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Abstract Topology optimization has proven to be viable for use in the preliminary phases
of real world design problems. Ultimately, the restricting factor is the computational ex-
pense since a multitude of designs need to be considered. This is especially imperative in
such fields as aerospace, automotive and biomedical, where the problems involve multiple
physical models, typically fluids and structures, requiring excessive computational calcula-
tions. One possible solution to this is to implement codes on massively parallel computer
architectures, such as Graphics Processing Units (GPUs). The present work investigates the
feasibility of a GPU-implemented Lattice Boltzmann method for multi-physics topology
optimization for the first time. Noticeable differences between the GPU implementation and
a Central Processing Unit (CPU) version of the code are observed and the challenges asso-
ciated with finding feasible solutions in a computational efficient manner are discussed and
solved here, for the first time on a multi-physics topology optimization problem. The main
goal of this paper is to speed up the topology optimization process for multi-physics prob-
lems without restricting the design domain, or sacrificing considerable performance in the
objectives. Examples are compared with both standard CPU and various levels of numerical
precision GPU codes to better illustrate the advantages and disadvantages of this imple-
mentation. A structural and fluid objective topology optimization problem is solved to vary
the dependence of the algorithm on the GPU, extending on the previous literature that has
only considered structural objectives of non-design dependent load problems. The results of
this work indicate some discrepancies between GPU and CPU implementations that have
not been seen before in the literature and are imperative to the speed-up of multi-physics
topology optimization algorithms using GPUs.
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1 Introduction

Over the past two decades topology optimization has rapidly matured to a point where it
can be used in real world design applications with minimal limitations (Munk et al (2015)).
However, one such limitation is the computational resources required for large scale prob-
lems (Deaton and Grandhi (2014)). For engineering problems, the design space being con-
sidered is large and the objective function typically involves multiple, complicated, physical
phenomena. Therefore, this leads to computationally intensive problems. The aim of this pa-
per is to determine the feasibility of using GPUs with multi-physics topology optimization
algorithms for real world design problems. The increase in computational efficiency due to
the GPU architecture and quality of the final solutions are compared with the same problem
implemented on a CPU.

Recently, reductions in computational expense are achieved by increasing the level of
parallelism, i.e. increasing the number of computational cores while maintaining the same
clock frequency, in the code (Zegard and Paulino (2013)). This has meant the development
and use of many-core processors, which are processors that have evolved to a high-level
of parallelism, for such tasks. GPUs are a class of many-core processors. GPUs have a
different design approach compared with CPUs. CPUs are a general purpose multi-core
processor containing many high level instructions, whereas GPUs are many-core processors
that have a faster and smaller set of instructions, but are capable of handling a large number
of concurrent threads. Therefore, GPUs can be used to drastically speed up computationally
intensive problems and reduce the overall computational expense.

Topology optimization, generally speaking, aims to evolve an initial design towards
an optimum one with regards to minimizing a given objective under several constraints
(Bendsge and Sigmund (2003)). Several approaches have been developed to guide the evolu-
tion of the topology towards the optimum (Sigmund and Maute (2013); Deaton and Grandhi
(2014); Munk et al (2015)). These approaches can be divided into two main fields: continu-
ous and discrete. Continuous methods, such as the Solid Isotropic Material with Penalization
(SIMP) (Bendsge (1989); Rozvany et al (1992)), apply a relaxation on the design variables
so that their values can be inside the entire range defined by [0, 1]. Discrete methods, such
as Evolutionary Structural Optimization (ESO) (Xie and Steven (1993)) and Level-Set (LS)
(Osher and Sethian (1988)), do not relax the problem and hence restrict the design vari-
ables to the boundaries of the range {0, 1}. While some effort using SIMP and LS methods
have been solved with GPU architectures (Aissa et al (2014)), only one recent study exists
with ESO methods (Martinez-Frutos and Herrero-Perez (2017)) and only with structural
optimization.

