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RADIAL MOTIONS IN DISK STARS: ELLIPTICITY OR SECULAR FLOWS?

M. López-Corredoira1,2 and C. González-Fernández3

ABSTRACT

Average stellar orbits of the Galactic disk may have some small intrinsic ellipticity which breaks
the exact axisymmetry and there may also be some migration of stars inwards or outwards. Both
phenomena can be detected through kinematic analyses. We use the red clump stars selected spec-
troscopically from APOGEE (APO Galactic Evolution Experiment), with known distances and radial
velocities, to measure the radial component of the Galactocentric velocities within 5 kpc< R <16
kpc, |b| < 5◦ and within 20 degrees from the Sun-Galactic center line. The average Galactocentric
radial velocity is VR = (1.48± 0.35)[R(kpc)− (8.8± 2.7)] km/s outwards in the explored range, with
a higher contribution from stars below the Galactic plane. Two possible explanations can be given
for this result: i) the mean orbit of the disk stars is intrinsically elliptical with a Galactocentric radial
gradient of eccentricity around 0.01 kpc−1; or ii) there is a net secular expansion of the disk, in which
stars within R ≈ 9 − 11 kpc are migrating to the region R & 11 kpc at the rate of ∼ 2 M⊙/yr,
and stars with R . 9 kpc are falling toward the center of the Galaxy. This migration ratio would be
unattainable for a long time and it should decelerate, otherwise the Galaxy would fade away in around
1 Gyr. At present, both hypotheses are speculative and one would need data on the Galactocentric
radial velocities for other azimuths different to the center or anticenter in order to confirm one of the
scenarios.
Subject headings: Galaxy: kinematics and dynamics — Galaxy: disk

1. INTRODUCTION

The disk of spiral galaxies like our Milky Way is rep-
resented approximately by a stationary axisymmetric
component. However, the exact representation of disks
may depart from this simple first-order picture. Average
stellar orbits might have some small intrinsic ellipticity
which breaks the exact axisymmetry and the orbits may
be stationary, like for a planet of the solar system which
always returns to the same point with respect to the Sun,
or there may be some long-term evolution such as for in-
stance a possible migration of stars inwards or outwards.
Most disks exhibit a wealth of non-axisymmetric struc-

tures (Rix & Zaritsky 1995); about one third of them
are substantially lopsided at a 2.5 disk exponential scale
length, although the spiral pattern couples significantly
to the estimate of the intrinsic ellipticity and their mea-
surement may represent an upper limit on the true po-
tential triaxiality. Lopsidedness is quite typical in disk
galaxies and this may be interpreted as a pattern of ellip-
tical orbits (Baldwin et al. 1980; Song et al. 1983). Non-
circular streaming motions were also observed in the gas
motions of other galaxies (Sellwood & Zanmar Sánchez
2010); however, the stellar kinematics is usually more
regular and symmetric than the gas kinematics (Pizzella
et al. 2008). Therefore, further research is needed for the
stellar population and, in particular, this can be more ac-
curately analyzed in the Milky Way.
In our Galaxy, Siebert et al. (2011) and Williams

et al. (2013) were able to obtain, from RAVE (Radial
Velocity Experiment) spectroscopic data, a significant

1 Instituto de Astrofisica de Canarias, E-38205 La Laguna,
Tenerife, Spain; martinlc@iac.es

2 Departamento de Astrofisica, Universidad de La Laguna, E-
38206 La Laguna, Tenerife, Spain

3 Institute of Astronomy, University of Cambridge, Madingley
Road, Cambridge, CB3 0HA, UK

measurement of a Galactocentric radial velocity gradi-
ent outwards. This gradient was measured within -2
kpc< (R − R⊙) < +1 kpc and mostly measures local
streaming motions. A large-scale feature of the Galactic
disc should be observed over a wider range of Galacto-
centric distances and this is what we will carry out here,
thanks to the higher depth of the APOGEE (APO Galac-
tic Evolution Experiment) survey (see §2). The analysis
for -3 kpc< (R − R⊙) < +8 kpc along the Sun-Galactic
center line is carried out in §3 and §4.
The interpretation of this gradient of radial velocity

