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Abstract

The evolution of the internal structure of soot particles was studied in a

coflow diffusion flame. Soot particles from the flame were imaged using high

resolution transmission electron microscopy. An algorithm to quantify the

nano-structure of the particles was extended to study the radial distribution

of fringes within the particles. The approximate size of the molecules in

the particles was calculated from the fringe lengths, assuming planar peri-

condensed PAHs. The molecules are slightly larger (∼16 rings) and more

stacked at the core than at the surface (∼12 rings) of the youngest particles

sampled, suggesting that the particles could be formed via the stabilisation

of a nuclei of larger PAHs and condensation of smaller PAHs on their surface.

In the lower-temperature region of the flame the molecules grow mainly at

the surface of the particles, whereas the molecules in the core of the par-

ticles become less stacked and slightly smaller, indicating some degree of
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nano-structural mobility. In the higher-temperature region of the flame, a

graphitisation process takes place, with the development of a shell of longer

(∼20 rings), flatter and more compact molecules, and an immobilised amor-

phous core. At the tip of the flame the particles are oxidised, mainly through

surface oxidation.

Keywords: soot nano-structure, polycyclic aromatic hydrocarbon, high

resolution electron microscopy, lattice-fringe analysis

1. Introduction

Understanding the process of soot formation in combustion systems is of

major importance, both to reduce its emission and the associated adverse

effects on human health [1, 2] and the environment [3, 4], and to produce

carbon-based products under controlled conditions for technological applica-

tions [5, 6, 7].

Transmission electron microscopy (TEM) has long been applied as a tool

to study soot particles [8, 9, 10] and more recently, high resolution trans-

mission electron microscopy (HRTEM) has enabled the detailed observation

and quantification of the internal structure of the particles in the nano-scale

[11, 12]. The morphology and nano-structure of soot can provide insight on

the multiple processes involved in its formation, growth and oxidation [13].

Experimental studies have revealed that young soot particles (<10 nm)

are disordered, consisting of short carbon layers with some curvature [14].

These young particles are thought to be formed from fast coalescence of

precursor particles acting as a nuclei for the condensation of gas phase species

[10, 15, 16, 17]. The nuclei (1–3 nm) are thought to be formed by the collision
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of polycyclic aromatic hydrocarbon (PAH) molecules [16, 18] and clusters of

them [15, 19, 20], as revealed by HRTEM images of soot particles [21, 17].

Mature soot primary particles exhibit a core-shell structure, consisting of a

less structured core, potentially with multiple nuclei [14, 22], and a micro-

crystalline outer shell. Once a threshold temperature is reached an increase

in the C/H ratio and the degree of crystallinity is observed [17]. This increase

in crystallinity is referred to here as graphitisation, and is indicated by the

growth of crystallite plane and the decrease in the crystallite layer ‘wrinkling’

and inter-layer spacing [23, 24].

In addition to growth and graphitisation, oxidation plays an important

role in many combustion systems. The reactivity of soot particles is im-

portant when considering their oxidation in particle filters for diesel engines

[25, 26]. The oxidative reactivity of soot particles is greatly influenced by

the internal structure of the particles [27, 28]. Particles that exhibit a higher

graphitic order are harder to oxidise compared to less structured particles,

due to the lower relative ratio of active sites and lower porosity inside the

particle [25, 29].

HRTEM combined with fringe analysis has been increasingly used in re-

cent years to study the mechanisms of soot formation and oxidation under

different synthesis conditions [13, 30, 31, 32, 33, 34]. All of these studies eval-

uate fringe characteristics such as length, curvature, stacking and inter-planar

distance in the soot aggregates. However, they do not take into account that

these properties change from the particle core towards the surface, a key el-

ement in elucidating particle formation and oxidation. While fringe lengths

have been plotted as a function of radial distance previously [35], this was
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done only for 1 particle. Full statistics of the radial distribution of fringes

within the soot primary particles and their evolution with particle matura-

tion have not yet been analysed. This can provide significant insight on the

core-shell development as soot grows, matures and oxidises.