Application of the SIMP method to large-scale problems, with millions of design vari-
ables, has proven to be computationally demanding and therefore requires a high level of
parallelism (Aissa et al (2014)). As an example, the work of Mahdavi et al (2006) demon-
strates a SIMP method for topology optimization with parallelization on a CPU. Further,
Vemaganti and Lawrence (2005) look at three different parallel linear solvers for SIMP
topology optimization showing speed-up and reduced effects of ill-conditioning in the fi-
nite element problems. However, GPUs as an alternative low-cost-high-performance sys-
tem have also been tested for solving topology optimization problems with SIMP methods.
Schmidt and Schulz (2011) use SIMP on structured meshes with a matrix-free conjugate
gradient solver, showing that it is faster than when a CPU with 48 cores shared memory
is used. Such a strategy was also employed by Suresh (2013) for solving of the system of
equations of elasticity, achieving speedups of one order of magnitude. A GPU-implemented
SIMP method with a preconditioned conjugate gradient solver applied to a 2D plate with a
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heat source yielded a speed up of 20 times compared with a single CPU and 3 times against
a multi-threaded CPU (Wadbro and Berggren (2009)). This study was limited to single-
precision format, due to the lack of a native double-precision support for early GPUs, which
meant that convergence of the solver was not ensured due to round-off errors. Recently, a
SIMP approach for unstructured meshes was implemented on a GPU by Zegard and Paulino
(2013), focusing on assembly of the stiffness matrix. Furthermore, Wu et al (2016) used the
geometric multi-grid preconditioning for the GPU instance of preconditioned conjugate gra-
dient solvers to perform a reduced number of Finite Element Analyses (FEA), and iterations
per FEA, in the SIMP algorithm. This is achieved by reducing the tolerance of the iterative
method to increase the GPU performance. However, by using this configuration the solution
is likely to arrive at a local optimum, meaning a more sound solution might exist (Wu et al
(2016)). This loss in accuracy was assumed by the authors for the sake of efficiency.

In topology optimization the LS method evolves the boundaries of the structure by mini-
mizing a given objective. The boundary evolution is solved using a finite difference method,
which acts on a reduced group of elements, making it suitable for efficient GPU processing
(Micikevicius (2009)). The LS method was implemented on a GPU architecture by Herrero
et al (2013). Later, an inverse homogenization problem was solved with a GPU implementa-
tion of a LS method by Challis et al (2014), targeting high resolution topology optimization.
They recorded an increasing speed-up with problem size, reaching 13 times speed-up for
3D problems containing over 4 million design variables.

Meta-heuristic optimization methods, where no gradients are taken, can also be used
to solve real world problems of high-dimensionality (Martins and Lambe (2013)). These
methods often use nature inspired algorithms, which are ideal for intelligently harnessing
the capacity of GPUs. One such method, which uses a Tabu Search algorithm, has been im-
plemented on a GPU architecture (Tsotskas et al (2014)). They showed that for problems
of high dimensionality, defined as 270 variables or more, the GPU-implemented version
of the code outperforms the CPU version. Up to a 12% speed up was recorded. Later, the
same authors developed a GPU-implemented Lattice Boltzmann Method (LBM) and ap-
plied the TS algorithm to a micro fluidic device (Tsotskas et al (2015)). They noted that
the most computationally intensive part of the process was the simulation of the flow via
LBM. Therefore, the TS algorithm was employed on a CPU, since relatively small speed-
ups were achieved (Tsotskas et al (2014)), and the LBM was employed on a GPU. The TS
combined with the GPU-LBM delivered results approximately 20 times faster compared to
an earlier system that employed a CPU-based LBM code (D’ Ammaro et al (2010)). Re-
cently, Laniewski-Wollk and Rokicki (2016) developed a discrete adjoint formulation for a
wide class of LBMs. They implement their LBM on a GPU architecture for channel flow to
design a free-topology mixer and heat exchanger using the Method of Moving Asymptotes
(MMA) and a simple descent algorithm, separately. While the method was not compared to
a CPU implementation of the code, it was shown to be efficient by demonstrating that the
code had nearly linear weak scaling.

