtained eigenfunction is desig-

nated according to the above conventions. Then for each mode n, we can calculate its

corresponding eigenvalue λn at a given value of αa. The complex frequency ω can be

directly obtained from λn according to equation 3.17. This complex number determines

both the growth rate and the convection velocity of its corresponding instability wave.

Therefore, by varying the values of ε and N , one can easily examine how different lobed
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geometry changes both the growth rate and convection velocity of instability waves of

different mode numbers.

3.3. Strongly lobed nozzle

For strongly lobed nozzles, e.g. ε ∼ 0.2, it is necessary to include high-order terms εn.

Luckily this is not a difficult extension, and all the aforementioned procedures used to

solve the eigenvalue problem remain the same. It suffices to find the high-order coefficient

matrices and add them into equation 3.11, i.e.

Kk = K ′(αa) + ε
(
K ′′c (αa)

αa

2
+ Ks(αa)

N

2αa

)
+ ε2

(
. . .
)

+ · · · ,

Ik = I ′(αa) + ε
(
I ′′c (αa)

αa

2
+ Is(αa)

N

2αa

)
+ ε2

(
. . .
)

+ · · · ,

Kd = K(αa) + εK ′c(αa)
αa

2
+ ε2(. . . ) + · · · ,

Id = I(αa) + εI ′c(αa)
αa

2
+ ε2(. . . ) + · · · .

(3.22)

It is worth noting that incorporating higher-order terms does not invalidate the matrix

A being rotationally symmetric, hence all the previous conclusions about its eigenvectors

still remain valid. Due to the nature of higher-order modified Bessel functions, expanding

them around αa results in a slow convergence when ε is large. Therefore, the number

of high-order terms needed increases quickly as ε increases. It also increases when we

increase the value of M . However, this problem can be overcome by expanding properly

scaled modified Bessel functions. Since in this study we only need a relatively small M ,

and the extension of incorporating more higher-order terms can be promptly automated

using computer programming, it is not strictly necessary to expand the scaled modified

Bessel functions instead. For example, a MATLAB code has been developed that can

automatically incorporate as many orders of terms as needed. Due to its analytical nature,

the computation is very fast. For example, a comprehensive eigenvalue analysis of order

10 with M = 20 takes less than 50 milliseconds. All the results shown in the following

sections are obtained by incorporating higher-order terms to the order of 10 (ε10) and

with M = 20. A convergence analysis, to be shown in section 4.1, shows that this is much

more than necessary.

4. Validation and Results

As mentioned in the preceding section, both the temporal growth rate and convection

velocity of the instability waves can be readily obtained from equation 3.17. In this

section, we present the rich results obtained from this procedure.

4.1. Convergence analysis

We first examine the convergence characteristics of this new method when the order of

accuracy m (εm) and M change. To separate the effects of m and M , we can fix M and
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Figure 4: The convergence of the temporal growth rate and convection velocity for the

mode 1 instability wave when N = 2 and ε = 0.1: a) the order of accuracy is fixed at

ε10 while M varies from 2 to 8; b) M is fixed to be 20 while the order of accuracy varies

from ε2 to ε7.

vary the values of m and then vice versa. For brevity, we choose to present the convection

velocity and temporal growth rate of mode 1 instability wave and fix the number of lobes

N = 2.

We first show the results for a relatively small penetration ratio, i.e. ε = 0.1. The results

are shown in figure 4. For a compact presentation, we define a complex number Uc ≡ ω/α.

Therefore, the real part of Uc denotes the convection velocity while the imaginary part

represents the temporal growth rate. Figure 4 shows the real and imaginary parts of Uc,

respectively.

Figure 4(a) shows the results when m = 10 and M varies from 2 to 8. One can see that

both the growth rates and convection velocities are hardly distinguishable. This shows

that, for a small value of ε ≈ 0.1, M = 2 is essentially sufficient, at least for the mode

number 1. Of course we would need a slightly larger value of M if we were to consider

higher-order modes. But this increase in M is likely to be on a small scale, because we are

only interested in low-order modes as only those are physically relevant in experiments.

Figure 4(b) shows the results when M is fixed at 20 and m varies from 2 to 7. Similar

to figure 4(a), the lines are nearly on top of each other. This shows that for ε ≈ 0.1, a

second-order accuracy is sufficient for a good convergence.

As mentioned in section 3.3, due to the nature of the modified Bessel functions, the

number of high-order εn terms needed increases quickly as ε increases. To show that

M = 20 and m = 10 is also sufficient for a large value of ε, we present the convergence

characteristics of this analysis when ε = 0.2 in figure 5.