can be given in terms of elliptical orbits. In §5.1, we sta-
tistically constrain their ellipticities only with the radial
velocities along the Sun-Galactic center line.
Another tentative explanation is the existence of a net

migration of stars outwards. Stellar radial migrations
have indeed been a useful hypothesis to explain breaks
in surface brightness (Sánchez-Blázquez et al. 2009), the
formation of the thick disk (Sales et al. 2009), metal-
licity distributions (Grand et al. 2015), etc., and it is
indeed theoretically expected as a consequence of the res-
onances of the bar and transient spiral arms in the disk
(Halle et al. 2014: Roskar & Debattista 2015). Here we
will derive the ratio for the necessary average migration
to produce our observed Galactocentric radial velocity
gradient (§5.2).

2. DATA FROM APOGEE: SELECTION OF RED CLUMP
GIANTS

APOGEE is an H-band high-resolution spectroscopic
survey (Eisenstein et al. 2011) of the third stage of the
Sloan Digital Sky Survey project (SDSS-III; Gunn et al.
2006). A detailed description of the target selection and
data reduction pipeline is presented in Zasowski et al.
(2013). For the purposes of this paper, we use the spec-
troscopically selected sample of red clump giants (RCGs)
presented by Bovy et al (2014), updated for the Data Re-
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Figure 1. Sketch of the kinematics of a star with respect to the
Sun.

lease 12 (DR12) of SDSS-III.
The narrow luminosity function distribution of RCGs

(Castellani et al. 1992) makes them very appropriate
standard candles that trace the old stellar population
of the Galaxy. The catalog derived from APOGEE-
DR12 contains a total of 19 937 RCGs (with the con-
straint of the parameter ADDL LOGG CUT=1, which
includes only the sources with the extra constraint in
log g of Eq. (9) in Bovy et al., which makes the se-
lection more accurate) for which the distance is deter-
mined using MK = −1.61 and accurate measurements of
their radial motions are provided. The narrowness of the
RCG locus in color–metallicity–luminosity space allows
distances to the stars to be assigned with an accuracy of
5%-10%. The purity is estimated to be about 95% ; we
neglect the possible systematic errors due to the possible
errors in the distances of these stars. As explained in the
next section, we only take the in-plane regions near the
anticentre, we constrain our sample within |b| < 5◦ and
|ℓ − 180◦| < 20◦ or (or |ℓ| < 20◦ and R > 5 kpc), so we
work with a sample of 3 160 RCGs.

3. DERIVING GALACTOCENTRIC RADIAL VELOCITIES
FROM HELIOCENTRIC RADIAL VELOCITIES

The 3D velocity of the combination of radial velocity
(vr) and tangential velocities (vℓ, vb) is related to the
velocity in the reference system U , V , W as plotted in
Fig. 1 by

vr = U∗ cos ℓ cos b+ V∗ sin ℓ cos b+W∗ sin b, (1)

vℓ = −U∗ sin ℓ+ V∗ cos ℓ

vb = −U∗ cos ℓ sin b− V∗ sin ℓ sin b +W∗ cos b,

where (U∗, V∗,W∗) is the velocity of a star relative to the
Sun in the system (U, V,W ).
A star with Galactocentric distance R, azimuth φ and

vertical distance from the plane z will have a Galactocen-
tric velocity with a radial component (VR; we define it
as positive outwards), an azimuthal component (rotation
speed Vφ) and a vertical motion (W ) which are related
to the heliocentric velocities by

U∗ = −U⊙ + Vφ sinφ− VR cosφ, (2)