The limited literature on GPU-implemented topology optimization shows that the solver
is the most time consuming part of the optimization and hence should be the focus during
the adaptation to GPU architecture (Aissa et al (2014)). Furthermore the other procedures,
such as the optimizer, are not computationally expensive and therefore not directly rele-
vant for good acceleration through GPU. Hence, studies have focused on implementing the
solver on GPU architectures without topology optimization. For purely structural topology
optimization a finite element solver is used to determine the displacements of the structure
under a given load. Cecka et al (2011) presented a GPU accelerated FEA code using an
unstructured mesh, achieving a speed-up of 30 or more compared to an optimized double-
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precision single core implementation. For a review of the literature on the use of GPUs in
FEA the reader is advised to seek the manuscript by Georgescu et al (2013). Topology op-
timization of multi-physics problems is a much less researched topic, especially compared
to structural topology optimization. This may be because Computational Fluid Dynamics
(CFD) is a much more computationally intensive task compared with FEA. Recent studies
have shown the potential of LBM methods in multi-physics topology optimization (Pingen
et al (2007, 2009); Makhija et al (2012); Laniewski-Wollk and Rokicki (2016); Munk et al
(2017, 2018a)). Further, since the LBM operates on a finite difference grid, is explicit in
nature and requires only next neighbor interaction, it is very suitable for implementation on
GPUs (Tolke and Krafczyk (2008)). Tolke and Krafczyk (2008) demonstrate a very effi-
cient implementation of a LBM in 3D on a GPU. They obtain an efficiency gain of up to
two orders of magnitude with respect to the performance on a CPU. Kuznik et al (2010) im-
plement a general purpose LBM code, with all steps of the algorithm running on the GPU,
achieving up to one billion lattice updates per second using single-precision floating points.
Further, they show that single-precision floating point arithmetic is sufficient having a 3.8
times speed-up compared to double-precision. GPU implementation of LBMs have been
used for real-time visualization of Fluid-Structure Interactions (FSI) for two-dimensional
problems (Garcia et al (2011)). The authors achieved a speed increase when using their
GPU-LBM of 222 times compared with a one core and 78 times compared with a two core
CPU. Schonherr et al (2011) compare two multi-thread based parallel implementations of
the LBM on different hardware platforms: a multi-core CPU implementation and a GPU
implementation. They show that the limiting factor for the speed of the Lattice Boltzmann
simulation is the memory bandwidth. More recently, Obrecht et al (2013) present a multi-
GPU LBM solver managing to run the solver on six GPUs in parallel. With this architec-
ture, they observed up to 2.15 x 10° node updates per second for the 2D lid-driven cavity
test case. Such a performance is comparable to large high performance clusters or massively
parallel super computers, showing the potential of GPU implementation in LBMs. Delbosc
et al (2014) showed that real-time compute capability and satisfactory physical accuracy
are achievable by combing a lattice Boltzmann model with the parallel computing power
of a GPU. Along these lines, Khan et al (2015) performed real-time simulations of indoor
environments, demonstrating significant speed up when implementing a lattice Boltzmann
method on a GPU compared with traditional CFD based large eddy simulations.

The aim of this article is to determine the feasibility of using a GPU-LBM code with a
Bi-directional Evolutionary Structural Optimization (BESO) algorithm for real world multi-
physics design problems. So far BESO algorithms have not been employed with GPU archi-
tectures (Aissa et al (2014)). Furthermore, GPU implementation in topology optimization
is a very recent field of research and therefore more studies must be made to increase the
application of topology optimization in real world design problems. To the best of the au-
thors” knowledge this is the first time a multi-physics topology optimization problem with
an LBM-FEA code is implemented in a GPU architecture and compared with a CPU version
of the code. The speed-up and optimization results are compared and discussed giving new
insights into the difficulties involved with GPU-implemented topology optimization.

2 Methodology
In this section the LBM for modeling the fluid dynamics is briefly introduced. This is fol-

lowed by the mathematical definition of the topology optimization problem and the BESO
method is then described. For further details on GPU computing, the LBM and BESO meth-
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ods the reader should seek out the textbooks by Sanders and Kandrot (2010), Succi (2001)
and Huang and Xie (2010), respectively.

2.1 Lattice Boltzmann modelling

The ability to simulate flows through the use of CFD has progressed considerably, reduc-
ing test requirements at a lower cost and risk. Furthermore, CFD has been used to simulate
real-world phenomena (Li and Luo (2014)). In the case when engineering applications re-
quire resolving fluid interactions with high accuracy, or involve low Mach number flow,
mesoscopic flows and complex geometrical arrangements, LBM offers an alternative CFD
method rather than using the Navier-Stokes (NS) equations (Succi (2001)). Moreover, LBM
has been applied to a wide range of applications from theoretical physics to real-world prob-
lems, and is expected to provide one of the next evolutions in the computational sciences
(Aidun and Clausen (2010); Wang and Menon (2001)), notably for multi-scale simulation
and optimization (Liu et al (2016); Li et al (2016)). The LBM is a memory-bound algorithm,
which makes it suitable for the GPU architectures. GPU offers a computational environment
with many processors. GPU-implemented LBM codes have been used on a variety of appli-
cations in the aerospace field (Wang and Menon (2001)), being competitive in both accuracy
and execution speed. However, the LBM has not been used extensively in topology optimiza-
tion algorithms (Munk et al (2017)). Furthermore, to the best of the authors’ knowledge, a
GPU-implemented LBM has not been coupled with and compared against CPU topology
optimization codes. Therefore, this work couples a GPU-implemented LBM to a BESO al-
gorithm and compares both the final design, in terms of objective, and the computational
time to a CPU-implemented version of the code.