Figure 5(a) shows the results when m = 10 and M varies from 2 to 8. We can see

that there is an observable difference between the convection velocities calculated using
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Figure 5: The convergence of the temporal growth rate and convection velocity for the

mode 1 instability wave when N = 2 and ε = 0.2: a) the order of accuracy is fixed at

ε10 while M varies from 2 to 8; b) M is fixed to be 20 while the order of accuracy varies

from ε2 to ε7.

M = 2 and M = 4. However, there is little change between the results for M = 4 and

M = 8. This shows that for strongly lobed geometry at ε ≈ 0.2, M must be at least 4. On

the other hand, it is interesting to see that the temporal growth rate is much less sensitive

to the change in M than the convection velocity. Figure 5(b) similarly shows the results

for a fixed number M = 20 and a varying m. The observation is similar to figure 5(a),

and it shows that for ε ≈ 0.2, a high order accuracy up to ε4 or ε6 is recommended.

In summary, the results in this section show that M = 20 and n = 10 can ensure the

obtained eigen-solutions are well converged.

4.2. Validation

Section 4.1 merely shows that M = 20 and n = 10 are sufficient for a good convergence.

A converged solution, however, does not always imply a correct one. Consequently, before

presenting any results, it is necessary to validate this new analysis framework. Luckily,

it is very straightforward to do so. Since the entire analysis is devoted to calculating the

eigenfunctions that satisfy both the kinematic and dynamic boundary conditions on the

vortex sheet, we can examine the obtained eigenfunctions to ensure that they do indeed

satisfy the two boundary conditions. More precisely, we can show that for each pair of

eigenfunctions obtained above, we have, on the vortex sheet,{
(1− αU/ω)∇E+

m(σ, φ) · n = ∇E−m(σ, φ) · n, (4.1a)

1/(1− αU/ω)E+
m(σ, φ) = E−m(σ, φ). (4.1b)

The obtained eigen-solution will automatically satisfy the Laplace equation both inside

and outside the vortex sheet, because we have chosen to expand the eigen-solution

using a set of basis functions which are already the solutions to the Laplace equation.
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Therefore, it is sufficient to validate the method by only verifying that the boundary

conditions are met. In the rest of this paper, we refer to both sides of equation 4.1a

and 4.1b as the normalized normal perturbation velocity and pressure, respectively. One

can first evaluate both sides of the above two equations on the vortex sheet (similar

to equation 3.4) and plot them together. If the results are accurate, the normalized

normal perturbation velocity and pressure would collapse. Since the eigenvector of mode

n (n > 0) is symmetric, if it is also real, then it is effortless to show that the imaginary

parts of E−n (σ, φ) are strictly zero. Similarly, the real parts of E−−n(σ, φ) also vanish

when the eigenvector of mode −n is real. For the results shown in this paper, all the

eigenvectors are real. Therefore, for mode n (n > 0), it suffices to plot only the real parts

of equations 4.1a and 4.1b. Likewise, for mode −n (n > 0), one only needs to plot the

imaginary parts. For the sake of brevity, we only show the results for modes −2 and

2. All other modes of interest have similar level of agreement. The results are shown in

figure 6.

Figure 6 shows how the boundary conditions are satisfied by the eigenfunctions of

modes±2. These results are obtained with αa = 1 and ε = 0.1. Figures 6(a) and 6(b) show

the matches of the left and right sides of equations 4.1b and 4.1a, respectively, when the

number of lobes isN = 1. From figure 3a, one can see that whenN = 1, the lobed profile is

not very significantly different from the axisymmetric one. The single lobe merely causes

a displacement of the profile centre of the circular vortex sheet. Therefore, one expects

that the dynamics of instability waves shall remain largely unchanged. Figure 6(a,b)

indeed confirms this. Modes 2 and −2 resemble those of an axisymmetric vortex sheet in

every aspect. When N increases to 2, the effects of lobes are more pronounced, as shown

in figure 6(c,d). In particular, the symmetric (with respect to φ = 0) eigenfunction shown

in figure 6(d) starts to deviate from the normal − cos 2φ function, with its peak somewhat

flattened. The mode −2, on the other hand, remains largely similar to sin 2φ. When N

increases to 3, both modes 2 and −2 respond to the change of vortex-sheet geometry and

change their shapes significantly.

It is, however, worth noting that, for N = 1 and N = 2, the eigenvalues λ2 6= λ−2.