In this work we investigate the internal structure of soot primary particles

at different stages of maturity. Soot is thermophoretically sampled from the

centreline of an ethylene coflow diffusion flame at different heights above the

burner (HAB). The soot samples were imaged in a HRTEM and analysed

using lattice-fringe algorithm. The morphology and nano-structure of the

particles are qualitatively and quantitatively evaluated. A new feature was

added into our fringe analysis code [34] that allows us to map the fringes

inside single spherical primary particles with reference to the particle cen-

tre. The radial distributions of the fringes length, tortuosity and inter-fringe

spacing at different regions within the particles were used to investigate the

different processes involved in their formation, growth and oxidation through-

out the flame.

2. Experimental methodology

The burner used in this study was designed and built at Yale Univer-

sity 1, and was selected as one of the target systems for soot studies at the

International Sooting Flame workshop 2. The burner consists of a central

1Yale Coflow diffusion flames steady flame burner: http://guilford.eng.yale.edu/

yalecoflowflames/steady_burner.html
2Laminar flames - Co-flow laminar diffusion flame: https://www.adelaide.edu.au/

cet/isfworkshop/data-sets/laminar/
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fuel tube with an outer diameter of 3/16” (11/64” inner diameter) and a

concentric air co-flow tube with an inner diameter of 2.9”. Herein, we report

measurements of an atmospheric pressure ethylene flame diluted by nitro-

gen (60%C2H4 - 40%N2), which corresponds to the ISF Co-flow 3c flame 2 .

The fuel, nitrogen and air flow rates are 134.7 ml/min (±1%), 91.2 ml/min

(±1%) and 89.1 l/min (±2%) respectively, set by Vögtlin Red-Y digital flow

controllers. The visible flame height is approximately 50 mm from the fuel

tube exit. The burner is mounted on a motorized translational stage that

moves it both horizontally and vertically. The flame temperature was mea-

sured with an uncoated R-type thermocouple with a wire diameter of 75 µm

and corrected for radiation losses as detailed in [36].

Air

Fuel + N2

Solenoids

Figure 1: Representation of the burner1 and fast-insertion sampling.

Soot was sampled using a fast-insertion thermophoretic sampling system

[34]. The sampling instrument consists two push-action solenoids (MCSMT-

3864S12STD, 12 VDC) mounted in front of each other and operating in

opposite directions. The system is controlled by a programmable logic con-

troller that triggers each solenoid with a lag time between them, this time

being adjustable to change the residence time of the sampler in the flame.

The sample holder is mounted on the plunger and consists of two metallic
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sheets used to hold the TEM grid. The design of the sampler was improved

from our previous studies [34] according to the suggestions made by Lee and

Yang [37] to minimise the flame disturbance: the aluminium sheet tongue in-

serted in the flame was trimmed to a width of 4 mm and thickness of 0.8 mm.

A schematic of the burner and sampling system is presented in Figure 1.

For all the sampling positions, the exposure of the grids was between

30-46 ms in order to minimise flame disturbance, contamination from other

flame streamlines and maximise grid coverage. Contaminations of the sample

by large aggregates from the wings was estimated to be ∼15%. This effect

is expected to be strongest at the lowest HAB (10 mm HAB), where the

contamination from other streamlines should be more significant because of

lower sample coverage. However, at lower HABs (10, 16, 20 and 25 mm) it

was possible to detect the contamination from the wings and eliminate it from

the analysis; unfortunately, at larger HAB the contamination could not be

isolated. Nevertheless, as HAB increases the differences in the aggregate and

primary particle sizes between the wing and centreline are smaller [38]. At

the top of the flame (43 and 49 mm) the effect of contamination is considered

negligible.

The TEM sampling grids were carbon-supported grids with a diameter

of 3.05 mm (holey carbon film on 200 mesh copper grids for high resolution

imaging, and carbon film on 400 mesh copper grid for low resolution imaging).