The LBM constructs kinetic models, based on Newton’s laws, incorporating the essen-
tial physics of microscopic processes, such that one can correctly model the macroscopic
processes. A finite number of molecules, whose motion is governed by Newton’s laws of
dynamics, are used to model the fluid. A discretized Boltzmann equation is solved by the
LBM, which uses velocity distribution functions to represent macroscopic properties. Both
collision, the interaction of two particles, and streaming, the movement of particles from
one node to the nearest neighbor, are modeled by the discrete Boltzmann equation. The
fundamental concept behind the LBM is to calculate the macroscopic quantities from the
moments of the finite number of velocity distribution functions, which are obtained by solv-
ing the discrete Boltzmann equation. A D3Q19 lattice is used in this work, i.e. 3 dimensions
and 18 moving particles per rest node. The total number of iterations used for the LBM sim-
ulations is 4000, since stability has been demonstrated and validated against NS simulations
using a commercial code, ANSYS CFX (Djenidi and Moghtaderi (2006)), and experimental
analysis (Moghtaderi et al (2006)). For a more in-depth overview of the LBM, interested
readers should seek out the textbook by Succi (2001). For details on how the LBM and FEA
are coupled, the reader is advised to seek out the previous works by the authors on this topic
(Munk et al (2017, 2018a,b)).

2.2 Topology optimisation
The first optimization problem studied in this article is the compliance minimization, or

stiffness maximization, of a micro fluidic mixer under fluid pressure loads with a structural
volume constraint. Therefore, the objective is to find the distribution of a pre-defined amount
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of material such that a design with maximum stiffness is obtained. Hence, the topology
optimization problem can be mathematically stated as:

1
Minimize: EuT K]u

subjectto:  [Klu=f
n ey
x,-Vei S \%

i=1

x={0,1}

where x is the vector of design variables, x;, n is the total number of elements in the model
and V is a predefined structural volume. Since the algorithm is discrete (Section 1) the design
variables can only be equal to x; = 1, representing solid material, or x; = 0, representing
fluid/void material.

The second optimization problem this article is concerned with is the vorticity maxi-
mization of micro fluidic mixers for a given Reynolds number and structural volume. There-
fore, the objective is to find the topology of the mixer that gives the highest vorticity in the
region of interest. Hence, the topology optimization problem for this case is mathematically
formulated as follows:

Minimize: — &
subject to: Re = Re
n
2
inve,- S \% ( )
i=1
x={0,1}

where @ is the vorticity of the flow in the region of interest, Re is the Reynolds number
of the flow, and Re( represents a predefined Reynolds number. For this problem, a design
variable of x; = 1 represents fluid elements, whereas x; = 0 represents solid elements.

2.2.1 Evolutionary structural optimisation

The original ESO algorithm is monotonic, i.e. elements can only be removed from the de-
sign domain (Xie and Steven (1993)). These early methods are based on the successive
elimination of inefficient material, gradually evolving the design towards the optimum (Xie
and Steven (1997)). Although the ESO method has been applied to a wide range of prob-
lems (Xie and Steven (1996); Steven et al (2000)), it is limited in two main ways. Firstly,
as already mentioned, structure can only be removed from the design domain, consequently
the initial model must be significantly over designed. Secondly, if structure is prematurely
removed it cannot be recovered (Munk et al (2015)). Subsequent ESO methods, referred
to as BESO, allow material to be re-admitted to the design domain (Querin et al (1998)).
Modern BESO algorithms are convergent and mesh independent (Huang and Xie (2007)),
simultaneously removing and adding material from and to the design domain until all con-
straints and a convergence criterion are satisfied. More recently, a further improvement to
BESO methods introduced the use of soft material to model the void elements in the FEA
(Huang and Xie (2009)), known as soft-kill BESO with the former being hard-kill BESO.
This article uses a soft-kill BESO method coupled to a GPU-implemented LBM. This work
builds on a recent study by the authors (Munk et al (2017)), which implemented a CPU ver-
sion of the code, aiming to drastically improve computational efficiency, bring high-fidelity
methods forward to the preliminary design stage.
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2.2.2 Sensitivity analysis

In this study, two different objectives are considered (Section 2.2). The first is minimum
compliance or maximum stiffness, used for structural optimization. In FEA the removal
of an element results in a reduction in the stiffness of the structure which is equal to the
element strain energy (Chu et al (1996)). This change is defined as the element sensitivity
for the compliance minimization problem:

gc _ 1 oyt

o = u! [K]%u, 3)