Therefore, both E−2 (σ, φ) and E−−2(σ, φ) have a standing wave pattern with respect to

φ and they cannot be combined to produce a travelling wave. However, for N = 3 we

find that λ2 = λ−2. Therefore, a travelling-wave pattern can be obtained. The important

observation is that, for all the six figures, exceptionally good matches of the pressure and

normal velocity across the layer of vortex sheet are achieved. The excellent agreement

seen from figure 6 shows that the analytical framework developed in this section works

exceptionally well, at least for the low-order modes like those we have just shown.
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Figure 6: The match validation of the dynamic (left) and kinematic (right) boundary

conditions for the eigenfunctions of modes ±2 when the number of lobes N are different:

a, b) N = 1; c, d) N = 2; e, f) N = 3. The normalized wavenumber is αa = 1 and the

lobed profile has a penetration ratio ε = 0.1.
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4.3. The effects of lobed profiles on the convection velocity and growth rate of instability

waves

Having validated the analytical framework, we are now in a position to examine the

effects of lobed profiles on the convection velocity and growth rate of instability waves.

In the rest of this section, we plot both quantities versus the normalized frequency αa,

for lobed profiles of different geometry.

We start from showing results for mode 0. These are shown in figure 7. Figure 7(a)

shows the convection velocity and growth rate for a single-lobe profile. To facilitate a

direct comparison to the results of a cylindrical vortex sheet, both quantities are plotted

when ε = 0 first. As can be seen, when the frequency αa increases, the normalized

convection velocity (<Uc/U) decreases from unity to around 0.5, whereas the normalized

growth rate (=Uc/U) increases from 0 to the same limit value. However, it shows that a

single lobe does not cause any observable changes to the characteristics of mode 0 at all

frequencies, no matter what value of ε is used. The same conclusion can be reached for

N = 2, which is shown in figure 7(b). Increasing the number of lobes to 3, however, starts

to cause a slightly larger convection velocity and a marginally lower growth rate. These

results are shown in figure 7(c), from which we see that the changes are only observable

at high frequencies. However, they become more pronounced when the penetration ratio

ε increases. The increase of the convection velocity and the reduction of the temporal

growth rate, caused by lobed vortex-sheet profiles, are more evident when the number

of lobes is increased to 5. As shown in figure 7(d), at high frequencies (αa > 1.5), a

large penetration ratio results in an effective rise of the convection velocity and a less

effective drop of the growth rate. However, one should note that although these changes

are observable, they are not in any way significant.

The fact that serrations increase the convection velocity and reduce growth rates of

mode 0 is in accord with the findings of Lajús Jr. et al. (2015) and Sinha et al. (2016).

However, it should be noted that in the work of Sinha et al. (2016), there also exists

a low-frequency band where the spatial convection velocity is slightly reduced. Such a

difference might be caused by the difference between temporal and spatial analysis, the

difference in jet mean flow profiles or the difference in the shear layer thickness.

Figure 7 shows that instability waves of mode 0 are not very sensitive to either the

number of lobes or the penetration ratio. Figure 8, however, shows a different story for

mode 1. The eigenfunctions corresponding to mode 1 are even functions of φ. Figure 8(a)

still indicates that a single lobe does not noticeably change the characteristics of the

mode 1 instability waves. This is somewhat expected. Because, as we observed before,

one single lobe merely causes a displacement of the profile’s geometrical centre. Therefore,

the physics should more or less stay the same as that of an axisymmetric vortex-sheet.

This is consistent with the results shown in figure 8(a). However, figure 8(b) shows that

the use of 2 lobes leads to a pronounced increase of the convection velocity, and a slight

decrease of the temporal growth rate. In contrast to those shown in figure 7, the increase
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Figure 7: The convection velocity and growth rate of the mode 0th jet instability waves

for vortex sheets of different lobed geometry: a) N = 1; b) N = 2; c) N = 3; d) N = 5.

of the convection velocity is more marked at low frequencies. Similarly, increasing ε results

in a stronger rise of the convection velocity. It is very interesting o note that the rise of the

convection velocity is nearly linear with respect to ε. The decrease of the temporal growth

rate, however, is most notable in the intermediate frequency range, and the maximum

decrease is very small. Figure 8(c) shows the results for N = 3. Compared to figure 8(b),

the effects of lobes on both the convection velocity and the growth rate appear to be

more effective. The most pronounced change, however, occurs when N increases to 5, as

shown in figure 8(d). Again, these results are consistent with the findings of Sinha et al.

(2016). The dependence of both the convection velocity and the temporal growth rate

on ε appears to linear. But the relative change of the former is significantly larger than

that of the latter.

Figure 9 presents the results for the mode −1. The eigenfunctions are odd functions of

φ. Still, figure 9(a) does not show observable changes when ε increases. However, zooming

in this figure, one can see that the convection velocity is weakly increasing as ε increases,

and this is opposite to that observed in figure 8(a)! This different behaviour is because
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Figure 8: The convection velocity and growth rate of the mode 1 jet instability waves for

vortex sheets of different lobed geometry: a) N = 1; b) N = 2; c) N = 3 d) N = 5.

