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The Neolithic transition has led to marked increases in census

population sizes across the world, as recorded by a rich

archaeological record. However, previous attempts to detect

such changes using genetic markers, especially mitochondrial

DNA (mtDNA), have mostly been unsuccessful. We use

complete mtDNA genomes from over 1700 individuals, from

the 1000 Genomes Project Phase 3, to explore changes in

populations sizes in five populations for each of four major

geographical regions, using a sophisticated coalescent-based

Bayesian method (extended Bayesian skyline plots) and

mutation rates calibrated with ancient DNA. Despite the power

and sophistication of our analysis, we fail to find size changes

that correspond to the Neolithic transitions of the study

populations. However, we do detect a number of size changes,

which tend to be replicated in most populations within each

region. These changes are mostly much older than the

Neolithic transition and could reflect either population

expansion or changes in population structure. Given the

amount of migration and population mixing that occurred after

these ancient signals were generated, we caution that modern

populations will often carry ghost signals of demographic

events that occurred far away from their current location.

provided
1. Introduction
The Neolithic transition was associated with major cultural and

societal changes, and a number of archaeological lines of

evidence point to a rapid increase in census population size

following the advent of food production and the associated

sedentarism (reviewed in [1]). However, past attempts to detect

such size changes using genetic markers have generally failed to

find any signal attributable to the Neolithic transition [2–5].

When population changes were detected, these were generally
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dated to older times, leading to the suggestion that populations that later adopted agriculture might have

started growing before the advent of food production [4].

A major difficulty in interpreting these results is that genetic dating of events is a very challenging

endeavour, as mutation rates (which provide the molecular clock used to convert genetic changes into

calendar years) come with high levels of uncertainty [6]. Over the last couple of years, the availability

of ancient DNA, coupled with sophisticated tip-based calibration methods that use the age of ancient

samples to estimate the rate at which differences between sequences accumulate, has greatly improved

the accuracy of mutation rates, especially for mtDNA [7].

Here, we take advantage of the Phase 3 data of the 1000 Genomes Project, which now includes over

2500 individuals from several major continental regions [8]. We use extended Bayesian skyline plots

(EBSPs) in BEAST to best reconstruct the changes in effective population size through time, and take

advantage of leaf-calibrated mutation rates based on extensive data from ancient DNA [7,9–11]. While

we build on several previous analyses that are conceptually similar e.g. [2,3,12], the current study

includes a number of important technical advances that should improve our ability to detect any

demographic signal of the Neolithic transition that might be present. Furthermore, compared to

previous analyses based on the Phase 1 1000 Genomes data, we are now able to include five South

Asian populations, sequenced as part of Phase 3.
180543
2. Material and methods
2.1. Sampled populations
The Phase 3 sequence data from 20 populations, comprising five populations for each of the four main

geographical regions of Europe, East Asia, South Asia and Africa, were downloaded from the 1000

Genomes Project website (www.1000genomes.org/data, [8]), including whole mitochondrial genome

data for 1999 individuals. We decided not to analyse populations from the Americas due to the

region’s complex history of admixture [13,14].

The European populations were as follows: Finnish sampled in Finland (FIN); European Caucasians

resident in Utah, USA (CEU); British in England and Scotland (GBR); an Iberian population from Spain

(IBS) and Toscani from Italy (TSI). Representing East Asia were the Han Chinese in Beijing (CHB);

Southern Han Chinese (CHS); Dai Chinese from Xishuangbanna, China (CDX); Kinh population from

Ho Chi Minh City, Vietnam (KHV) and Japanese from Tokyo (JPT). The South Asian populations

were Punjabi Indians from Lahore, Pakistan (PJL); Gujarati Indians in Houston, USA (GIH) as well as

Indian Telugu sampled in the UK (ITU); Bengali from Bangladesh (BEB) and Sri Lankan Tamil from

the UK (STU). Finally, in Africa, we chose a population from the Western Division within The

Gambia (GWD); Mende from Sierra Leone (MSL); the Yoruba from Nigeria (YRI); the Esan, also from

Nigeria (ESN); as well as the Luhya from Webuye in Kenya (LWK). Full details of the populations

and the original sampling and sequencing methods can be found on the 1000 Genomes Project

website (www.1000genomes.org).

2.2. Data partitioning
Mutation rates of mtDNA vary among bases according to region, codon position and depending on

whether the region is genic or non-genic [15]. We maximized the power of our analysis by accounting

for these heterogeneities using the partitioning scheme developed by Rieux et al. [7], who used

PartitionFinder [16] on a large panel of modern and ancient complete mtDNA genomes. Following

their best model [7], the partitions, substitution model and rates were: the hypervariable segments 1

and 2 (HVS1 þ HVS2) with a TN93 þ Iþ G substitution model and a rate of 31.434 � 1028 m/Site/

Year; rRNA and tRNA (r þ tRNA) with TN93 þ I þ G and 1.007 � 1028 m/Site/Year; protein coding

positions at 1st and 2nd codon (PC1 þ PC2) with TN93 þ I þ G and 0.756 � 1028 m/Site/Year; and

protein coding positions at the 3rd codon (PC3) with TN93 þ G and 3.323 � 1028 m/Site/Year. See

electronic supplementary material, table S1.