¢ 8xi o pri
where c is the compliance, p = 3 is the penalization factor, the subscript e represents ele-
mental values and superscript cmp and O represents a compliance objective and solid values,
respectively. The element sensitivity (eq. 3) takes advantage of the SIMP material model
(Bendsge and Sigmund (1999)), where the Young’s modulus, E, is modeled using a power
law penalization method, as follows:

E(x;) = E'%" C)]

In design-dependent load problems, as is the case here, changes in the structure lead to
variations in the load vector. Therefore, this variation in the load vector must be considered
in the sensitivity analysis (Munk et al (2017)). Thus, from the definition of the optimization
problem (eq. 1) the sensitivity analysis for compliance minimization (eq. 3) can be updated
such that the variation in the load vector is considered, as follows (Yang et al (2005); Munk
etal (2017, 2018b))

. de 1, _

o = oo = 5pf u KJue o+ paf g AR, )
where Af, is the change in the element load vector between optimization iterations. Taking
the isoparametric bilinear elements used in this work, the change in the load vector of one
element for a fluid pressure load is found by (Munk et al (2017))

1
Af, = ZP,-A,-{],O,O,O,O,O, 1,0,0,0,0,0,...70};4X1 6)

where P; and A; are the pressure load and elemental area, respectively. Eq. 6 is applicable
for cases where the flow travels in the x-direction and the structure is aligned perpendicular
to the flow, as is the case in this study. If this is not the case then the vector defined in
eq. 6 must be updated to match the loading conditions. This study takes advantage of a
two-domain approach, i.e. the structural and fluid dynamics are solved separately, during
every optimization iteration. This method is more flexible than a monolithic approach, which
solves an adjoint problem to update the structure and fluid solutions together. Furthermore,
a monolithic approach is problem specific unlike a two-domain approach, which can be
applied to all FSI problems. In a previous study by the authors (Munk et al (2018b)), this
approach was demonstrated to work well as both the structural and fluid dynamics were
shown to converge, even allowing a relaxation of the coupling conditions.

The second objective considered in the paper is vorticity maximization (Section 2.2).
Thus, the goal of this problem is, for a given Reynolds number, to increase the mixing of two
fluid species. This is imperative for the operation of micro fluidic mixers, as their purpose
is to efficiently mix two, or more, fluid species. Hence, since the flows have low Reynolds
numbers, normally lower than 1000, vorticity is an accurate measure of the degree of mixing



8 David J. Munk, Timoleon Kipouros and Gareth A. Vio

as shown in the works of Woodfield et al (2003) and Moghtaderi et al (2006). The authors
of this work recently developed a soft-kill BESO method for the vorticity maximization of
fluids using the LBM (Munk et al (2017)). The circulation method for vorticity (Abrahamson
and Lonnes (1995)) and the shape derivative given in Kasumba and Kunisch (2012) are used
to derive the sensitivity number to solve this optimization problem. Therefore, the sensitivity
number for the vorticity maximization is determined by:

ol = max(@) — Ay X" Ay, 7
where @ is the vorticity of the flow, the superscript vrt represents the vorticity objective and
A7, is the change of, A, the element velocity vector defined as:

Yo = {AY, AY, Ay, AW, AW, AW} ®)

where ¥, %, ¥; are the spatial components and Wy, W, and W, are the circulation components.
For more information on the derivation of the sensitivity numbers (eqs. 5 and 8) and for a
validation against meta-heuristic algorithms the reader is advised to seek out the previous
study by the authors (Munk et al (2017)), which outlines the method in more detail.

2.2.3 Mesh dependency and convergence

In order to guarantee that a solution to the topology optimization problem (eq. 1 and 2) ex-
ists, some restrictions on the design must be introduced (Sigmund and Petersson (1998)).
The sensitivity numbers can become discontinuous across the element boundaries, resulting
in mesh dependency or checkerboarding (the repetition of solid and void material). A filter
scheme is used, to smooth the element sensitivity numbers across the entire domain, alle-
viating the problem of mesh dependency and checkerboarding. The filter scheme is similar
to that presented by Sigmund and Petersson (1998); however, nodal sensitivity numbers are
used when calculating the updated element sensitivity numbers based on the surrounding
structure. The nodal sensitivity numbers are found by taking the average of all the element
sensitivity numbers that are connected to the node, thus:

M
(an = Zwiae,' 9
i=1

where M is the number of elements connected to the j node and o, is the i element
sensitivity number (eq. 5 and 7). The weighting factor of the i’ element, w;, is a function of
the distance between the center of the ' element and the j’h node, r;j, thus:

1 r,-j )
w; = 1— (10)
oM ( iy

The nodal sensitivity numbers (eq. 9) are then used in the mesh independency filter to find
the smooth element sensitivities. A filter radius, 7, is defined to identify the nodes that will
have an effect on the element sensitivity. The value of r,,;;, must be large enough such that the
associated sub-domain, £, covers at least one element. Furthermore, this value must remain
constant for all mesh sizes. Nodes that are located inside €2 contribute to the smoothing of
the element sensitivity, by:

_ Z]]\',:l w(r,-j)anj

ei —
X wnyg)

an
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where N is the total number of nodes in the sub-domain, £, and w(r;;) is the linear weighting
factor, defined as:

w(r,-_,-):rminfr,-_,- j:l,2,...,N (]2)

The filter scheme effectively addresses the mesh-dependency and checkerboard prob-
lems. However, the objective function and corresponding topology may not be convergent.
In order to overcome this problem, Huang and Xie (2007) showed that when the sensitivity
numbers (eq. 11) are averaged with their previous values the solution becomes steadier, thus:

allr 4 i1
= (13)

where itr is the current iteration number. Therefore, the updated sensitivity number includes
the history of the sensitivity information from previous iterations.

2.2.4 Convergence Criteria
For every iteration the BESO algorithm defines a target volume, found by:
Vire1 = Viir (1 £ER) (14)

where ER, the evolutionary ratio, is a percentage of the current structural volume, and in-
creases or decreases Vj;,4| towards the desired volume constraint, V, defined in eq. 1. This,
in turn, sets the threshold, oy, of the sensitivity numbers. Thus, solid elements are removed
from the design domain when:

O, < Oy, (15)

and elements are added back to the design domain when:
O > O (16)

A maximum addition ratio, ARy, is set to restrict the amount by which the volume
of the structure can increase between iterations. Once AR > ARy, the elements with the
highest sensitivity numbers only are added, such that AR = AR,,4,. Then, in order to satisfy
the target volume Vj;,; 1, the elements with the lowest sensitivity numbers are removed.

The iteration target volume remains constant at V once the volume constraint is satisfied.
The topology evolves until a convergence criterion is satisfied. This is defined as:

4
Y 00—k —Xgs Ot

A0 .
Yi—0Oitr—4

<é a7

where 6 is a predefined tolerance, O is the objective function and ifr is the current iteration
of the optimization algorithm. Eq. 17 evaluates the change in the objective for the last 10
solutions. Therefore, if the change in the objective is minimal the solution is said to be con-
verged. For a more in-depth discussion on evolutionary structural optimization algorithms,
one should consult the latest textbook (Huang and Xie (2010)) and review paper (Munk et al
(2015)) on the subject.
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Fig. 1 Baffled micro-reactor used in this study (Tsotskas et al (2015))

3 Case study

A baffled micro-reactor is used in this study as depicted in Fig. 1. The model is made up of
a main pipe which is fitted with a fuel inlet tube, running along the axis of the main pipe,
and a multi-holed baffle, which is where the secondary flow is introduced to the main flow.
The lay-out and initial topology of the baffle are shown in Fig. 1.

The fluid domain (Fig. 1(c)) is defined in LBM nodes, here the lattice used has dimen-
sions 680 x 73 x 73 lattice units, with additional nodes used for the wall, in the x, y and z
directions, respectively. The location of the baffle in the main pipe is 60 lattice units down-
stream of the flow inlet (Fig. 1(c)). The inlet boundary condition imposed is the velocity
of the flow in the inlet tube and annulus area. The outlet boundary condition has a convec-
tive boundary condition, based on the velocity, applied. A no-slip condition is implemented
along the walls by modeling them as full-way bounce-back. To mimic the experiments per-
formed by Moghtaderi et al (2006), the difference in the mass flow rate between the inner
tube and annulus area is set to 5%.

In the FEA a clamped boundary condition is applied along the perimeter of the baffle.
Non-designable material is designated for the central hole boundary, since this is determined
by the fuel line and inlet conditions, which have been fixed in the flow domain (Fig. 1(a))
to be consistent with the previous studies (Djenidi and Moghtaderi (2006); Moghtaderi et al
(2006)).

The CPU simulations are performed on an Intel(R) Core(TM) i7-2720QM CPU 2.20GHz
using 4 cores in parallel. The GPU simulations are performed on a Tesla M2070 with 5375
MB of total global memory, 448 available cores, 1150 MHz of stream processor rate and
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1566 MHz of memory clock rate. However, the speed of a simulation on the GPU is af-
fected by the number of threads, which are created in the GPUs. Therefore, the specification
of the hardware automatically calculates the number of threads by using the interfacing fea-
tures of CUDA to query the provided GPU. Here, the solver is instructed to use 512 threads
per block/kernel for a single simulation, which is one of the fastest settings provided by the
current GPU.