λ1 is not identical to λ−1 any more. Therefore, the odd and even eigenfunctions are now

independent of each other and they change in opposite ways as ε increases. If figures 9(a)

and 8(a) are too similar to each other to make this trend clear, figure 9(b) makes it

much more evident. The number of lobes is now 2, and the lobed profile is approximately

elliptic. Instead of obtaining higher convection velocities, increasing ε from 0 now results

in increasingly smaller convection velocities. The temporal growth rate, on the other

hand, starts to drop at low frequencies (αa < 0.5), but gradually changes to increase at

high frequencies, although both are on a small scale. The different eigenvalues of modes

±1, hence distinctive characteristics of instability waves of modes ±1, are consistent

with the analytical results obtained by Crighton (1973) for elliptic vortex sheets and

also agree with the findings in the spatial stability analysis carried out by Kopiev et al.

(2004) (because the mode number 1 is a half of the number of lobes N = 2). Figure 9(c,d)

shows the results for N = 3 and N = 5, respectively. One can easily verify that they are

identical to those shown in figure 8(c, d). This is because, for both N = 3 and N = 5,

the eigenvalues λn remain identical to λ−n. As discussed in Section 4.2, this also implies
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Figure 9: The convection velocity and growth rate of the mode −1 jet instability waves

for vortex sheets of different lobed geometry: a) N = 1; b) N = 2; c) N = 3; d) N = 5.

that azimuthally travelling waves can exist, in contrast to the case of λn 6= λ−n, where

only azimuthally standing waves are allowed.

Figure 10 shows results for the instability waves of mode 2. Figure 10(a) is for N = 1.

We expect little change caused by one single lobe, and this is demonstrated clearly by the

figure. The results for N = 2 are shown in figure 10(b). The mode 2 instability waves have

increasingly lower convection velocities when ε increases. But the changes are very small.

The changes of the temporal growth rate are nearly unobservable. However, using 3 lobes

can still effectively reduce the convection velocity while marginally altering the temporal

growth rate of the mode 2 instability waves. Like all the results we have reported, the use

of 5 lobes is the most effective way of increasing the convection velocity and decreasing

the temporal growth rate. Figure 11 shows the results for the mode −2 instability waves.

Figure 11(a) exhibits expected behaviour for a lobed profile of N = 1. Figure 11(b) shows

a very slight increase of the convection velocity and no change to the temporal growth

rate. We emphasize again that this is due to λn 6= λ−n. Figures 11(c) and 11(d) are

identical to figures 10(c) and 10(d) respectively because of identical eigenvalues.
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Figure 10: The convection velocity and growth rate of the mode 2 jet instability waves

for vortex sheets of different lobed geometry: a) N = 1; b) N = 2; c) N = 3; d) N = 5.

In summary, the stability characteristics of base flows of a lobed vortex-sheet type

are different from those of axisymmetric ones. The differences consist of changes to both

the convection velocity and the temporal growth rate of instability waves. The changes

become more pronounced as the number of lobes N and the penetration ratio ε increase.

However, instability waves with different mode numbers are affected differently by the

lobed geometry. In particular, little change occurs for mode 0, no matter how large

both N and ε are. On the other hand, an evident alteration of the characteristics of

jet instability waves with large mode numbers occurs when N > 1. For N = 3 and

N = 5, azimuthally even and odd instability waves demonstrate the same characteristics.

However, for N = 2 and N = 1, even and odd instability waves of lobed jets exhibit two

different types of behaviour, with one having favourable effects on installed jet noise

reduction and the other having adverse. Therefore, for the sake of suppressing instability

waves, or achieving installed jet noise reduction, it is desired to use a lobed profile of

large N , such as N = 5, with a large penetration ratio. Because this results in a larger

reduction of the temporal growth rates, and hence may lead to weaker instability waves.
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Figure 11: The convection velocity and growth rate of the mode −2 jet instability waves

for vortex sheets of different lobed geometry: a) N = 1; b) N = 2; c) N = 3; d) N = 5.

Note that the results discussed above are obtained from a temporal analysis, from which

the results of a spatial analysis may be recovered from Gaster’s transformation (Gaster

1962). Gaster’s transformation provides a straightforward way to connect the temporal

and spatial stability analyses. One of the key assumptions used in Gaster’s transforma-

tion is that both the spatial and temporal growth rates have to be small, and under

this assumption Gaster showed that, to the first-order accuracy, the temporal angular

frequency, <(ω), rather than the convection velocity <(ω)/α, is the same as the spatial

angular frequency, and the temporal growth rate is equal to the product of the spatial

growth rate and the temporal group velocity. With the temporal results available, we can

therefore obtain the spatial growth rate by using Gaster’s transformation, provided the

aforementioned assumption is not violated. Care must be taken for the spatial convection

velocity as the <(ω) being identical does not imply the same thing for <(ω)/<(α) (see

the spatial convection velocity of a round vortex sheet given by Michalke (1970) for

example), in which case high-order terms need to be incorporated to improve accuracy.