2.3. Data analysis
We analysed our mtDNA data with the extended Bayesian skyline plot (EBSP) method, a Bayesian, non-

parametric technique for inferring past population size fluctuations from genetic data. Building on the

http://www.1000genomes.org/data
http://www.1000genomes.org
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previous Bayesian skyline plot (BSP) approach, EBSP uses a piecewise-linear model and Markov chain

Monte Carlo (MCMC) methods to reconstruct a populations’ demographic history [17] and is

implemented in the software package BEAST v. 2.3.2 [11]. Alignments for each of the 20 populations

were loaded separately into the Bayesian Evolutionary Analysis Utility tool (BEAUti v. 2.3.2) in

NEXUS format. BEAUti is a graphical user interface that supports the creation of BEAST XML input

files, enabling the user easily to set parameters and specific model criteria. Within BEAUti, a ‘Gamma

Category Count’ of four was selected for partitions using þG models to allow for the inclusion of

gamma rate heterogeneity. For partitions using þI models, the ‘Proportion Invariant’ was set to 0.1

and the ‘estimate’ box selected allowing the analysis to include a proportion of invariant sites.

‘Coalescent Extended Bayesian Skyline’ process was used and the ‘Population Model’ population

factor set as 0.5 to account for the female only contribution to the Ne [17]. A linked, strict molecular

clock and linked phylogenetic tree were used for all analyses. All other operator settings were

left as default.

Each population was run separately with each run consisting of 100 million generations sampled

every 10 000 steps and the first 10 million samples were discarded as burn-in [17]. To maximize

comparability, the sample size used was 85 for all populations, equal to the smallest sample (MSL).

Where more samples were available, 85 samples were selected at random. Each dataset was subject to

two replicate runs to confirm repeatability. Runs were analysed using Tracer v. 1.6 and convergence

was verified by plotting MCMC chain traces and ensuring that the effective sample sizes (ESS) of all

relevant parameters exceeded 200. Independent runs were then combined using LogCombiner

(v. 2.3.2) and again analysed using Tracer (v. 1.6) to determine that the same stationary distribution

was sampled both times. Demographic reconstructions were then plotted in R (v. 3.2.3).

To confirm that 85 samples provide adequate data for accurate population reconstruction, we re-ran

the analyses using all available samples for the population from each major region with the maximum

samples. Run length was extended to 200 million generations to account for increased sample size,

while burn-in remained at 10%. For the four major regions, these largest samples were: IBS in Europe

(n ¼ 107 samples); CHS in East Asia (n ¼ 105 samples); GIH in South Asia (n ¼ 103 samples); GWD

in Africa (n ¼ 113 samples). The resulting profiles were essentially identical, though with somewhat

narrower confidence intervals (electronic supplementary material, figure S1). Consequently, for

maximum comparability, the results presented are for the sample size of 85 that could be achieved for

all populations.

Each BEAST analysis yields a profile comprising 85 paired size–time estimates that together describe

the demographic history of that population. Unfortunately, different populations have different history

lengths and the densities of the points vary along each profile. To attempt to obtain a fair estimate of

similarity between any given pair of profiles, we used the following strategy. Comparisons were made

based on 20 evenly spaced time intervals summing to the length of the shorter history (i.e. 0, L/20,

2L/20 . . . L, where L is the maximum age-point of the population with the shorter history). At each of

these 21 time-points, the size of each population was estimated using linear interpolation between the

two immediately flanking values, and the total difference was calculated as

l ¼
Xi¼0

i¼20

jlogðs1Þ � logðs2Þj,

where s1 and s2 are the interpolated sizes in the two populations at bin i.
3. Results
The effective sample size (ESS) of relevant parameters was greater than 200, our criterion for

convergence, for 19 populations. One South Asian population (BEB) failed to reach 200, so the results

for this population should be treated with some caution. However, because replicate subsets all yield

similar profiles and the average profile is similar to others from the same geographical region, we

believe that the broadly correct demographic history has been recovered. A constant population size

can be confidently rejected for all 20 profiles as the 95% highest posterior density for the number of

population changes excludes 0 in every instance.