The flame was sampled at the centreline at different HAB. At all HAB the

probe was offset 0.2 mm radially in order to best capture the particles at

the centreline, as suggested by the detailed flow simulations performed by

Kempema and Long [38] on a similar flame.
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The samples were examined on a 200 kV Jeol 2100F TEM using a ZrO/W

Schottky field emission gun. TEM images were taken with a magnification of

500,000× for fringe analysis, 30,000× for primary particle size and 10,000×

for aggregate size measurement. The aggregate size was measured from the

projected area, as the size of a sphere with equivalent projected area. An

algorithm that automatically detects the aggregates in the TEM images was

developed in MATLAB. The primary particle size was measured by manually

fitting circles around the particles on each TEM image using MATLAB. More

than 1000 primary particles and aggregates were analysed at each sampling

position.

For lattice-fringe characterisation at least 25 images were analysed at each

HAB with a total particle surveyed area between 7300 and 15200 nm2. To

study the internal structure of spherical primary particles a minimum of 20

spherical-like particles were analysed at each HAB.

3. Lattice-fringe analysis

The TEM images were analysed with an in-house lattice fringe algorithm

implemented in MATLAB and previously described in Botero et al. [34]. A

region of interest (ROI) is selected for analysis and then the image contrast

is improved with an automatic contrast enhancement (histogram equalisa-

tion), followed by a series of image transformations (gaussian low-pass filters

and bottom hat transformation). The image is then binarised using Otsu’s

method. The binary image is skeletonised with a thinning algorithm, iso-

lated pixels are eliminated and all fringes are screened to remove branching

(this is a new feature explained below). Fringes below 0.483 nm (naphtha-
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lene) are discarded, and only fringes with a separation between 0.3345 nm

(002 graphite distance) and 0.6 nm (after which Van der Waals forces are

negligible) are considered to be stacked. Finally, the length and tortuosity

(τ , fringe length divided by fringe end point distance) is calculated for all

the detected fringes as well as the separation between stacked fringes (see

Figures 2a and b).

Some additional features were added to the previous algorithm:

• Branch trimming: fringes with branches are no longer eliminated or

broken at the branch point. Each fringe that presents branching is

analysed and the main backbone of the fringe is kept while separat-

ing the smaller branches. The new fringes generated in the branch

separation are also analysed until all branching is removed.

• Fringe position with respect to a reference point: the algorithm allows

the selection of a reference point in the image and calculates the dis-

tance of each detected fringe from the reference point. The distance is

calculated as the average of the euclidean distance of each pixel in the

fringe with respect to the reference point.

• Fringe distribution within a circular region (primary particle): the al-

gorithm allows us to draw a circle around a specific region and estimate

the fringes location with respect to the circle centre, as well as the circle

diameter (Figure 2c).

For particles that are nearly spherical, the location of the fringes with

respect to the particle centre enables the study of the internal distribution of

the fringes (length, tortuosity and spacing) within the particle. To study the
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internal particle structure at each HAB, at least 20 spherical-shaped primary

particles were analysed. A total of 209 primary particles were analysed from

130 images. Given that each particle has a different diameter, the position

of the fringes was normalised by the particle diameter, such that the radial

distance to the particle centre varies from 0 to 1, where 0 represents the

particle centre and 1 represents the particle surface, as shown in Figure 2d.

In this way, the fringe distribution from different particles can be compared

with respect to their relative position within the particle. Other partitioning

schemes were attempted, such as equal area shell, and similar trends were

found, indicating that the radial partitioning was not influencing the resulting

trends.

10 nm 10 nm

radius

0.2

0.6
0.8

0.2

0.4
0.6
0.8
1a b c d

Figure 2: Schematic of the fringe mapping with respect to particle centre: (a) image of

spherical-like soot primary particle, (b) overlayed fringe mapping, (c) mapped fringes and

selection of a circle that outlines the particle, (d) different particle regions normalised by

the particle radius.

4. Results and Discussion

A brief discussion of the soot morphology is presented to give an overview

of the main particle processes occurring in the flame at different HAB. These

processes are intrinsically related to the particle internal structure. A thor-
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ough discussion of the morphology of the particles in this flame is given

elsewhere [39].