However, the aim of this study is to investigate the effects of lobes on the growth
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rates of jet instability waves so as to examine the feasibility of controlling installed jet

noise using lobed jets, and these effects are unlikely to be significantly different between

the temporal or spatial frameworks. For example, if the lobed geometry slightly reduces

the temporal growth rate, we would expect similar behavior for the spatial growth rate.

Therefore, in this paper, we focus on the temporal results only. Also note that previous

studies mainly focused on chevron jets, and we do not expect their results to be identical

to the stability results for the special type of lobed base flow used in this study.

4.4. The change to mode shapes

We have studied the effects of lobed geometries on the convection velocity and temporal

growth rate of jet instability waves. In this section, we show their effects on the mode

shapes. In the rest of this section, we present the contour plot of the pressure field

corresponding to each eigen-mode. The pressure is normalized such that it is equal to

the right hand side of equation 4.1b inside the vortex sheet. We choose to shown the

pressure fields for modes 0, −1 and 2, respectively. When doing so, we fix ε = 0.15 but

let N vary between 1, 2, 3 and 5, respectively. For each mode at each value of N , we

show the pressure distribution at a low frequency αa ≈ 0.25 and then at a high frequency

αa ≈ 2.5. These results are shown from figures 12 to 17. In each figure, the lobed profile

is represented by a thick solid black line.

Figure 12 shows the pressure distributions for mode 0 at αa ≈ 0.25. Figure 12(a) is

for N = 1. We have mentioned that when N = 1 the lobed profile is more or less the

same as a displaced circle, and hence its stability characteristics should be nearly the

same as a round jet. Figure 12(a) proves this by showing a nearly axisymmetric pressure

distribution. The pressure inside the vortex sheet is nearly uniform. This is because the

frequency is very low and the modified Bessel function of the first kind approaches to a

constant value for a small argument. The pressure outside gradually decays to zero as the

distance to the centre of the vortex sheet increases. Note how the pressure is matched

continuously across the vortex sheet — another indication for a well-converged eigen-

solution. Figure 12(b) shows the result for N = 2. In this case the lobed profile resembles

an ellipse. The effect of the geometry change is to stretch the pressure field inside the

vortex sheet to have a distribution similar to the shape of the vortex sheet itself. The

pressure outside gradually becomes axisymmetric and decays to zero at a large distance.

The behaviours for N = 3 and 5, as shown in figures 12(c) and 12(d), respectively, are

very similar to N = 2.

Figure 13 shows the pressure fields for mode 0 at a high frequency αa ≈ 2.5. A striking

difference is the much smaller size of contour regions in each sub-figure. This is due to the

fact that the pressure decays more quickly outside the vortex sheet at high frequencies.

This is in accord with the fact that installed jet noise is only significant at low frequencies.

Figure 13(a) again shows the result for N = 1. One difference from figure 12(a) is that

the pressure variation inside the vortex sheet is clear at this high frequency, which is
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Figure 12: The shapes of mode 0 for some strongly lobed geometries when ε = 0.15 at a

low frequency of αa ≈ 0.25: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

what we would expect. When N = 2, the lobed geometry has the same stretching effects

as those shown in figure 12(b), but with a more marked pressure variation. The same

tendencies can be seen from figures 12(c) and 12(d). The relatively insignificant change

to the shape of the mode 0 instability wave, as shown in figures 12 and 13, is consistent

with the fact that both the convection velocity and temporal growth rate remain roughly

the same as those for an axisymmetric jet.

Figures 14 shows the results for mode −1 at αa ≈ 0.25. From section 3.2, we know

that for negative mode numbers the pressure distribution is antisymmetric with respect



Temporal stability analysis of jets of lobed geometry 29

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

y/
a

a)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
b)

-3 -2 -1 0 1 2 3
x/a

-3

-2

-1

0

1

2

3

y/
a

c)

-3 -2 -1 0 1 2 3
x/a

-3

-2

-1

0

1

2

3
d)

0.2 0.4 0.6 0.8

Figure 13: The shapes of mode 0 for some strongly lobed geometries when ε = 0.15 at a

high frequency of αa ≈ 2.5: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

to φ = 0. This is reflected in figure 14. Figure 14(a) very much resembles to that of an

axisymmetric jet. When N = 2, the pressure field still largely resembles to figure 14(a). A

clear change in mode shape occurs when N = 3, as shown in figure 14(c). We can see that

a three-lobe profile causes the two lobes of the pressure field to tilt towards two lobes of

the vortex sheet. This signifies a potentially large change in the convection velocity and

temporal growth rate. The mode shape at N = 5 shows similar characteristics to that at

N = 3. Moreover, there are some small and locale changes in response to the appearance

of local geometry corrugations. We like to point out, however, that although changes are
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Figure 14: The shapes of mode -1 for some strongly lobed geometries when ε = 0.15 at

a low frequency of αa ≈ 0.25: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

observed, the mode shapes are still bearing the signature of conventional sinφ behaviour,

suggesting the appropriateness of our earlier mode labelling strategy.