In terms of population similarity, we used autosomal SNP data from the 1000 Genomes Phase 3 to

calculate Fst between all population pairs, using the method of Hudson et al. [18]. As expected, the

major geographical regions are clearly resolved (electronic supplementary material, figure S2). In

addition, we also compared the similarity of the demographic profiles obtained using BEAST. Here
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Figure 1. Extended Bayesian skyline plots (EBSPs) for five Africa populations. Each separate population history is inferred from 85
full mitochondrial genomes. Dotted line is the median estimate of effective population size (Ne) and the thin grey lines show
the boundary of the 95% central posterior density (CPD) intervals. The x-axis represents time from the present in thousands of
years. All plots are on the same scale. Map labelled with geographical origins of sampled populations.
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again, populations from the major geographical regions tend to form discrete clusters (electronic

supplementary material, figure S3). Such clustering is consistent with the idea that populations from

the same part of the world tend to have experienced similar influences on when and how much they

increased in size.
3.1. Regional demographic histories

3.1.1. Africa

Profiles for the five African populations are presented in figure 1. As with all other regions, graphs are

arranged to correspond approximately to their geographical locations. All African populations share a

large, stable ancestral size that shows little change in the east (Luhya) and an expansion in the west.

The signal of expansion is stronger and starts later (around 10–11 ka) in the Nigerian populations

Esan and Yoruba compared to the Mende and Gambian populations whose expansion initiates

closer to 18 ka. As such, the four West African populations, particularly the Nigerians, echo the

profiles found in Southern European populations (see below), albeit with a significantly larger

initial size.
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3.1.2. Europe

The five European profiles are presented in figure 2. The four southerly populations all show profiles

with a stable size up to approximately 14 ka followed by a sudden, rapid increase that becomes

progressively less steep towards the present. There is also a north-south trend, with confidence

intervals becoming broader towards the north, particularly for the oldest time-points. The Finnish

population profile appears rather different, but this is to be expected both because it is so far north

and because previous studies have identified Finns as a strong genetic outlier in Europe [19–22].

3.1.3. South Asia

The five profiles for South Asia are shown in figure 3. All populations reveal a period of rapid growth

approximately 45–40 ka which then slows. Near the present the two southerly populations, GIH and

STU both show evidence of a decline. However, this may be due to these samples being drawn from

populations no longer living on the subcontinent, with the downward trend capturing a bottleneck

associated with moving to Europe/America, perhaps accentuated by the tendency for immigrant

populations to group by region, religion and race [23].

3.1.4. East Asia

The five population profiles for East Asia are presented in figure 4. All five profiles show a generally

upward trend with variable confidence limits suggesting unresolved demographic complexity. The
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two south-eastern populations, Dai and Kinh, share similarities with the South Asia group, having a

rather rapid increase around 45 ka. The other three populations show a weaker initial expansion, but

instead show some similarity to the European populations in terms of a recent accelerated expansion

before or around 10 ka. This secondary expansion appears to begin a little later in Japan, as observed

by Zheng et al. [2].

For a more objective depiction of the extent to which profiles are more similar between related

populations, we plotted a measure of curve similarity (CS) against Fst (figure 5). As CS captures

differences in both size and profile shape, it is not surprising that the values we find are highly

variable. Nonetheless, curve similarity does increase with Fst, and CS values tend to be more similar

to each other for particular region–region comparisons compared with the overall range. For example,

South Asian profiles seem to have relatively less affinity to Europe and Africa yet greater affinity to

East Asia.
4. Discussion
We used the Bayesian program BEAST to infer population histories for 20 global human populations

using whole mitochondrial genome sequence data from Phase 3 of the 1000 Genomes Project. Our

analysis builds on earlier studies using the Phase 1 data e.g. [2,3] or single haplogroups e.g. [22,24].

The Phase 1 data lack any South Asian populations and include several American samples with

complex patterns of European admixture [13,14]. By moving to Phase 3 data, we have been able to
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increase greatly the number of within-region comparisons. We show that populations from the same

region show greater similarity between their demographic profiles than populations from different

regions. There is also a tendency within each region for the profiles to exhibit geographical trends.

While we were able to detect changes in population sizes in all 20 populations, all these increases

appear to be too old to represent the effect of the Neolithic transition, in line with previous analyses

of more limited datasets [2–5,24]. See electronic supplementary material, table S2.

Compared with previous studies, our analysis has been able to deploy larger sample sizes, a

coalescent model and improved mutation rate estimates. The fact that we still fail to detect a clear

signal from the Neolithic transition may suggest that even complete mtDNA genomes lack sufficient

resolution to detect changes over this time scale. This conclusion agrees with simulations by Aimé &

Austerlitz [25], who argued that only microsatellites, which evolve appreciably faster, might offer

sufficient genetic resolution to detect such a recent event. Having said this, there may be factors other

than sheer mutation rate that confound our ability to detect recent trends. For example, the

mitochondrial genome is only a single marker and hence, by chance, may fail to capture signals seen

in gene trees produced from other markers. Thus, Silva et al. [24] analysed population samples from

South Asia, combining autosomal and Y-chromosome markers to reveal patterns consistent with sex-

biased dispersal [24]. Here, the lack of a signal of population expansion in mtDNA reflected

demographic changes associated with males rather than insufficient mitochondrial mutations.