V∗ = −Vg,⊙ + Vφ cosφ+ VR sinφ

W∗ = −W⊙ +W,

where Vg,⊙ = Vφ(R⊙, z = 0) + V⊙ and (U⊙, V⊙,W⊙) is
the velocity of the Sun with respect to the local standard
of rest (LSR). Here, we adopt the values R⊙ = 8 kpc;
Vg,⊙ = 244 ± 10 km/s, U⊙ = 10 ± 1 km/s, V⊙ = 26 ± 3
km/s (Bovy et al. 2012), and W⊙ = 7.2 ± 0.4 km/s
(Schönrich et al. 2010).
See López-Corredoira (2014) and López-Corredoira et

al. (2014) for the derivation of Vφ and W respectively
from the tangential velocities. To obtain VR without any
assumption on Vφ or W , in principle, by joining Eqs. (1)
and (2) we could use both tangential velocities and radial
velocities of the stars through

VR = vℓ sin(φ + ℓ)− vr cos(φ+ ℓ) sec b− U⊙ cosφ (3)

+Vg,⊙ sinφ+ (W⊙ −W ) cos(φ+ ℓ) tan b,

but we have checked that the tangential velocities in the
APOGEE stars given by Bovy et al. (2014) have got
very large error bars and introduce much noise in our
calculations. Therefore, we use only the information of
the radial heliocentric velocities through the expression
also derived from Eqs. (1) and (2):

VR = −
vr

cos(φ+ ℓ) cos b
−

cos ℓ

cos(φ+ ℓ)
U⊙−

sin ℓ

cos(φ+ ℓ)
Vg,⊙

(4)

+
tan b

cos(φ+ ℓ)
(W −W⊙) + tan(φ+ ℓ)Vφ.

This is the relationship that we will use throughout this
paper. The disadvantage of Eq. (4) is that we are model
dependent, since we need to know the values of Vφ and
W , but we can make an appropriate selection of regions
in which this dependence is very small. In particular, we
choose |b| < 5◦, which makes negligible the contribution
of W or W⊙ and |ℓ − 180◦| < 20◦ (or |ℓ| < 20◦ and
R > 5 kpc), in order to avoid low values of cos(φ + ℓ)
and to reduce the impact of the error in Vφ. We set
W = 0, neglecting the vertical motions (which might,
however, be substantial (López-Corredoira et al. 2014),
but in any case without a significant contribution here
given the low values of b). The rotation speed is taken
from Bovy et al. (2012), who also use APOGEE data to
derive it. We have performed tests with other rotation
curves and we do not obtain different results within the
error bars. There may be some gradient of the rotation
speed with z and this is apparently quite conspicuous at
R & 14 kpc (López-Corredoira 2014), but since we are
using low b data, this can be neglected.
The velocity VR might be related to the Oort constants

(Siebert et al. 2011, Famaey et al. 2012) but this is
only valid within the approximation of a Taylor expan-
sion within the solar neighborhood, for heliocentric dis-
tances . 1 kpc. Since we are going much farther away,
we will not derive these constants.

4. RESULTS

Fig. 2 shows the measured values of VR as a function
of R, in which we have grouped data in bins of ∆R = 0.5
kpc and we have carried out a linear weighted fit that
gives the result:

VR(km/s) = (1.48±0.27)× [R(kpc)− (8.84±0.45)]. (5)
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Figure 2. Radial galactocentric velocity derived from Eq. (4)
with radial heliocentric velocities from APOGEE for RCG sources
within a region close to the Galactic center-Sun line. The blue line
and its error bars represent the average within bins of ∆R = 0.5
kpc. The region between both dashed lines is the zone within one
rms of dispersion of the points.