Figure 15 is similar to figure 14 in almost every aspect, apart from the smaller size of

the contour regions due to the quicker decay of the instability waves outside the vortex

sheet at high frequencies. We therefore omit a repetitive description. Instead, we try to

understand the behaviour of non-identical eigenvalues, as discussed in section 4.3, from

the perspective of mode shapes.

We have observed that for N = 1 and N = 2, the eigenvalue λ−1 is not degenerate any
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Figure 15: The shapes of mode -1 for some strongly lobed geometries when ε = 0.15 at

a high frequency of αa ≈ 2.5: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

more, and consequently, only standing modes are allowed, whereas travelling modes (in

the azimuthal direction, similar to a behaviour of ei(mφ−ωt)) are allowed for N = 3 and 5.

To understand the difference we can compare figures 15(b) and 15(c). We conclude that,

if an eigenvalue is not degenerate, then each of the symmetric plane of the lobe profile

must also be a symmetric (or antisymmetric) plane of the eigen-mode. For example,

in figure 15(b), the lobed profile has two symmetric planes, namely the horizontal and

vertical planes, each of which is also a symmetric or antisymmetric plane of the pressure

field. This is consistent with the fact that λ1 is not degenerate. On the other hand, in
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figure 15(c), the lobed profile has three symmetric planes, but only one of them is the

antisymmetric plane of the pressure field. Hence, λ−1 must be degenerate. Figure 15(d) is

very similar to figure 15(c). For an axisymmetric jet, the vortex sheet profile has infinitely

many symmetric planes, however only two of them are the symmetric and antisymmetric

planes of mode −1 pressure field. Therefore λ−1 is degenerate for a round jet. Note that

the vortex sheet profile in figure 15(a) is close to a displaced circle, but is not strictly

one. It has a slight eccentricity and therefore has a non-degenerate eigenvalue.

The connection between the degeneracy and the mode shape can be understood as

follows. Take figure 15(c) as an example. We mentioned that only one of three symmetric

planes, which are angled by 120◦ from each other, is the antisymmetric plane of the

pressure field. Now we can rotate the pressure field by 120◦, then the resulting pressure

field must also be an eigen-solution of the stability problem, with the same eigenvalue.

Therefore, the corresponding eigenvalue must be degenerate. The combination of the

eigenvectors corresponding to the same eigenvalue creates infinitely many eigen-solutions,

and two of them are those obtained by rotating figure 15(c) by 120◦ and 240◦, respectively.

We expect that the non-degeneracy is likely to occur when the mode number n is

equal to ±N/2, ±N etc. This is because, for mode n, the pressure field normally has 2|n|
lobes, and the symmetric and antisymmetric planes of such a mode can be aligned with

all the symmetric planes of the vortex sheet profile. Comparing with the figures shown

in section 4.3, we find that this is indeed the case. For example, we see λ−1 6= λ1 when

N = 2 and λ−2 6= λ2 when N = 2.

Figure 16 shows the distributions of the pressure field for mode 2 at the low frequency

αa ≈ 0.25. Figure 16(a) shows its similarity to that for an axisymmetric vortex sheet

while figure 16(b) for an elliptic vortex sheet. Note how the earlier conclusion about non-

degeneracy remains valid in figure 16(b-d). Figure 17 shows qualitatively similar results

at a higher frequency so we avoid an unnecessary repetition.

5. Conclusion

In the hope of suppressing installed jet noise, an analytical study of the stability

characteristics of lobed jets of a vortex sheet type is performed. It is shown that the

lobed geometry changes both the convection velocity and the temporal growth rate of

the instability waves. The effects are more pronounced as the number of lobes N and

the penetration ratio ε increase. However, instability waves of different mode numbers

are affected differently by the lobes. For instance, the mode 0 is particularly insensitive

to the geometry changes. Higher modes are more likely to be changed significantly when

both N and ε are sufficiently large. An interesting finding is that when N = 1 and N = 2

different behaviour occurs between the even and odd instability waves of certain orders,

i.e. the corresponding eigenvalue becomes non-degenerate. We show that a necessary

condition for a non-degenerate eigenvalue to exist is that each symmetric plane of the
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Figure 16: The shapes of mode 2 for some strongly lobed geometries when ε = 0.15 at a

low frequency of αa ≈ 0.25: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

lobed vortex sheet must also be a symmetric or antisymmetric plane of the corresponding

mode shape. This is likely to occur when the mode number n is ±N/2, ±N and so on. It

is concluded that in order to suppress instability waves for the sake of reducing installed

jet noise, a large N , such as N = 5, and a large ε are desirable.

