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Abstract

Glyphorynchus spirurus (GSP), also called the Wedge-billed Woodcreeper (Furnariidae)

has an extensive distribution in the Americas, including the Atlantic coast of Brazil. Never-

theless, there is no information about its karyotype or genome organization. To contribute to

the knowledge of chromosomal evolution in Passeriformes we analysed the karyotype of

Glyphorynchus spirurus by classic and molecular cytogenetics methods. We show that Gly-

phorynchus spirurus has a 2n = 80 karyotype with a fundamental number (FN) of 84, similar

to the avian putative ancestral karyotype (PAK). Glyphorynchus spirurus pair 1 was hetero-

morphic in the Tapajós population whereby the short arms varied in sizes, possibly due to a

pericentric inversion, as described in other Furnariidae birds. FISH with the Histone H5

probe revealed a signal in the pericentromeric region of G. spirurus chromosome 5 and

rDNA 18S showed interstitial signal in GSP-1. Chromosome painting with Gallus gallus

(GGA) macrochromosomes 1–9 probes showed disruption of chromosome syntenies of

GGA-1, 2 and 4 by fission in Glyphorynchus spirurus. Our results confirm that the GGA1

centric fission is a synapomorphic character for the phylogenetic branch composed of Strigi-

formes, Passeriformes, Columbiformes and Falconiformes. On the other hand, the GGA-2

fission is reported here for the first time in Passeriformes. Chromosome painting with BOE

whole chromosome probes confirmed these rearrangements in Glyphorynchus spirurus

revealed by Gallus gallus 1–9 probes, in addition to enabling the establishment of genome-

wide homology map.
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Introduction

Glyphorynchus spirurus (wedge-billed Woodcreeper) belongs to Furnariidae, with a wide dis-

tribution in the Americas, ranging from Central America, west to the Andes, throughout cen-

tral Amazonia, and south along the Atlantic coast of Brazil [1]. This species is common,

occurring in different types of lowland habitats, such as terra firme forests and seasonally

flooded lowland forests, like várzea and igapó [2].

Glyphorynchus spirurus is a polytypic taxon with thirteen subspecies [1], mostly endemic or

associated with particular areas [3, 4]. Recently, high levels of genetic differentiation were

found in different populations [5], suggesting the existence of several cryptic unnamed taxa.

Only two species of the Furnariidae family have had their karyotypes studied (Sittasomus
griseicapillus, SGR and Lepidocolaptes angustirostri, LAN, both with 2n = 82 chromosomes),

and no information on the Glyphorynchus spirurus karyotype can be found. Whole chromo-

some probes from Gallus gallus have been widely used in comparative bird studies, although

conservation of the syntenic groups prevents the identification of intrachromosomal rear-

rangements [6]. Gallus gallus (Galliformes) has a karyotype considered less derived in respect

to the putative avian ancestral karyotype. Also, Galloanserae is the sister clade to Neoaves

including Burhinus (Charadriiformes) and Glyphorynchus spirurus (Passeriformes). While sev-

eral species of the Oscines suborder have been analysed by chromosome painting [7–13], only

one species in Suboscines (6), Elaenia spectabilis (Tyrannidae), has been studied so far, In Fur-

nariidae, Glyphorynchus spirurus has a sister relationship to the ‘‘strong- billed” clade [14].

Although Passeriformes usually have a stable diploid number of 2n = 80, with similar

macrochromosomes, chromosome painting with whole chromosome probes of Leucopternis
albicollis has shown a complex pattern of pericentric and paracentric inversions, in this group,

involving chromosomes homologous to GGA-1q, both in Oscines and Suboscines [11–12, 15].

Despite the conserved karyotype of these birds, in silico analyses from genome sequencing

demonstrates that many intrachromosomal rearrangements, such as micro inversions, fusions

and fissions have occurred in their genomes [16, 17]. Also, whole chromosome probes of Bur-
hinus oedicnemus (BOE, 2n = 42) [18], a species with the lowest known diploid number among

birds, have been used in association with GGA probes to identify evolutionary rearrangements

in other neoaves species [18–20].

Here, we analysed for the first time the karyotype of Glyphorynchus spirurus with Gallus gal-
lus and B. oedicnemus whole chromosome probes and also rDNA 18S and Histone H5 probes

with the aim to understand the genomic organization and chromosomal evolution in birds.