Figure 3 illustrates the evolution of soot morphology and nano-structure

along the flame centreline. The left-hand panel shows the mean aggregate

diameter 〈Dp〉 and mean primary particle diameter 〈dpp〉 estimated from

TEM micrographs. Soot is first detected at 10 mm HAB and consists of small

single particles about 12 nm in diameter with little evidence of aggregation.

By 20 mm HAB the primary particle size grows to about 20 nm and still

mostly single primaries are observed. At 25 mm HAB there are signs of

aggregation and aggregate sizes are almost double the size of the primary

particles. At 31 mm HAB there is a sharp increase in the mean aggregate

size (∼100 nm) and a slight decrease in the primary particle size, which

suggests an increase in agglomeration and a decrease in surface growth and

coalescence.

Towards the tip of the flame, the aggregate size remains fairly constant,

whilst the primary particle size gradually decreases. This decrease occurs in a

region (between 31 and 37 mm HAB) where oxygen diffusion to the centreline

is not expected to be strong and where there is a transition to higher flame

temperatures (as shown in Figure A.9). We have recently shown that the

decrease in primary particle size in tis region could be due to the evaporation

of condensed hydrocarbons on the surface of the parimary particles combined

with the compaction induced by graphitisation [39]. The last hypothesis is

consistent with the decrease in inter-fringe spacing and increase in the degree

of stacking at those HABs, which will be discussed in the following sections.

At the tip of the flame, both aggregate and primary particle size decreases
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<Dp> = 69.6   1.19  nm
<dpp> = 11.8   0.37 nm 

<Dp> = 99.9   1.41 nm
<dpp> = 16.2   0.37 nm 

<Dp> = 98.6   1.79 nm
<dpp> = 19.2   0.38 nm 

<Dp> = 93.7   1.92 nm
<dpp> = 23.1   0.46 nm 

<Dp> = 52.2    0.58 nm
<dpp> = 28.3   0.80 nm 

<Dp> = 25.8   0.36 nm
<dpp> = 20.4   0.60 nm 

<Dp> = 16.7   0.15 nm
<dpp> = 15.4   0.46 nm 

<Dp> = 12.0   0.14 nm
<dpp> = 11.8   0.33 nm 

49 mm HAB

43 mm HAB

37 mm HAB

31 mm HAB

25 mm HAB

20 mm HAB

16 mm HAB

10 mm HAB

Figure 3: Soot morphology evolution in the flame. Left: mean aggregate size 〈Dp〉, mean

primary particle size 〈dpp〉 and representative TEM images of soot (scale bar of 200 nm);

Centre: flame image; Right: fringe mapping on a representative particle.

substantially, likely due to oxidation as reported previously in similar flames

[36, 40, 41, 42].

The results of the lattice-fringe analysis were evaluated in two ways. First,

the image analysis was performed on the aggregates irrespective of the par-

ticle morphology and all the mapped fringes were analysed together at each
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HAB to assess the general soot nano-structure, the results are discussed in

Section 4.1. Second, for primary particles with spherical shape, the fringes

were mapped and analysed with respect to the particle centre to assess the

internal structure of the primary particles, the results are discussed in Sec-

tion 4.2.

To follow the size change of the molecules present in the soot particles as

they travel through the flame, the fringe length values were converted into

number of aromatic rings using Equation 1. This correlation between the

number of aromatic rings (M) and conjugation length (La) [43] was derived by

Miller et al. from studies of optical band gaps of PAHs in flames [44, 45], and

is limited to planar (aromatic structures containing only hexagonal rings),

pericondensed, nearly-circular PAHs with D2h symmetry.

M1/2

5.8076
=

La

1.4787
(1)

Cross-linked aromatic compounds and PAHs with aliphatic side chains

have been observed to be present in soot [46]. Also, fringe curvature has

been detected in the soot particles, which is related to the presence of odd-

membered, non-hexagonal rings and cross-linkage [47, 43]. However, the

approximation that all the PAHs are planar, pericondensed, without aliphatic

bonds, used by Miller et al. [45] in Equation 1, is considered a reasonable

assumption as these PAHs are shown to be thermodynamically more stable

at high temperatures [48].