The slope is > 5σ away from zero, which means that we
significantly detect a variation of VR with R. Given our
constraints, this applies to the sources which are close
to the Galactic center-Sun line. The error bar of mean
radial galactocentric velocity is inversely proportional to
the root square of the number of points in each bin and
proportional to the rms of the velocities. Certainly, for
a much smaller number of stars the error bar would be
larger and it would reduce the significance of our detec-
tion, but we have found a detection of a positive slope
with over 5 sigma of significance, so clearly we are us-
ing a sufficient number of stars for our purposes. The
quantity 0.27 corresponds only to the error of the fit,
and we should also take into account the error in the
used parameters, derived from an error expansion of Eq.
(4), neglecting the possible covariance terms if there were
some correlations among the parameters:

(

Error

[

dVR

dR

])2

= 0.272 (6)

+









d
〈

cos ℓ
cos(φ+ℓ)

〉

dR



Error[U⊙]





2

+









d
〈

sin ℓ
cos(φ+ℓ)

〉

dR



Error[Vg,⊙]





2

+









d
〈

tan b
cos(φ+ℓ)

〉

dR



Error[W −W⊙]





2

+

((

d 〈tan(φ+ ℓ)〉

dR

)

Error[Vφ]

)2

+

(

〈tan(φ + ℓ)〉

(

dError[Vφ]

dR

))2

.

Because of the constraints in the selected region, the

derivatives of the brackets are small:
d〈 cos ℓ

cos(φ+ℓ) 〉
dR =-0.0023

kpc−1,
d〈 sin ℓ

cos(φ+ℓ)〉
dR =-0.022 kpc−1,

d〈 tan b
cos(φ+ℓ)〉
dR =0.00066

kpc−1, and d〈tan(φ+ℓ)〉
dR =-0.017 kpc−1. With these num-

bers and the errors of the parameter given above, we
get that Error

[

dVR

dR

]

= 0.35 km/s/kpc, somewhat larger
than the previous 0.27 with just the fitting error. In any
case, we can claim that the slope is & 4σ away from zero.
However, the value of R which gives exactly VR = 0,

as expected in circular orbits, is not so well determined:
the fit gives R0 = 8.84± 0.45 kpc as the zero point, but
we must add to this error that of U⊙, which dominates
the uncertainty in this measurement. Bovy et al. (2012)
is quite optimistic to give an error of only 1 km/s to
this quantity, whereas some other authors like Schönrich
(2012) derive a value +4 km/s higher than the one by
Bovy et al. (2012). If we take the Error[U⊙] = 4 km/s,

given that
〈

cos ℓ
cos(φ+ℓ)

〉

≈ 1.0 in our sample, we obtain

Error[R0] = 2.74 kpc instead of only 0.45 kpc. That is,
R0 = 8.84 ± 2.74 kpc. Of course, the value of R0 will
also change if we change R⊙; for instance, increasing R⊙

to 8.5 kpc instead of 8.0 will increase the value of R0 in
≈ 0.5 kpc.
The trend in dVR

dR was also observed by Siebert et al.

(2011):
〈

dVR

dR

〉

= +4 km/s/kpc over -2 kpc< (R−R⊙) <
+1 kpc. Furthermore, Williams et al. (2013) found that
the gradient in that range is marked below the plane 8
km/s/kpc for negative latitudes and vanishing to zero
above the plane, with a z-gradient thus also present. If
we perform the same analysis as Williams et al., but for
-3 kpc< (R − R⊙) < +8 kpc, we also obtain a higher
gradient for b < 0 stars than b ≥ 0 stars: 2.12 ± 0.77
km/s/kpc and 0.36 ± 0.68 km/s/kpc, respectively. Fig.
3 of Siebert et al. (2011) or Fig. 16 of Williams et al.
(2013) are comparable to our Fig. 2. Bovy et al. (2015)
also found evidence for non-circular motions from the
power spectrum of the velocity fluctuations after sub-
tracting an axisymmetric model.
Dynamical reasons for this gradient will not be ex-