The results provide new information on the phylogenetic relationships in Furnariidae and

Passeriformes.

Material and methods

Samples and chromosomal preparation

Five specimens of Glyphorynchus spirurus were collected from natural populations of the Bra-

zilian Amazon in Flona Nacional do Tapajós in Belterra (2˚24’05’’S/55˚04’40’’W), (one speci-

men female and three males) and Santa Bárbara, Pará, Brazil (Tapajós and Belém endemic

areas) (1˚12’14"S/48˚17’39"W), (1 male and 1 female). Bone marrow preparations were per-

formed after Colchicine treatment [21], with modifications. Voucher specimens were depos-

ited in the bird collection of the Museu Paraense Emilio Goeldi. JCP has a permanent field

permit number 13248 from “Instituto Chico Mendes de Conservação da Biodiversidade”. The

Cytogenetics Laboratory from Universidade Federal do Pará has a special permit number 19/

2003 from the Brazilian Ministry of Environment for sample transport and 52/2003 for using
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the samples for research. The Ethics Committee (Comitê de Ética Animal da Universidade

Federal do Pará) approved this research (Permit 68/2015). The specimens were maintained in

the lab with food and water, free from stress, until euthanised by intraperitoneal injection of

barbiturates under local anaesthesia.

Fluorescence in Situ Hybridization (FISH)

Genomic DNA was extracted from a chromosome preparation of Glyphorynchus spirurus
(Furnariidae-Passeriformes), with DNAzol [22]. Primers were designed using Pick primer

software of the NCBI platform, from a mRNA partial sequence for Histone H5 fromManacus
vitelinicus (Pipridae-Passeriformes), with the sequences H5F 5’- CTACAAGGTGGGCCAGA
ACG and H5R 5’- TCGTAGATGAGCCCCGAGAT.Probes of Histone H5 and 18S rDNA (Pro-
chilodus argenteus) were labelled with digoxigenin or biotin by PCR and FISH experiments

were carried out following the procedure previously described [23].

Chromosome painting was performed with GGA (Chromosomes 1–9) and BOE whole

chromosome probes according to [18]. Both probe kits were produced from chromosomes

isolated by flow cytometry at the Cambridge Resource Centre for Comparative Genomics,

Department of Veterinary Medicine, University of Cambridge, UK. Primary DOP-PCR prod-

ucts of whole sorted chromosomes were labelled either with biotin-16-dUTP (Boehringer

Mannheim), fluorescein isothiocyanate-12-dUTP (Amersham), or Cy3-dUTP by taking 1μl of

product to a second round of DOP-PCR using the same primer. The biotin probes were

detected with avidin-Cy3 or avidin-FITC.

Results

Glyphorynchus spirurus presented a karyotype with 2n = 80, NF = 84. The karyotype has three

subtelocentric pairs, eight acrocentric pairs (macrochromosomes) and 28 pairs of microchro-

mosomes. The Z and W chromosomes are both acrocentric (Fig 1). Chromosome pair 1 in

samples from Tapajós (but not from Belém) shows a heteromorphism in the sizes of the short

arms. FISH with the Histone H5 probe revealed a signal in the pericentromeric region of chro-

mosome pair 5 (Fig 2). Hybridization with the 18S rDNA probe maps the NOR to an intersti-

tial region of the short arm of G. spirurus pair 1 (Fig 3).

Hybridization of Gallus gallus (Chromosomes 1–9) whole chromosome probes reveals 12

homologous segments on the Glyphorynchus spirurus genome (Figs 1 and 4) and hybridization

of BOE whole chromosome probes reveals 36 homologous segments on the Glyphorynchus
spirurus chromosomes (Figs 1 and 5, S1 and S2 Figs). The correspondence between the BOE,

Gallus gallus and the Glyphorynchus spirurus karyotypes are showed in Table 1.