4 Compliance minimization

In this section, topology optimization (Sect. 2.2) is applied to the multi-holed baffle plate
(Fig. 1(b)) to maximize its stiffness for a given volume fraction. First, the CPU results are
presented. These results are used as the benchmark for the GPU-implemented solutions.
This is followed by the results of the single-precision GPU implantation of the code. In the
literature of GPU-implemented FEA codes, it has been shown that using single-precision can
causes numerical issues which result in convergence issues (Zegard and Paulino (2013)).
Therefore, a double-precision version of the code is implemented and compared with the
CPU and single-precision GPU results as well. However, it must be noted that while double-
precision improves the numerical accuracy compared to single-precision, it only partially
corrects these numerical issues as has been shown in Taufer et al (2010) and Demmel and
Nguyen (2015).

4.1 CPU implementation

The CPU-LBM code is coupled with the BESO algorithm (Sect. 2.2). The optimization
parameters: evolutionary ratio, ER = 0.02, volume fraction, V = 0.58V}), maximum addition
ratio, AR,y = 0.02, and tolerance, 6 = 0.001; are defined before the BESO algorithm is
applied. The CFD mesh has 21,742,320 degrees of freedom. The initial and final structure
is shown in Figure 2.

(a) Initial structure (b) Final structure

Fig. 2 Initial and final topology found using the CPU-LBM BESO algorithm

The final design obtained using the CPU code has been validated in previous numer-
ical studies (Munk et al (2017, 2018a)). The compliance of the initial structure is 5.13 x
10°Nm, whereas the final structure has a compliance of 2.281 x 10°Nm. Therefore, the
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Fig. 3 Convergence history for the compliance minimization problem using the CPU-LBM BESO algorithm

CPU-implementation of the code is able to reduce the compliance by approximately 56%.
The convergence history for the CPU algorithm is shown in Figure 3.

The algorithm takes 179 iterations to converge to the final solution (Fig. 3) when per-
formed on a CPU. The computation time is approximately 7 days and 11 hours to complete
the optimization. This is mainly due to the computational burden of the LBM, which has
to be run 179 times. Typically, at the preliminary design stage, hundreds of design vari-
ations are being considered. Thus, at this computational expense it would take the CPU-
implementation years to run all the cases. Hence, this is not a viable option and could only
be used for the last iterations later in the design process.

4.2 Single-precision GPU implementation

The most computational efficient version of the multi-physics topology optimization al-
gorithm studied in this work makes use of the single-precision GPU-LBM. However, one
finds in the literature, on GPU-implemented topology optimization algorithms, cases where
single-precision results in a lack of convergence, due to the inherent round-off errors (Martinez-
Frutos and Herrero-Perez (2017)). Thus far, GPU-implemented topology optimization has
been confined to structural optimization, hence GPU-FEA codes are producing these errors
(Sec. 1). Therefore, it is expected in this study to observe similar errors when a single-
precision code is used, since this study extends the GPU implementation to multi-physics
problems. Namely, GPU fluids and CPU structures.

The single-precision GPU-LBM code is coupled with the BESO algorithm (Sect. 2.2).
The optimization parameters are identical to the previous case (Sect. 4.1). The final structure
determined by CPU and single-precision GPU is shown in Figure 4.

The final structure obtained using the single-precision GPU code is clearly not optimal
(Fig. 4). Firstly, the initial structure (Fig. 2(a)) has a symmetry about the x- and y-axis, which
is lost with the use of the single-precision GPU code. Further, it is known that the optimal
structure for this particular problem should be symmetric, since the physics of the problem
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(a) CPU (b) Single-precision GPU

Fig. 4 Final topology found using the single-precision GPU-LBM BESO algorithm and comparison with the
CPU optimum

does not contain any unsymmetrical behavior (Munk et al (2017, 2018a)). Secondly, there
is clear evidence of numerical errors in the topology (Fig. 4(b)), shown by the small holes
that have formed, which are not present in the final topology of the CPU code (Fig. 4(a)).
The compliance of the final structure found using the single-precision GPU code is 3.912 x
10°Nm, which is 71.5% increase from the final compliance of the structure found by the
CPU code. The convergence history of the single-precision GPU algorithm is shown in Fig.
5.
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Fig. 5 Convergence history for the compliance minimization problem using the single-precision GPU-LBM
BESO algorithm