plored in this paper, but we will just interpret the
kinematics without relating it to any theoretical model.
There are in the literature some attempts to explain these
kinds of observations: no gradient in the radial velocity
could be produced by a bar (Monari et al. 2014), but
it can be produced by spiral arms (Faure et al. 2014),
for instance. For our present data, the effect of a net
increasing Galactocentric radial velocity over a range of
∼ 10 kpc cannot be explained with a bias in which we
see more or better the stars on the closer side of the spi-
ral arm, which pull them toward the arm, and we do not
see as well the stars behind the spiral arms that should
provide the expected symmetric view. In such a case we
would see fluctuations around zero in the positions where
we cross a spiral arm rather than a continuous increase
of the velocity as shown in Fig. 2. Obtaining a higher
gradient from b < 0 than from b > 0 seems to be in
favor of rather a local process, maybe a dominant local
stream driving this impression of an outward radial dis-
placement, but again this effect cannot be local since it
is observed along a wide range of ∼ 10 kpc. Whatever
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it is the cause of the present effect, it is not something
restricted to a local event in some place of the Galactic
disk, but a large-scale effect.

5. INTERPRETATION

The detection of VR 6= 0 means that the mean orbit
of the stars is not perfectly circular, either because it is
Keplerian elliptical or because there is a component of
secular expansion of the disk associated to migration. In
this section we explore further the consequences of both
hypotheses, bearing in mind that with the data at hand
we cannot favor one or the other.

5.1. Elliptical orbits

We want to derive the properties of the mean orbit.
Note that the ellipticity of the mean orbit is not the same
thing that the mean ellipticity of the orbits for individual
stars.
For an elliptical orbit, the radial Galactocentric veloc-

ity is related to the eccentricity, e, through

V 2
R =

Ke2

R

sin2(φ − φ0)

1 + e cos(φ− φ0)
, (7)

where K = RV 2
φ in circular orbits. For very low eccen-

tricities (e ≪ 1)

VR ≈ Vφ e sin(φ − φ0), (8)

e ≈

√

√

√

√

1

V 2
φ

[

V 2
R +

(

∂VR

∂φ

)2
]

≥
VR

Vφ
. (9)

We have no information on the dependence of VR on φ,
so we cannot derive ∂VR

∂φ and we cannot derive the exact

value of e from Eq. (9). However, we can evaluate the
most likely value: in almost circular orbits, the proba-
bility to obtain a value of φ between φ1 and φ1 +∆φ is
proportional to the time in this range of azimuths, which

is proportional to ∆φ ≈ ∆
[

sin−1
(

VR

Vφ e

)]

[from Eq. (8)].

Therefore, the normalized probability to have an eccen-
tricity between e and e + de for VR

Vφ
≤ e ≤ 1 is

P (e)de ≈
1

π
2 − sin−1

(

VR

Vφ

)

|VR|

Vφe2
de

√

1−
V 2
R

V 2
φ
e2

. (10)

Note that this approximation is only correct for low val-
ues of e and not for high values close to unity, but since
the probability P (e) goes down very fast for high values
of e and low values of VR, it does not matter for our cal-
culations: the important thing is the localization of the
peak of the probability and the errors in the tail of the
distribution for high e do not have an effect. Neglecting

the term sin−1
(

VR

Vφ

)

with respect to π/2 for VR ≪ Vφ

and convolving with the Gaussian distribution of values
for a given average value of velocity VR and correspond-
ing rms σ, we obtain

P (e)de ≈
21/2de

π3/2σ Vφ e2
(11)

0 0.05 0.1 0.15 0.2
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Figure 3. Probability distribution of the eccentricity given by Eq.
(11) for the specified set of parameters.

×

∫ Vφ e

−Vφ e

dx
|x|

√

1− x2

V 2
φ
e2

exp

[

−
(x− VR)

2

2σ2

]

.

We apply Eq. (11) for the values derived from
Sect. 4: VR = (1.48 km/s/kpc)(R − R0), σ =
(0.35 km/s/kpc)(R − R0), and for a constant rotation
speed of Vφ = 218 km/s. In Fig. 3 we show the proba-
bility distribution for the case R−R0=6 kpc. The linear
fit of VR of Sect. 4 can be translated into

e ≈
[

0.009+0.014
−0.003(68% C.L.) +0.077

−0.005(95% C.L.) kpc−1
]

(12)
×|R−R0|.