Discussion

Here we describe for the first time the karyotype of Glyphorynchus spirurus (sensu [5]). The

2n = 80, karyotype is common in Passeriformes and similar to the putative bird ancestral kar-

yotype (PAK) (2n = 80) [24], but differs by the presence of pericentric inversions in the first

three pairs. This karyotype differs from that of two other Furnariidae species, S. griseicapillus
and L. angustirostri, both with 2n = 82 [25] and similar karyotypes that differ from Glyphor-
ynchus spirurus by structural changes in macrochromosomes (probably inversions), and by

having additional microchromosomes resulting from fissions in Glyphorynchus spirurus.
We observed a heteromorphism in Glyphorynchus spirurus pair 1, where the short arm of

one homologue is larger than the other in Tapajós samples when compared to samples from

Belém. Since the BOE-3 and GGA-3 probes hybridize to the whole chromosome 1 in Glyphor-
ynchus spirurus, this may be due to a pericentric inversion, as proposed by [25] for SGR and
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LAN. The Belém and Tapajós populations form distinct, yet closely related clades in a recently

published phylogeography of G. spirurus, and are separated by an uncorrected genetic distance

of 1.6% in the cytochrome bmitochondrial gene [5]. Although closely related, this degree of

genetic divergence is consistent with the important chromosome differences between these

populations documented herein and, in fact, indicate that some of the cryptic diversity uncov-

ered in Glyphorynchus and other Suboscines passerines may be related to chromosomal differ-

ences. Therefore, we predict that even more striking chromosomal differences will be found

amongst more distantly related and genetically divergent populations of G. spirurus, such as

between the Guiana shield population in northeastern Amazonia and the remaining popula-

tions, which are separated by an uncorrected genetic of over 5% in the cytochrome b gene [5].

We also report the physical mapping of the H5 histone gene for the first time in birds and

found it tandemly repeated close to the centromere of Glyphorynchus spirurus chromosome

five (Fig 2). This histone has an important role on regulation and physiology since it partially

replaces histone H1 in mature erythrocytes and is exclusive to the avian genome [26]. These

results open up a new perspective about its organization and localization as a cytogenetic

marker in birds.

Chromosomal rearrangements between Gallus gallus and Glyphorynchus
spirurus and their occurrence in Passeriformes

Chromosome painting with Gallus gallus 1–9 probes shows that majority of these GGA chro-

mosomes were conserved in the Glyphorynchus spirurus karyotype, except for the fission of

Gallus gallus 1, 2 and 4 into six Glyphorynchus spirurus pairs (Figs 1 and 6). The Gallus gallus 2

fission was described in Buteo buteo, Gyps fulvus and Gyps himalayensis (Accipitriformes) [19],

but in these species, unlike in Glyphorynchus spirurus, this chromosome is fused to one micro-

chromosome. Although the previous demonstration that the fission of GGA-2 is an old rear-

rangement, found in all phylogenetic branches of birds [24], it is described here for the first

Fig 1. DAPI-inverted karyotype of Glyphorynchus spirurus showing the localization of the corresponding chromosome probes of Gallus gallus
(left) and Burhinus oedicnemus (right). Arrows (pair 1) represent rDNA 18S gene and arrowhead (pair 5) represents histone H5 mapping. Asterisks

indicate the centromeres of the subtelocentric chromosomes. Note that an unambiguous identification and ordering of microchromosomes, especially

chromosomes 21–39, is beyond the scope of this paper due to the lack of reliable markers.

https://doi.org/10.1371/journal.pone.0202040.g001
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time in Passeriformes and may be a common trait in the Furnariidae [25]. SGR and LAN have

chromosomes of similar morphology and size that are possibly homologous to Glyphorynchus
spirurus chromosomes 2 and 5. Also, using a universal set of avian bacterial artificial chromo-

some (BAC) probes and chromosome painting with BOE whole chromosome probes, we have

found the GGA-2 fission in four species of Thamnophilidae birds (data in preparation).

On the other hand, fission of GGA-1 is a more recent rearrangement, being restricted to

the phylogenetic branch that gave rise to Strigiformes, Passeriformes, Columbiformes and Fal-

coniformes [10, 19–20, 24, 27–28]. GGA-1 has experienced multiple fissions especially in Acci-

pitriformes with one to six hybridization signals, four in Gypaetus barbatus and six inHarpia
harpia [19, 24, 29–30].