The insensitiveness of the mode 0 instability waves to the lobed geometry implies that

using lobed geometry hardly helps in reducing the installed jet noise due to the scattering

of the mode 0 jet instability waves. The reduction of the total installed jet noise would be

somewhat limited. If the modes 0 and 1 (including both modes +1 and −1) instability
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Figure 17: The shapes of mode 2 for some strongly lobed geometries when ε = 0.15 at a

high frequency of αa ≈ 2.5: a) N = 1; b) N = 2; c) N = 3; d) N = 5. The thick black

solid lines show the lobed vortex sheets.

waves are of equal strength, one would expect an observable sound reduction up to 3

dB (in the ideal case). It is, however, worth noting that the current analysis is based

on a parallel vortex sheet assumption. In realistic jets, the jet mean flow is expected to

gradually become axisymmetric downstream the jet exit due to strong jet mixing. To

what extent this smoothing of the lobed geometry would affect the jet stability, hence

installed jet noise, requires further examination. This constitutes part of our future work.
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Appendix A. The kinematic and dynamic boundary conditions

The two equations shown in equation 2.24, together with the kinematic and dynamic

boundary conditions on the vortex sheet, need to be combined to obtain the dispersion

relation. The kinematic and dynamic boundary conditions can be obtained as follows.

As defined above, the vortex sheet profile is given by F(σ, φ) = σ −R(φ) = 0. One can

assume that the perturbed profile can be described by the function

Fp(σ, φ, z, t) = F(σ, φ)− η′(φ, z, t) = 0, (A 1)

where η′(φ, z, t) denotes a small-amplitude perturbation of the radius of the vortex-sheet

profile. The kinematic boundary condition states that, on the perturbed vortex sheet,

DFp(σ, φ, z, t)
Dt

= 0. (A 2)

Substituting the velocity on both sides of the vortex sheet to equation A 2 and linearising

around the unperturbed vortex sheet yields
∂η′

∂t
+ U

∂η′

∂z
−∇ψ− · ∇F = 0,

∂η′

∂t
−∇ψ+ · ∇F = 0.

(A 3)

After invoking the harmonic time and z dependence (eiαze−iωt) and eliminating η′, one

can show that equation A 3 reduces to

(ω − αU)∇ψ+ · n = ω∇ψ− · n, (A 4)

where n denotes the unit vector perpendicular to the vortex-sheet profile, which can be

readily shown to be ∇F/|∇F|. The dynamic boundary condition requires pressure conti-

nuity across the vortex sheet. From the linearized momentum equation, i.e. equation 2.4,

one can readily show that

p′ = −ρ
(
∂

∂t
+ Uz

∂

∂z

)
ψ, (A 5)

where Uz can be either U and 0 depending on which side of the vortex sheet is considered.

Hence substituting the velocity potentials on both sides of the vortex sheet yields that

on the unperturbed vortex sheet (after linearising around the unperturbed vortex sheet)

ωψ+ = (ω − αU)ψ−, (A 6)
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Appendix B. The properties on rotationally symmetric matrices

Since the eigenvector C− of the matrix A fully determines the eigenfunction E−n (σ, φ),

it is important to examine the properties of A and its eigenvectors. In order to do this,

we need to define the rotation of any vector C as CR, such that

(CR)n = C−n, (B 1)

where (CR)n denotes the nth the element of the rotation vector CR and Cn is the nth

element of C. Note here the index of the vector C ranges from −M to M . Similarly, we

can define the rotation of any matrix B as

(BR)ij = B(−i)(−j), (B 2)

where (BR)ij denotes the element of BR at the ith row and the jth column, and Bij are

the indexed elements of matrix B. If a vector C is equal to its rotation, we define it as

symmetric. If, on the other hand, C = −CR, we define it as antisymmetric. Similarly, if a

matrix B is equal to its rotation, we define it as rotationally symmetric. Anti-rotational

symmetry follows a self-explanatory definition. One can now show that (BC)R = BRCR,

because (
(BC)R

)
i

=

M∑
j=−M

B(−i)jCj =

M∑
j=−M

B(−i)(−j)C−j =
(
BRCR

)
i
, (B 3)

where i can be any number between −M to M . Replacing the vector C in the above

equations with a matrix B2 does not invalidate the formula, i.e. (BB2)R = BRBR
2 also

holds. Therefore, if both B and B2 are rationally symmetric matrices, then the product

of them is also rotationally symmetric. This is because

(BB2)R = BRBR
2 = BB2. (B 4)

We now prove that the inverse of a rotationally symmetric matrix, if exists, is also

rotationally symmetric. First, because it is assumed that the inverse of the rotationally

symmetric B exists, we denote its column vectors by Di (i = −M . . .M), i.e.

