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Abstract

The study of energy landscapes has led to a good understanding of how and why

proteins and nucleic acids adopt their native structure. Through evolution, sequences

have adapted until they exhibit a strongly funnelled energy landscape, stabilising the na-

tive fold. Design of artificial biomolecules faces the challenge of creating similar stable,

minimally frustrated and functional sequences. Here we present a biminimisation ap-

proach, mutational basin-hopping, in which we simultaneously use global optimisation

to optimise the energy and a target function describing a desired property of the system.

This optimisation of structure and sequence is a generalised basin-hopping method, and

produces an efficient design process, which can target properties such as binding affinity

or solubility.

Folding of evolved proteins found in nature is based on a geometrically biased en-

ergy landscape with a single1–3 or multiple4 funnels, such that a dominant structural

ensemble, the native state, is adopted at equilibrium. While evolution over a long time

scale has managed to mostly exclude undesired features in the landscape,5,6 artificially

designed sequences are likely to exhibit higher frustration, corresponding to compet-

ing low-lying morphologies separated by high energy barriers. In a designed system,

the target state is less likely to optimise all the packing and interaction requirements,

which is necessary to satisfy the principle of minimal frustration.1 While the residual

frustration can lead to multifunctional molecules,7 the design process can easily pro-

duce highly frustrated sequences, without well-defined native structure. Furthermore,
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the large number of possible sequences prohibits extensive experimental screening,8

and also complicating simulations. In fact, the optimisation of a sequence to adopt

a specific backbone fold is NP hard,9 and the algorithmic costs are therefore high.

Nonetheless, significant progress has been made,10 either starting from known folds

and altering the sequence, or for entirely new sequences and novel folds,11–13 for exam-

ple in Top7.14 A key step in the current state-of-the-art methods is the separation into

the selection of a target structure and the subsequent search for a sequence supporting

this structure,15 known as the inverse protein folding problem.16 Such an approach

may take frustration into account, for example using a fitness function.15

However, even if a specific backbone fold is designed successfully, it remains an

open question whether the desired properties of the new sequence are indeed observed

by experiment. A common approach is therefore the screening of a large number

of components, either in simulation or experiment. This approach has yielded some

remarkable results, for example in the engineering of ion channels,17 nanopores,18 the

design of antibodies,19 and ion-binding scaffolds;20 but the costs for such screening

processes is high.

Instead of optimising the sequence to match a specific backbone fold, we suggest a

new scheme, mutational basin-hopping, where global optimisation techniques are ap-

plied to the energy of a given sequence, to predict the most favourable structure of

a given fold, combined with a second penalty function, which is based on an observ-

able property of interest. Such a biminimisation has previously been applied to other

problems, in particular to determine the optimal size of nanoparticles,21 to probe the

compositions of nanoalloys,22 and to study to energy and chemical potential variations

simultaneously.23 Here we present the algorithm in the context of biomolecular optimi-

sation for the first time, with a discussion of some key properties, and provide results

for a proof of concept simulation.

Mutational basin-hopping global optimisation is a generalised basin-hopping tech-

nique.21,22 For an all-atom force field, mutations change the number of atoms as well

as the element for some atoms. Mutations therefore correspond to grand canonical
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and alchemical transformations of the system. Within the configuration space for each

sequence the optimisation must address the overall potential energy to locate the lowest

energy structure given a sequence. Between sequences, a second penalty function is

necessary to accept or reject mutations, but this function depends on the system and

the target property. Generalised basin-hopping21,22 employs steps in a second metric

space, in this case the sequence space, over relatively large intervals of N steps, allowing

for location of low energy structures for every sequence. When a step in the second

metric space is taken, the system is allowed some exploration of the landscape for the

new sequence, with n steps before the mutation is accepted or rejected. In outline, the

algorithm proceeds as follows:

1. Basin-hopping global optimisation searches for the lowest energy configuration.

For every structure, X, the penalty function fmut(X) is computed. The lowest

value, fprevmin , is saved as the structure search progresses. Here, X is a vector of

Cartesian atomic coordinates for a local minimum, which is located after energy

minimisation following a propagation move. We note that fmut can be maximised

rather than minimised (as for example in Fig. 1), and we can simply change the

sign of fmut appropriately.