The possibility that different markers can tell different stories is emphasized by the work of Karmin

et al. [26]. Their results for mtDNA data are broadly similar to ours, with populations in Africa showing
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gradual increase over time, an early expansion in Asia and more recent expansion in Europe. However,

they use Y-chromosome markers to detect a population reduction in the mid-Holocene, a trend that we

fail to detect. One possibility is that the prevailing population structure resulted in relatively stable female

effective population size at a time when sex-specific drivers acted to reduce the male Ne.

Verifying the ability of programs like BEAST to infer accurate population histories by simulation is

difficult. Modern human populations have extremely complicated histories with changing levels of

substructure, stratification by religion and politics and mixing through trade, wars and slavery

[27–29]. Yet, at the same time, some level of constancy is maintained through the persistence of

insular minority groups. Such complexity seems too great to be captured convincingly by simulations.

Consequently, one of the best ways to show success of the method is through the consistency of

profiles obtained from independent samples collected from related but distinct populations. The fact

that we find profiles that are more similar to each other within a region but differ between regions

therefore gives us confidence that we are picking up genuine regional differences: populations that are

nearer geographically are more similar in terms of their inferred demographic history, captured more

objectively in the general positive trend between Fst and profile similarity. In turn, this pattern also

indicates that our sample size of 85 individuals is adequate data for accurate population

reconstruction, something we further confirmed by extensive re-running with different, randomly

selected subsets.

The reconstructed population profiles we have generated exhibit several features that appear

consistent with known demographic events. Thus, the very early expansion observed in East and

West Asian populations is compatible with the out-of-Africa bottleneck and subsequent expansion.

Similarly, the timing of the expansion in Southern Europe could be seen as pointing to the beginning

of the Neolithic Transition in the Near East, the source of farmers who later colonized the rest of

Europe [30–32]. In both these cases, the expansion signals reflect older events that probably happened

before the lineages arrived at where they were sampled. Equally, the profiles and expansion dates we

find across South Asia are similar to those found in previous studies [24,33] such as work by Silva

et al. who suggest that the expansion signal seen in their BSPs around 45–35 ka may be indicative of

a secondary founder event in the region that obliterated more ancient signals.

Within each major region, the profiles are generally rather similar, though interestingly there also

appear to be east–west/north–south trends. Thus, in Africa, the two westernmost populations GWD

and MSL both show an earlier but smaller expansion compared with the two Nigerian populations

YRI and ESN. Similarly, among the East Asian populations, there is tendency for the most recent

expansion to occur more recently in the more northern populations CDX, CHB and JPT. It is also

notable that the more northern/eastern South Asian populations have profiles that are most similar to
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the more western East Asian populations, with PJL and ITU appearing most similar to CDX and KHV.

These putative trends require a further increase in sample size to quantify but suggest that demographic

change can, in principle, be tracked across both time and space.

The fact that the earliest signals are found in populations that are mostly far from where they were

when the changes occurred raises an important cautionary note in interpreting these trajectories: such

reconstructions are only valid under the assumption of a closed population [10,34,35]. Population

structure, expansions and mixing all generate apparent changes in Ne which might have nothing to do

with actual changes in the local census population. A single uniparental marker offers a powerful tool

for investigating demographic histories, but interpretation must be done carefully with the

understanding of what details might be missing, wiped out or swamped by a suite of different

influential processes [24]. This issue is not specific to BEAST, and other approaches such as PSMC

(pairwise sequentially Markovian coalescent) suffer of the same limitations [36]. It is this need to

avoid likely admixed populations that caused us to exclude populations from the Americas.

In conclusion, expansion of the analysis of the 1000 Genomes Project mitochondrial DNA data to

Phase 3 allows novel comparisons both between and within four major geographical regions.

Although it remains difficult to ground-truth the dates, the fact that clear geographical trends are

apparent suggests that the relative size and timing of expansions found are probably reliable.

However, naive interpretation of the data would imply that the populations studied all experienced

expansions that initiated prior to the adoption of agriculture. It was previously suggested that such

changes might be associated with changes in lifestyle, such as an increase in sedentarism, that

occurred before the advent of food production in the Neolithic [1]. Rather, we suggest that the signal

from each local population in fact reflects a much deeper demographic history, not from those local

derived populations being studied, but older ‘source’ populations which underwent geographical

expansions.
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