B−1 = [D−M . . .D0 . . .DM ]. (B 5)

Then according to the definition of the inverse matrix, one has

[BD−M . . .BD0 . . .BDM ] = [I−M . . . I0 . . . IM ], (B 6)

where Ii is the ith column of the identity matrix. Now for any positive number i, one

has

BDi = Ii. (B 7)

If taking the rotation of both sides of equation B 7, one obtains

BDR
i = I−i, (B 8)

where use is made of the fact that IRi = I−i and B is equal to its own rotation. Comparing
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equation B 8 with the −i column of equation B 6, we have DR
i = D−i. This is because

B is invertible, its has a full rank and the solution of equation B 8 is unique. We have

now proved that B− is indeed a rationally symmetric matrix.

Examining the definitions of all the relevant I and K matrices, it is trivial to show

that they are all rotationally symmetric. Based on the two conclusions discussed above,

because the matrix A can be written as

A = Ĩ
−1
k K̃kK̃

−1
d Ĩd,

it can be easily shown that A is rotationally symmetric. One important property that

follows is that if a vector C− is one of the eigenvectors of A, so is C−R. This follows

naturally after taking the rotation of both sides of the eigenvalue equation AC− =

λC−. One consequence of this property is that if an eigenvalue λn of matrix A has

no multiplicity, its eigenvector C− must be either symmetric or antisymmetric. The

second important property is that, for each multiple-folded eigenvalue λn, we can always

construct both a symmetric (e.g. C− + C−R) and an antisymmetric (e.g. C− − C−R)

eigenvector. These properties are essential when we try to assign an order to each obtained

eigenvector in Appendix C.

Appendix C. The mode labelling strategy

It is not difficult to show that, when ε = 0, A is diagonal and its eigenvalues (diagonal

elements) are

λn =
K ′n(αa)In(αa)

Kn(αa)I ′n(αa)
(C 1)

and their corresponding normalized eigenvectors are

C− = [. . . , 0, . . . , 0, . . . , 1, . . .]
T
, (C 2)

where 1 appears at the position of C−n . The well-known results for the cylindrical vortex-

sheet flow are recovered. When ε increases gradually, we expect that the eigenvector

gradually changes to

C− = [. . . , a−n, . . . , a0, . . . , 1− an, . . .]T , (C 3)

where an are complex numbers and |an| � 1. We may use this dominant-component

property of C− to label the order of the eigenfunctions. That is, the eigenfunction

determined by the eigenvector

C− =
[
. . . , C−−n, . . . , C

−
0 , . . . , C

−
n , . . .

]T
(C 4)

has an mode number n, if

||C− −G|| =

√√√√ M∑
j=−M

(|C−j | −Gj)2 (C 5)
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yields a minimum value when

G = [. . . , 0, . . . , 0, . . . , gn = 1, . . .]
T
, (C 6)

where gn is the element of the vector G.

This strategy, however, hinges on the assumption that there is only one dominant

component in the eigenvector C−. However, this is not always possible. For example,

when ε 6= 0, λn and λ−n do not necessarily have to be same any more. As we discussed

above, the eigenvector must be either symmetric or antisymmetric. Since both symmetric

and antisymmetric eigenvectors have two dominant components at n and −n respectively

(λn 6= λ−n, therefore one cannot perform a linear combination of the two corresponding

eigenvectors), it is hard to determine whether this mode should be called mode n or −n.

To overcome this problem, we force each eigenvector to be either symmetric or anti-

symmetric. This is always possible, because, as we proved earlier, the eigenvector C−

must be either symmetric or antisymmetric if λn 6= λ−n. And if λn = λ−n(n > 0), we

can always make use the second property of the eigenvectors and redefine one of the two

corresponding eigenvectors to be symmetric and the other antisymmetric. In doing so, no

matter whether λn and λ−n are equal or not, each eigenvector would have two dominant

components. Now for the symmetric eignvectors if ||C−−G|| obtains its minimum when

G =
[
. . . , g−n =

√
2/2, . . . , 0, . . . , gn =

√
2/2, . . .

]T
, (C 7)

we label the eigenvector as mode n. For anti-symmetric eigenvectors we label it as −n
in a similar manner. For n = 0, it is trivial to label its mode number, and because

we require C−0 6= 0, it can be shown that the eigenvector must be symmetric. By

labelling the eigenvectors in this way, from equation 3.18, this means that all nonnegative

eigenfunctions are even functions of φ and negative ones odd.
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