The error distribution is very different from a Gaussian
one (see Fig. 3). With the available information we
cannot ascertain the position of the major axis of these
ellipses; we would need to explore all values of φ but we
are constrained at φ ∼ 0 for the given reasons.

5.2. Secular expansion

Let us assume that the mean orbit is a spiral [VR 6=
VR(φ)] and Eq. (5) represents the average velocity of
the whole collection of stars, that VR in the anticenter
direction represents the mean VR at any azimuth. We
admit that this a first–order approach, useful to discuss
the order of magnitude of the event, and a more accurate
result should take into account the possible dependence
with azimuth. Then, we have an average outwards mo-
tion of Vrm(R) = (1.51± 0.36)× [R(kpc)− (8.84± 2.74)]
kpc Gyr−1, including the different sources of errors dis-
cussed in Sect. 4.
The relative variation of stellar mass of a ring with

radii between R and R+ dR is

Ṁ

M
(R) =

−1

Rσ(R)

d[Vrm(R)Rσ(R)]

dR
, (13)

where σ(R) is the stellar surface density, assuming a con-
stant average mass/luminosity ratio throughout the disk.
With an exponential disk σ(R) ∝ e−R/hR and the above
value of Vrm(R), we obtain that the relative gain of stellar
mass in a ring of radius R is

Ṁ

M
(R) = Vrm(R)

(

1

hr
−

1

R

)

−
dVrm(R)

dR
(14)
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= (1.51± 0.36)×
R2 −R(R0 + 2hR) +R0hR

RhR
Gyr−1.

This means that the rings with R > R1 = 1
2R0 +

hR +
√

R2
0/4 + h2

R kpc are gaining mass whereas the

rings with 1
2R0 + hR −

√

R2
0/4 + h2

R < R < 1
2R0 +

hR +
√

R2
0/4 + h2

R are loosing mass, and the rings with

R < 1
2R0 + hR −

√

R2
0/4 + h2

R are gaining mass again.
Integrating Eq. (14) for the whole disk at the re-

gion which is gaining mass (R > R1), and assuming
hR = 2.0 ± 0.4 kpc for a thin disk (López-Corredoira
& Molgó 2014) and a local stellar surface density of
σ⊙ = (3.8 ± 0.4) × 107 M⊙/kpc

2 (Bovy & Rix 2013),

we obtain Ṁ(R > R1) = 1.9+3.9
−1.5 M⊙/yr. The linear fit

of VR in Eq. (5) might not be extrapolated to an infinite
Galactocentric distance, but it does not greatly affect to
our calculation: indeed 60% of the contribution to the
integral stems from R1 < R < 16 kpc. On the other
hand, the mass which would be lost outwards between
R0 and R1 is Ṁ(R0 < R < R1) = −2.0+1.6

−4.1 M⊙/yr.
In regions interior to R < R0 there is also mass loss,
but this is directed inwards (negative VR). Therefore,
the scenario derived from Eq. (5) interpreted as conse-
quence of secular expansion of the disk is that some stars
within R0 < R < R1 are migrating to the region R > R1

at the rate of ∼ 2 M⊙/yr.
The amount of mass of the disk within R0 < R < R1

is 2.2×109 M⊙ and the mass at R > R1 is 1.2×109 M⊙.
This means that, with the actual ratio of expansion, the
region R0 < R < R1 would be empty in only 1.1 Gyr and
all of the stars within R > R1 would stem from a migra-
tion in the last 0.6 Gyr. This is not possible, since the
life of the Galaxy is much longer and the extension of the
Galaxy cannot change so fast. This means that, either
this secular expansion with a motion in an Archimedes
spiral does not apply or these velocities Vrm(R) are not
constant with time, so we live now in a period of fast
expansion but this period will be short.
The limitations and implications of this scenario are