The split of GGA-4 into two pairs is considered to be the ancestral form, so their fusion in

Gallus gallus is apomorphic [24]. The synteny of Gallusmacrochromosomes 1–10 in three dif-

ferent orders of birds, including Passeriformes was analysed [10]. We found the GGA-1 fission

in all species, while GGA-4 was split in all except in blackcap and no one showed the fission in

GGA-2. The Gallus gallus chromosome one fission has been found in Oscines (Turdus [11],

Saltator [12]), Suboscines (Elaenia [15]) and also here in Glyphorynchus spirurus, and has been

Fig 2. Physical mapping of Histone H5 sequences in Glyphorynchus spirurus. Staining with DAPI and CY3. Arrows indicate the gene location on chromosome pair 5.

https://doi.org/10.1371/journal.pone.0202040.g002
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well accepted as a synapomorphy for Passeriformes [10, 15]. However, as this fission appears

in the branch supporting Strigiformes, Passeriformes and Falconiformes [24] and thus could

be a synapomorphic trait for all these orders.

Finally, we suggest that a microchromosome fusion has occurred in the Glyphorynchus spir-
urus pair 1p terminal portion (homologous to GGA-3). This may have resulted from fusion of

the NOR-bearing Gallus gallusmicrochromosome 16 with Glyphorynchus spirurus

Fig 3. Physical mapping of rDNA 18S sequences in Glyphorynchus spirurus visualized with Cy3-avidin (red) and/or FITC-avidin (green). Chromosomes were

stained with DAPI (blue). Arrows indicate the NOR on chromosome pair 1.

https://doi.org/10.1371/journal.pone.0202040.g003
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chromosome one (Fig 6). Evidence of fusions involving GGA-3 and one small chromosome

has been found previously in Eleania and Turdus, despite not involving a NOR-bearing chro-

mosome [11, 15]. We did not find signs of this hybridization by chromosome painting, but

this may be because the translocation involved only a small part of the microchromosome.

Alternatively, it is possible that only the NOR had moved to GSP-1.

Chromosomal rearrangements between Burhinus oedicnemus and

Glyphorynchus spirurus and their presence/absence in non-Passeriformes

Chromosome painting with BOE probes shows that only four syntenic groups were conserved

in the Glyphorynchus spirurus karyotype (BOE 3, 4, 6 and 7) and confirmed the split of Gallus

Fig 4. Chromosome painting with Gallus gallus whole chromosome probes to Glyphorynchus spirurus. A) GGA-2 (pairs 2, 5 and W); B) GGA-3 (pair 1); C) GGA-4

(pairs 6 and 10) and D) GGA-8 (pair 11 and W). Probes are visualized with avidin-Cy3 (red) and or avidin-FITC (green). Chromatin is stained with DAPI (blue).

https://doi.org/10.1371/journal.pone.0202040.g004
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gallus 1, 2 and 4, without intrachromosomal rearrangement when compared to the results with

GGA probes. As BOE-7 is metacentric and GSP-9 acrocentric, we suppose that they differ by

one pericentric inversion, and the acrocentric form (GSP-9) could be apomorphic because this

has not been observed in other species hybridized with BOE probes [19, 20].

Gallus gallus and BOE whole chromosome probes were used in five species of birds belong-

ing to five different avian orders: Nymphicus hollandicus (2n = 72), NHO (Psittaciformes);

Larus argentatus (2n = 70), LAR (Charadriiformes); Columba livia (2n = 80), CLI (Columbi-

formes); Strix nebulosa (2n = 82), SNE (Strigiformes) and Fulica atra (2n = 92), FAT (Grui-

formes) [20]. These species showed between 28 and 33 signals with BOE probes, while we

Fig 5. Chromosome painting with Burhinus oedicnemus whole chromosome probes to Glyphorynchus spirurus. A) BOE-2 (pairs 2 and 5); B) BOE-14 (pairs 7 and

11); C) BOE-Z (Chromosome Z, W and one michrocromosome) and D) BOE-6 (pair 9). The nomenclature to BOE probes follows Nie et al. [17]. Probes are visualized

with avidin-Cy3 (red). Chromatin is stained with DAPI (blue). Note that the assignment of BOE probes to microchromosome remains highly tentative due to the

difficulty in identification of Glyphorynchus spirurusmicrochromosomes.

https://doi.org/10.1371/journal.pone.0202040.g005
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obtained 36 signals in GSP (Fig 1), despite the considerable variation of 2n among those spe-

cies, ranging from 2n = 72 in NHO, 2n = 70 in LAR to 2n = 92 in FAT.

