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Abstract

Classical work has viewed primary motor cortex (M1) as a controller of muscle and body dynamics. A recent
brain-computer interface experiment suggests a new, complementary perspective: M1 is itself a dynamical system

under active control of other circuits.

Even the simplest of behaviours require concerted inter-
actions among thousands of neurons. Of these many
neurons, however, only a fraction directly determine be-
havioural outputs. For example, reaching for a cup of cof-
fee can potentially be achieved by a myriad of different
activity patterns in primary motor cortex (M1): as long
as corticospinal (or “output-potent”) neurons produce the
correct activity, the activity of other (“output-null”) neu-
rons appears entirely unconstrained, or “redundant”. Re-
dundancy has attracted much attention lately due to its
potential significance for robust and flexible neural com-
putations. Redundant representations improve robust-
ness to perturbations [1, 2], might allow multiple com-
putations to occur concurrently in the same circuit [3, 4],
and could explain why behaviour remains stable despite
routine reorganization of neural representations [5].

Importantly, neural redundancy could also hold impor-
tant information concerning the circuit implementation
of motor control. Indeed, although output-null activ-
ity does not directly contribute to behaviour, it is likely
an essential cog in the mechanism that produces cor-
rect output-potent activity. Recently, Hennig et al. used a
brain-computer interface (BCI) as a scientific tool to un-
cover the principles by which the brain chooses one pat-
tern of output-null activity over another [6]. In monkeys,
they recorded the activity of ~100 M1 neurons, used it as
a control signal to actuate a cursor moving on a screen,

and trained the animals to perform specific cursor move-
ments. Critically, this BCI setup allowed the authors to
choose which linear combinations of the recorded neu-
rons’ action potentials mattered for the cursor velocity,
and which did not. In other words, they could arbitrar-
ily create “output-potent” and “output-null” directions in
the state space of neural activity, as illustrated in Fig-
ure TA.

Hennig et al. used activity recorded during the BCI task
to systematically rule out and rule in hypotheses regard-
ing the structure of output-null activity in M1. A first
possibility is that there is no predictable structure: M1
might receive noisy or task-unrelated inputs from other
brain areas, and leave uncorrected these inputs’ contribu-
tions to output-null activity. Hennig et al. confronted two
variants of this hypothesis to their data, and found that
neither accurately predicted the distributions of activity
along the output-null directions, across various directions
of cursor movement.

A second hypothesis is inspired by previous work in mo-
tor neuroscience, in which M1 is typically viewed as con-
trolling the dynamics of skeletal muscles (the “plant”)
using appropriate inputs (Figure 1B; [7, 8]). Accord-
ing to well-established engineering wisdom, control in-
puts should ideally be kept small (relative to some nom-
inal value) to ensure robustness of the control solution.
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Strictly speaking, this principle applies to potent activ-
ity only (input to the muscular system). However, M1
might be implementing this principle more liberally and
constrain its activity to be as “small” overall as the gen-
eration of correct potent activity permits. Hennig et al.
considered two versions of this “minimal firing” hypoth-
esis; again, neither made accurate predictions.

Substantially better predictions of output-null activity
were obtained based on a third hypothesis seemingly un-
related to previous work in motor control. This “fixed
distribution hypothesis” postulates that M1 tends to pro-
duce patterns of activity belonging to a fixed repertoire,
which does not depend on the specific choice of potent
directions. Given a choice of potent directions, activity is
selected on a moment-by-moment basis from this fixed
repertoire, on the condition that it elicit the right cursor
velocity. Mathematically, this corresponds to condition-
ing a fixed distribution of M1 activity on some desired
value of momentary potent activity (Figure 1D). Thus, if
one knew the fixed distribution, one could predict the
structure of output-null activity for any choice of po-
tent/null directions. To test this hypothesis, Hennig et al.
used activity recorded for one set of potent directions as
an empirical proxy for the (unknown) fixed distribution,
and used it to predict output-null activity under a sec-
ond choice of potent directions. Remarkably, these pre-
dictions were better than those of any other hypothesis
considered, and were as good as finite samples would al-
low.

While Hennig et al.’s fixed distribution hypothesis pro-
vides a compact, thought-provoking description of M1
activity, it lacks a computational rationale. What nor-
mative principle would account for the author’s obser-
vations, and illuminate the role of M1 in motor control?
Hints might be found in recent experimental [9] and the-
oretical [10] work, in which M1’s complex activity pat-
terns are understood as resulting from strong internal
dynamics. Accordingly, beyond thinking of M1 as con-

trolling muscles (Figure 1B), one can view M1 as being
part of the “plant”, i.e. an extension of the muscles that
too needs to be controlled (presumably via control inputs
from other brain areas; Figure 1C). Under this new per-
spective, the fixed distribution hypothesis emerges nat-
urally. We illustrate this using a canonical model of cor-
tical dynamics, with two coupled populations of excita-
tory and inhibitory cells (Figure 1E). Both populations
receive inputs optimized for the production of some de-
sired activity fluctuations along a chosen potent direc-
tion. From a control theoretic standpoint, strong network
interactions imply that control inputs of fixed energy can
steer activity further along some “preferred directions”
than along others, by exploiting the network’s tendency
to produce correlated activity patterns. Thus, if control
inputs to M1 are energy-limited (as they are in our exam-
ple, and as robustness demands), M1 activity under an
optimal control policy should remain confined to a cer-
tain repertoire, or “fixed distribution” (Figure 1E, black
ellipse). Importantly, this repertoire is a reflection of the
network’s dynamics, and does not depend on the specific
choice of potent directions. As expected, therefore, the
fixed distribution hypothesis accurately predicts the sta-
tistical structure of output-null activity in this toy exam-
ple. In other words, Hennig et al.’s findings are consistent
with optimal control of M1 dynamics under energy con-
straints.

Going forward, we speculate that much will be learned
about the neural basis of movement by thinking of M1
(and spinal cord circuits) not only as body controllers, but
also as dynamical systems under the control of other neu-
ral circuits. This new perspective will suggest principled
ways of elucidating the role of motor areas upstream of
M1 (e.g. thalamic nuclei, basal ganglia, cerebellum). Ex-
amining neural redundancy at each level of the control
hierarchy, e.g. using BCl-inspired techniques, will con-
tinue to bring useful insights: null ain’t dull under the
skull.
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Figure 1. Neural redundancy in M1 suggests a new view of M1 as a controlled dynamical system. (A) lllustration of
neural redundancy: the same behaviour (natural, or BCI-driven) could be produced by very different trajectories in the state space
of neural activity (three shown here). The activity along “potent” directions is constrained by the desired behaviour, and is there-
fore the same for all candidate trajectories (top right inset). In contrast, activity along “null” directions has no direct effect on
behaviour and is therefore free to vary (top left inset). (B) M1-as-a-controller view. (C) M1-as-a-plant view. (D) Illustration of
the fixed-distribution hypothesis. At any time, output-null activity is selected as if drawn from some fixed distribution of neural
activity (heat map), conditioned on a momentary desired value of potent activity (white dot). (E) A 2-unit neural network (top) is
driven by optimal control inputs to generate some desired fluctuations along a given potent direction. The distribution of network
activity (dots) has the same structure irrespective of the potent direction being used (compare orange and green). The black ellipse
delineates the region of state space within which the network activity can be steered given a fixed input energy budget.
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