Clearly convergence is never achieved by the single-precision GPU algorithm, which
stops after 336 iterations (Fig. 5). This equates to a computational time of approximately 13
hours, 31 minutes and 48 seconds. However, while this is a significant improvement over
the computational expense of the CPU algorithm, over 13 times faster, the final result is
not a feasible optimum. One could take the best solution found by the algorithm, in this
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case at iteration 47 a solution was found having a compliance of around 2.6 x 10°Nm, but
convergence is never achieved and thus it is unlikely this solution is an optimum. Alterna-
tively the best solution found could be used as an initial structure for an algorithm that is
known to converge, possibly speeding up the overall process. Therefore, the single-precision
GPU-driven topology optimization code, of this work, cannot guarantee convergence for the
multi-physics compliance minimization problem. This confirms the conclusions of previ-
ous studies, which have observed the same phenomena for GPU-implemented SIMP algo-
rithms on structural optimization problems (Zegard and Paulino (2013); Martinez-Frutos
and Herrero-Perez (2017)). Thus, double-precision must be used.

4.3 Double-precision GPU implementation

Double-precision GPU codes are not as computationally efficient as single-precision GPU
codes; however, they have a lower round-off error due to a higher floating point capacity.
This is also the cause of the reduction in computational efficiency, since more memory is
needed to store a higher amount of floating points. The GPU used in this work has a 2.0
compute capability, meaning that the floating point computation abides by the IEEE 754
standard for floating point arithmetic. Hence, round-off errors should be kept to a minimum.

The double-precision GPU-LBM code is coupled with the BESO algorithm (Sect. 2.2).
The optimization parameters are again identical to the benchmark case (Sect. 4.1). The final
structure determined by the single-precision and double-precision GPU codes is shown in
Figure 6.

(a) Single-precision GPU (b) Double-precision GPU

Fig. 6 Final topology found using the double-precision GPU-LBM BESO algorithm and comparison with
the single-precision GPU optimum

The final structure obtained using the double-precision GPU code shows a significant
improvement over the single-precision GPU (Fig. 6). The structure is symmetric about both
the x- and y-axis (Fig. 6(b)). Furthermore, no numerical errors are present in the struc-
ture, unlike the single-precision GPU code (Fig. 6(a)). Moreover, clear similarities between
the final structure found using the CPU code (Fig. 2(b)) and the structure found using the
double-precision GPU code are observed. The compliance of the final structure found using
the double-precision GPU algorithm is 2.577 x 10°Nm, which is a 34% reduction compared
with the single-precision GPU code and only a 12% increase compared with the CPU code.
This increase in compliance is significant; however, by observing the convergence history of
the CPU algorithm (Fig. 3) it is clear that the double-precision GPU algorithm is converging
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to a local optimum. This is evident by comparing the final compliance found by the double-
precision GPU algorithm with the multiple convergence cycles of the CPU algorithm (Fig.
3). Moreover, in a recent study by the authors (Munk et al (2018b)), it was shown that several
local optima for this problem exist. Therefore, it is well known that one cannot criticize a
gradient based optimization method for finding a locally optimal solution. The convergence
history of the double-precision GPU algorithm is shown in Figure 7.
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Fig.7 Convergence history for the compliance minimization problem using the double-precision GPU-LBM
BESO algorithm

Unlike the single-precision GPU code, convergence is achieved for the double-precision
GPU code (Fig. 7). Furthermore, the double-precision topology optimization algorithm only
takes 129 iterations to converge, which is less than the 179 iterations required by the CPU
algorithm (Sec. 4.1). Hence, the computational time required to achieve convergence is
approximately 10 hours, 1 minute and 48 seconds. Hence, 1 optimization iteration takes
approximately 280 seconds, which is about double the time the single-precision topology
optimization code takes (145 seconds). Therefore, the double-precision GPU code is imple-
mented efficiently. Moreover, the double-precision GPU code is about 18 times faster than
the CPU code, with a 12% reduction in objective. Hence, Pareto’s principle of design is
applicable here - 80% of the design comes from 20% of the time. Thus, this computational
efficiency is more than beneficial at the preliminary design stages. Therefore, the double-
precision GPU code could feasibly be used at the preliminary stages, whereas the CPU code
could only be employed at the last stages in the design.

4.4 Difference between CPU and GPU implementation

The final analysis of this section is to quantify the difference between the CPU and GPU
algorithms. Clearly, the CPU algorithm is able to find an optimal solut<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>