While BOE-1, homologous to GGA-1, was conserved as one pair (LAR, CLI and FAT) or

split into two pairs (NHO and NSE) as we observed in Glyphorynchus spirurus, BOE-2 corre-

sponding to GGA-2 was conserved and showed variation only relative to the centromere posi-

tion. Similarly BOE-1 and BOE-3 (GGA-3) were also conserved in all species studied by [20]

and in Glyphorynchus spirurus with some variation in chromosome morphology. BOE 4,

homologous to GGA-4q and BOE-8 homologous to GGA4p [18] has an interesting history

among birds. The Gallus gallus chromosome four split into two pairs (a plesiomorphic trait), is

maintained in most species including Glyphorynchus spirurus and is described as the most puz-

zling finding in avian karyotype evolution [24]. BOE-4 hybridized to one pair in GSP (GSP-6)

and in all species analyzed by [20] except for FAT. BOE-8 showed two signals in NHO, CLI,

SNE, FAT and GSI. On the other hand, it showed only one signal in CAR, as in BOE. Since

BOE-8 is formed by GGA-4p and 1 microchromosome, the ancestral trait remains intact in

these birds.

BOE chromosomes 17–20 probes produced one to four signals in all species including GSP,

with some exceptions where no signal was detected in the six species [20 and present study]. In

Glyphorynchus spirurus 34 to 39, the stone curlew probes failed to produce hybridization sig-

nals. The microchromosomes are small and it is possible that there is insufficient resolution to

detect them by FISH. Another explanation is that microchromosomes have a high density of

repetitive sequences, mainly telomeric [31] and commonly fail to hybridize with painting

probes.

We also found in Glyphorynchus spirurus that the BOE-Z probe hybridized to two micro-

chromosome pairs, the W and two BOE autosomal pairs. Apart from BOE-Z, BOE-2 and 6

Table 1. Chromosomal correspondence between Burhinus oedicnemus, Gallus gallus and Glyphorynchus spirurus
revealed by FISH with BOE chromosome-specific paints. Note that the chromosomal correspondence between the

BOE and GGA was based on Nie et al. [17].

Chromosome

Burhinus oedicnemus Gallus gallus Glyphorynchus spirurus
1 1 3, 4

2 2 2, 5, W

3 3 1

4 4q 6

5 7, 8 7, 11

6 5 8, W

7 9, 2 micros 9

8 4p, 1 micro 2 micros

9 2 micros 2 micros

10 2 micros 2 micros

11 2 micros 2 micros

12 2 micros 2 micros

13 2 micros 2 micros

14 2 micros 2 micros

15+16 3 micros 2 micros

17+18+19+20 1 micro 3 micros

Z Z Z, W, 1 micro

Micro(s) = microchromosome(s).

https://doi.org/10.1371/journal.pone.0202040.t001
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also hybridized to GSP-W. These regions may have similar repetitive regions or are the result of

cross hybridization as observed by [18] in Gallus gallus and in other species [19, 20]. The acro-

centric chromosome Z in Glyphorynchus spirurusmust have experienced an inversion as shown

by comparison with BOE and Gallus gallus. Inversions of the Z are common in birds [32].

Conclusions

We describe, for the first time, the chromosomal homology of Gallus gallus and BOE in one

bird of the Furnariidae family, Glyphorynchus spirurus. Our results indicate that Glyphorynchus
spirurus has a chromosomal heteromorphism in the first pair of chromosomes which also

bears the NOR. The presence of the NOR in the largest chromosome is a derivative trait in

birds and could be frequent in the Furnariidae family. Finally, we report for the first time the

fission of GGA-2 in Passeriformes and show that the GGA-1 fission is not a synapomorphy

confined only to Passeriformes birds.

Supporting information

S1 Fig. Hybridization of each Burhinus oedicnemus whole chromosome probe (macrochro-

mosomes) on chromosome pairs of Glyphorynchus spirurus.

(TIF)

S2 Fig. Hybridization of each Gallus gallus whole chromosome probe on chromosome

pairs of Glyphorynchus spirurus. Unfortunately, not all GGA probes worked on our sample,

Fig 6. Ideogram showing fission/fusion rearrangements to Gallus gallus chromosomes in Glyphorynchus spirurus: A) GGA-1 fission generating two

chromosomes in GSP; B) GGA-2 fission in GSP (GSP-2 and 5), and C) GGA-3 Robertsonian fusion with a microchromosome in GSP-1.

https://doi.org/10.1371/journal.pone.0202040.g006
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so in some situations we followed the findings with Gallus gallus probes based on Nie et al.

[18].

(TIF)
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