4.1. General nano-structure

The distribution of the fringe length, tortuosity and spacing (for stacked

fringes) were evaluated at each sampled HAB. A kernel density estimation
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is used to estimate the probability density function from the discrete ob-

servations. Representative HRTEM images of soot particles at each HAB

can be seen in Figures A.10, A.11. The distribution of the number of aro-

matic rings in the PAHs in the aggregates analysed at each HAB is presented

in Figure 4. In all cases, the PAH size distribution is similar and rather

broad. The most abundant PAHs have approximately 7 aromatic rings (size

of coronene), while a considerable amount of PAHs with 20 rings were ob-

served. Notably, the assigned number of aromatic rings is less sensitive to the

fringe length for larger PAHs. This is related to the assumptions made on

the PAH structure discussed in the previous section. Adding one aromatic

ring to a PAH with 7 rings (coronene) represents an increase of 0.046 nm

in the fringe length, whereas for a 14 ring PAH (circumpyrene) the increase

in fringe length is of 0.033 nm. Given that the pixel size of the images is

approximately 0.037 nm, we expect the uncertainty in the PAH estimation

to increase with the fringe length size, especially for PAHs with more than

15 rings.

In Figure 5 the distributions of fringe tortuosity and spacing are pre-

sented. The fringe tortuosity is a measure of the curvature of the fringes.

The differences in fringe tortuosity are subtle along the flame, as shown in

Figure 5a. Most of the fringes are almost straight (τ <1.15, considered flat)

or present a low degree of curvature (1.15< τ <1.35), indicating the presence

of a maximum one or two pentagonal rings in the PAH [33].

The inter-fringe spacing distribution (Figure 5b) shows some differences

between HAB. Notably at 10 mm HAB it seems that the stacked fringes have

larger spacing, and at 43 mm HAB the smallest spacing.
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Figure 4: Kernel density of the number of aromatic rings at different HAB with an illus-

tration of the PAH molecules of different sizes, (normal kernel, bandwidth of 2). Inset:

corresponding kernel density of the fringe lengths, (normal kernel, bandwidth of 0.1).

Fringe statistics were calculated from the measured data in order to evalu-

ate the differences in soot nano-structure along the flame (Figure 6). Given

that the fringe length and tortuosity distributions are negatively skewed, the

empirical median is calculated. For the inter-fringe spacing the mean was

used instead.

A more graphitic structure develops as the soot particles travel though the

flame, with an increase in the PAH size, a decrease in the inter-layer spacing

(see Figure 6a) and an increase in the planar structures (see Figure 6b).

The particles are mainly formed of PAHs containing between 14 and 20

aromatic rings, either flat (40-50%) or with low curvature (∼40%). At the

tip of the flame there is a decrease in PAH size and an increase in the inter-

fringe spacing, which is attributed to oxidation. At the lowest HAB, PAHs

with approximately 14 aromatic rings (size of circumpyrene) are encountered,

14



1 1.2 1.4 1.6 1.8 2

Fringe tortuosity

0

1

2

3

4

N
um

be
r

de
ns

ity
, n

m
-1

10 mm HAB
20 mm HAB
31 mm HAB
43 mm HAB
49 mm HAB

(a)

0.35 0.4 0.45 0.5 0.55 0.6

Inter-fringe spacing, nm

1

2

3

4

5

6

7

N
um

be
r 

de
ns

ity
, 

nm
-1

10 mm HAB
20 mm HAB
31 mm HAB
43 mm HAB
49 mm HAB

(b)

Figure 5: Kernel density of (a) fringe tortuosity with and schematic of representative

fringes (normal kernel, bandwidth of 0.05) and (b) inter-fringe spacing (normal kernel,

bandwidth of 0.02) at different HAB. Fringes with τ <1.15 are considered flat, 1.15<

τ <1.35 slightly curved, and τ > 1.35 highly curved. Error bars correspond to the standard

error.

which is consistent with values reported in similar flames [43, 44].