those already mentioned: we are only using the regions
toward the center/anticenter, so we can be sure there
is a motion of expansion there but not in the rest of
the azimuths of the Galaxy. As mentioned above, a lo-
cal stream cannot be the explanation of radial veloci-
ties along a wide range of ∼ 10 kpc, but it could be a
large-scale stream associated with the Galaxy in the Sun-
Galactic center line; this idea might have some support
in the fact that there is an asymmetry in the north–south
Galactic hemisphere, indicating that this possible stream
would be placed in the southern part. Since we do not
have evidence of such a huge structure embedded in our
Galaxy, we think this is not very likely. Assuming the
hypothesis of the same radial velocities for any azimuth,
as we have done here, we obtain the result of a fast ex-
pansion of the disk that would dilute it in few rotations
if the expansion were constant with time. In any case, it
may contribute to the increase of the disk size in cosmo-
logical times. Most of the mass will be concentrated in
the central regions without much change, but the outer
disk has a trend at present to lose stars outwards, stars
which will escape the Galaxy and will be part of the ex-
ternal halo once they abandon the disc.

6. SUMMARY AND CONCLUSIONS

We have obtained a gradient of Galactocentric radial
velocities of

〈

dVR

dR

〉

= (+1.48 ± 0.35) km/s/kpc (posi-
tive indicating outwards with respect to the center of
the Galaxy) in the range -3 kpc< (R − R⊙) < +8 kpc,
with a higher contribution to this gradient of the b < 0
stars.
The point at which the Galactocentric radial velocity

is null is at R0 = 8.8± 2.7 kpc. This is compatible with
the mean stellar orbit in the solar Galactocentric radius
being exactly circular, which is what was also observed
by Siebert et al. (2011) and Famaey et al. (2012).
Two possible explanations can be given for this obser-

vation:

1. The mean orbit of the disk stars is intrinsically el-
liptical in the outer disk. In such a case, a statis-
tical analysis of our kinematic results gives values
of the eccentricities e for R > R0 with a gradient
〈

de
dR

〉

∼ 0.01 kpc−1.

2. There is a net secular expansion of the disk asso-
ciated with migration, in which stars within R ≈
9− 11 kpc are moving to the region R & 11 kpc at
the rate of ∼ 2 M⊙/yr. Stars with R . 9 kpc would
be falling toward the center of the Galaxy. This ex-
pansion would be unattainable for a long time and
should be decelerated, otherwise the Galaxy would
be fade away in around 1 Gyr.

We cannot distinguish at present between both scenar-
ios. At present, both hypotheses are speculative and one
would need data on the Galactocentric radial velocity
for other azimuths different to the center or anticenter in
order to confirm one of the scenarios.

The authors are grateful to the anonymous referee for
helpful comments. M.L.C. was supported by the grant
AYA2012-33211 of the Spanish Ministry of Economy
and Competitiveness (MINECO). This work was sup-
ported by the European Science Foundation under the
GREAT ESF program, which funded a visit of M.L.C.
to the Institute of Astronomy in Cambridge. SDSS-III is
managed by the Astrophysical Research Consortium for
the Participating Institutions of the SDSS-III Collabo-
ration including the University of Arizona, the Brazil-
ian Participation Group, Brookhaven National Labo-
ratory, Carnegie Mellon University, the University of
Florida, the French Participation Group, the German
Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre
Dame/JINA Participation Group, Johns Hopkins Uni-
versity, Lawrence Berkeley National Laboratory, Max
Planck Institute for Astrophysics, Max Planck Institute
for Extraterrestrial Physics, New Mexico State Univer-
sity, New York University, Ohio State University, Penn-
sylvania State University, the University of Portsmouth,
Princeton University, the Spanish Participation Group,
University of Tokyo, the University of Utah, Vanderbilt
University, the University of Virginia, the University of
Washington, and Yale University.

REFERENCES
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