4.2. Evolution of the internal structure of primary particles in the flame

Images showing the evolution of soot nano-structure in the flame (right

side of Figure 3) reveal that as the particle travels along the centreline, a

core-shell structure develops, which is indicative of graphitisation processes

[49]. In order to investigate the changes in the internal structure of the

particles at different maturity stages, the fringes were divided into five regions

based on the normalised radius from the centre (0.0–0.2, 0.2–0.4, 0.4–0.6, 0.6–

0.8, 0.8–1.0). The median number of aromatic rings in the PAHs, the fringe

tortuosity, as well as the mean inter-fringe spacing and the percentage of

stacked fringes were calculated for each region at different HABs, and are
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Figure 6: Evolution of the fringe parameters with HAB: (a) Median number of aromatic

rings in a PAH (left axis) and mean inter-fringe spacing (right axis); (b) Median fringe

tortuosity (left axis) and percentage of fringes with high, low and no curvature (right axis).

The error bars correspond to the standard error.

presented in Figure 7.

At the lowest HAB (10 mm) the young primary particles have poor struc-

tural ordering without a distinctive core-shell structure. The median PAH

size is larger at the particle core (∼16 aromatic rings), and it decreases

slightly towards the particle shell (∼13 aromatic rings), as shown in Fig-

ure 7a. The PAHs have a larger tortuosity (Figure 7b) and are poorly

stacked, with the largest inter-fringe spacing (Figure 7c) and the lowest

percentages of stacked fringes (Figure 7d), particularly in the particle outer

region (normalised radius of 0.6–0.8 and 0.8–1.0). The observed tortuosity

indicates the presence of curved particles. It has been shown that the curva-

ture is likely to be due to the inclusion of 5-membered rings and results in

a flexoelectric dipole moment [50], which could have interesting implications

16



0.2 0.4 0.6 0.8 1

Normalised particle radius

10

15

20

25

M
ed

ia
n 

nu
m

. o
f r

in
gs

 in
 th

e 
P

A
H

s 10 mm
20 mm
31 mm
43 mm
49 mm

(a)

0.2 0.4 0.6 0.8 1

Normalised particle radius

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

M
ed

ia
n 

fr
in

ge
 to

rt
uo

si
ty

(b)

0.2 0.4 0.6 0.8 1

Normalised particle radius

0.41

0.42

0.43

0.44

0.45

0.46

M
ea

n 
fr

in
ge

 s
pa

ci
ng

, n
m

(c)

0.2 0.4 0.6 0.8 1

Normalised particle radius

45

50

55

60

65

70

75

80
%

 o
f s

ta
ck

ed
 fr

in
ge

s

10 mm
20 mm
31 mm
43 mm
49 mm

(d)

Figure 7: Fringe characteristics at different regions within the particle. A normalised

particle radius of 0 corresponds to the particle centre and 1 to the particle surface. (a)

number of aromatic rings in the PAHs, (b) fringe tortuosity, (c) fringe spacing and (d)

percentage of stacked fringes. The error bars correspond to the standard error, selected

values are presented to avoid cluttering and are representative for all the data points.

on the stabilisation of soot nuclei.

These results suggest that the transition from precursor particles to small
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primary particles (∼12 nm) could be a result of the formation of stable nu-

clei of larger and relatively more stacked PAHs, followed by the subsequent

condensation of smaller PAHs on their surface. The existence of young parti-

cles with a graphitic core and an amorphous outer shell has been previously

observed by di Stasio [10], who named them ‘elementary particles’. He sug-

gested these particles could be formed by the coagulation of nucleus doublets.

This implies that coagulation and fast rounding of these particles (by con-

densation of smaller PAHs) could also be a reason for the appearance of

larger molecules at the core. Different internal structures were observed in

the young soot particles as shown in Figure 8, some without clear evidence

of an internal nucleus, and some exhibiting fringes oriented around single or

multiple points inside the particle.

Figure 8: Representative HRTEM images of soot particles sampled at 10 mm HAB. The

scale bar corresponds to 10 nm.

At 20 mm HAB no shell has yet formed around the primary particles. The

fringe analysis shows that the PAHs grow slightly in size at the middle and

outer regions of the particles. They show a decrease in the inter-fringe spac-

ing and considerable increase in the percentage of stacked fringes, mainly at

the particle outer regions. As the primary particle travels further through the
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flame, there is a substantial increase of the PAH sizes mainly at the surface

but progressively also towards the centre of the particles. By 43 mm HAB

a thick shell has developed (between 0.6–0.8 and 0.8–1.0 normalised radius),

with median PAH sizes of more than 20 aromatic rings, almost 80% of them

stacked. Simultaneously, the percentage of flat fringes at the particle shell

increased from 39% at 10 mm HAB to 48% at 43 mm HAB. Overall, the

inter-fringe spacing decreases with particle growth and maturation with a

larger degree of stacking mainly between the middle and outer region of the

particle (0.6–1.0 normalised radius). These results together with the flame

temperature profile, presented in Figure A.9, indicate that the graphiti-

sation of the soot particles starts at high temperature regions of the flame

(>1500 K) [13, 24, 51, 52] and achieves its highest stage at 43 mm HAB,

where the maximum temperature is reached (1945 K).

Notably, in the first half of the flame (from 10 to 30 mm HAB) at the

innermost region of the particles (0.0–0.2 normalised radius), there is a de-

crease of the degree of stacking (from 62% to 50%) and to a minor extent

of the median PAH size (from 16 to 12 aromatic rings), as shown in Fig-

ures 7a, 7d. At flame temperatures, this could suggest some degree of

nano-structural mobility at the core of the particles that would allow the

re-arrangement of the molecules [53], with the smaller PAHs concentrating

in the core. This is in agreement with a molecular dynamics study of clusters

of pyrene and coronene, where Chen et al. [20] concluded that the individual

PAH molecules within incipient soot particle are highly mobile at flame tem-

peratures. At the top of the flame (from 30 to 43 mm HAB), the degree of

stacking increases and the median size of the PAHs at the innermost region
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of the particle is almost constant (around 12 aromatic rings), suggesting the

molecules are locked or immobilised at the core of the particle (Figure 7d).

At the tip of the flame (49 mm HAB) the PAH sizes decrease mainly

at the particle shell and an increase in the inter-fringe spacing is observed.

This suggests that the oxidation process mainly occurs at the particle shell,

even though these molecules should be less reactive than those at the inner

regions of the particle due to their higher structural order [29, 54]. The

internal burning of the primary particles is subject to a large extent to the

penetration of oxidising species to the internal surface of the particle giving

access to the edges of internal crystallite surfaces [25]. In the present case

there seems to be poor oxygen diffusion to the centre of primary particle [55],

hence no internal burning. Interestingly, at the particle core the tortuosity

of the fringes decreases and their degree of stacking increases. This could be

due to thermally-driven graphitisation given the high temperatures and the

possible lack of internal oxidation [13, 56].

5. Conclusions

The evolution of the internal nano-sturcture of soot particles in a diffu-

sion flame was studied using HRTEM and lattice-fringe analysis. For the

first time, the fringe distribution with respect to the primary particle radius

was evaluated and used to investigate the different processes involved in the

formation and growth of soot nano-particles.

The nascent particles have low nano-sturctural order without a core-shell

type of structure. The sizes of the PAH molecules inside these particles are

similar, mainly between 12 and 16 aromatic rings. The core of these particles
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have slightly bigger PAHs with a higher degree of stacking compared to the

outer regions, suggesting they could be formed from the condensation of

smaller PAH on the surface of a flame-stabilised nuclei of larger PAHs.

As the primary particles travel through the first half of the flame (10 to

25 mm HAB), where temperatures are relatively lower, particle growth is

dominated by coalescence and PAH condensation from the gas phase. The

PAHs in the particle surface become larger, less curved and more stacked.

Meanwhile, the PAHs in the innermost region of the particles are slightly

smaller and less stacked, indicating some degree of nano-structural mobility

at the core of the particles at flame temperatures that allows the diffusion of

smaller PAHs to the core.

Towards the top of the flame (25 to 43 mm HAB) the primary particles

cease to grow and starts to shrink. A graphitisation process takes place

indicated by the increase of PAH size and degree of order. This process

starts from the perimeter and expands towards the middle off the particle,

developing a core-shell structure with a progressively thicker shell of flatter

and more compact PAHs and an immobilised amorphous core.

Finally, at the tip of the flame (49 mm HAB), the aggregate and pri-

mary particle size decreases. The PAH size and fringe stacking is reduced

only at near the surface of the particles, accompanied by an increase in the

inter-fringe spacing, which indicates that soot oxidation in this flame pre-

dominantly occurs on the surface of the soot primary particle. At the core of

these particles, the PAH size and inter-fringe spacing remains unchanged, but

the fringes are less curved and have a higher degree of stacking, indicating

graphitisation probably due to the high temperatures and low penetration of
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oxidising species.
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Kraft, M.. PAH structure analysis of soot in a non-premixed flame

using high-resolution transmission electron microscopy and optical band

gap analysis. Combustion and Flame 2016;164:250–258. doi:10.1016/j.

combustflame.2015.11.022.

[44] Adkins, E.M., Houston, J.H.. Extinction measurements for optical

band gap determination of soot in a series of nitrogen-diluted ethy-

29

http://dx.doi.org/https://doi.org/10.1016/j.proci.2018.06.185
http://dx.doi.org/10.1016/j.fuel.2014.02.005
http://dx.doi.org/https://doi.org/10.1016/j.fuel.2015.12.014
http://dx.doi.org/https://doi.org/10.1016/j.fuel.2015.12.014
http://dx.doi.org/10.1016/j.fuel.2017.09.036
http://dx.doi.org/10.1016/j.fuel.2017.09.036
http://dx.doi.org/10.1016/j.combustflame.2015.11.022
http://dx.doi.org/10.1016/j.combustflame.2015.11.022


lene/air non-premixed flames. Physical Chemistry Chemical Physics

2015;17:2686–2695. doi:10.1039/C4CP04452E.

[45] Miller, J.H., Herdman, J.D., Green, C.D., Webster, E.M.. Ex-

perimental and computational determinations of optical band gaps for

PAH and soot in a N2 - diluted, ethylene/air non-premixed flame.

Proceedings of the Combustion Institute 2013;34(2):3669 – 3675. doi:

10.1016/j.proci.2012.05.054.

[46] Schulz, F., Commodo, M., Kaiser, K., Falco, G.D., Minutolo, P.,

Meyer, G., et al. Insights into incipient soot formation by atomic

force microscopy. Proceedings of the Combustion Institute 2018;doi:

https://doi.org/10.1016/j.proci.2018.06.100.

[47] Wang, C., Huddle, T., Huang, C.H., Zhu, W., Vander Wal, R.L.,

Lester, E.H., et al. Improved quantification of curvature in high-

resolution transmission electron microscopy lattice fringe micrographs

of soots. Carbon 2017;117:174 – 181. doi:10.1016/j.carbon.2017.02.059.

[48] Stein, S.E., Fahr, A.. High-temperature stabilities of hydrocarbons.

The Journal of Physical Chemistry 1985;89(17):3714–3725. doi:10.1021/

j100263a027.
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Appendix A. Supplemental Material

Appendix A.1. Temperature profile
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Figure A.9: Temperature profile along the centreline of the flame.
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Appendix A.2. HRTEM images at each HAB

10 mm HAB

16 mm HAB

20 mm HAB

25 mm HAB

Figure A.10: Representative HRTEM images of soot particles sampled in the first half of

the flame. The scale bar corresponds to 10 nm.
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31 mm HAB

37 mm HAB

43 mm HAB

49 mm HAB

Figure A.11: Representative HRTEM images of soot particles sampled in the top of the

flame. The scale bar corresponds to 10 nm.
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