2. A residue is chosen for mutation, which can be limited to a particular set of amino

or nucleic acids, or include all possibilities. The subsequent choice of the site and

the mutation, as well as the possible limitations on the allowed mutations, allows

for nuanced changes, for example in a binding pocket or a hydrophobic patch.

3. After the data for the old sequence is saved, the new sequence is initialised, and all

related local properties, such as rigidification24,25 and group rotation setup,26,27

are completed, the structure search continues with the new sequence. Again, the

lowest value of the penalty function, fnewmin , is saved.

4. After n steps, an accept/reject criterion is applied using fprevmin and fnewmin to score

the new sequence. If the new sequence is accepted, the search is continued, oth-

erwise the old sequence is restored and the search restarts from the last sampled
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configuration fir that system.

An illustration of the algorithm is given in Fig. 1.

While a number of features are identical to those used in basin-hopping28 and grand-

canonical basin-hopping,23 two aspects merit further discussion: the computation of

the new coordinates as the number and identity of atoms change, and the penalty

functions used in different cases.

Mutations between different amino or nucleic acids require changes in atomic iden-

tity and the number of atoms. While the information about the change in identity,

such as bond strengths and charges, is provided by force field libraries, the change in

the number of atoms and the necessary creation of coordinates for the atoms in the new

sequence require additional treatment. We can use standard orientations, as provided

in force field or rotamer libraries, but it is desirable to preserve as much of the original

structure as possible to reduce the likelihood of atom clashes and unfavourable inter-

actions. The only changes applied are in the side chains and nucleobases, respectively.

Atom positions are conserved for atoms of the same element and hybridisation state

before and after the mutation. All other positions are created based on hybridisation

states and chirality constraints. This procedure proved efficient in creating relatively

low energy starting structures after mutations were proposed.

The ability to optimise sequences requires the definition of a function that describes

the target properties of the biomolecule. A key condition is that it must be possible

to calculate this property from the molecular coordinates and the computational cost

to estimate this function should be as low as possible.

As most, if not all, biomolecules are only able to fulfil their biological function

in combination with other species, binding energies are important. For example, the

recognition of small peptides by their carrier and target proteins, binding of antibodies

to target epitopes, and the interaction between regulatory nucleic acids and proteins

all fall into this category. To estimate binding affinities, we employ all the polar

interactions contributing to the energy difference between the bound ligand and target,

and the unbound state. A simple way to treat the unbound state is to locate the centres
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Figure 1: Mutational basin-hopping: In the four schematic landscapes the black arrows
represent basin-hopping on the individual landscapes corresponding to the sequences A, B,
C and D. Mutation from A leads to state B1 (blue). This mutation is accepted based on
the value of fmut (in this case larger values are targeted). Basin-hopping then propagates
the system to state B2. Another mutation leads to sequence C, which is later rejected (red),
and basin-hopping continues for mutation B, leading to state B3. The next mutation leads
to state D1 (green), and subsequently to state D2. Overall two mutations are accepted.
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of mass for separate components in the bound state, define a vector between them, and

then translate one molecule along the vector away from the other component. The cost

for this approach is minimal, as it only requires the computation of the centres of mass,

an addition of two arrays, and one call to an energy routine. This approach yields a

useful penalty function for sequence optimisation. At the same time the exploration

of sequence space might be used to better understand the binding interactions and

pattern recognition within the complex, providing insight into the binding mechanism

at an atomistic level of detail.

Another important property of biomolecules is their solubility. The solvation en-

ergy is readily available in most biomolecular potentials for all conformations, as it is

calculated to determine the total energy. Various other options exist for the penalty

function. For example, we could optimise the sequence to match a specified backbone

configuration, providing a connection to other methods for protein design.

As proof of principle we have applied mutational basin-hopping global optimisation

to the neurophysin II – oxytocin complex. Oxytocin and vasopressin are two nonapep-

tide hormones, which exhibit a strong dependence of binding affinity to carrier and

target proteins with respect to sequence mutations.29–36 The two hormones are related

by two mutations, namely I3F and L8R, from oxytocin to vasopressin. The structural

ensembles of the two hormones have been studied with a number of experimental and

computational methods.4,37–42 Neurophysin II is the carrier protein for vasopressin,

but can bind oxytocin as well. The two hormones provide a well-studied system and

exhibit a remarkable specificity in their binding affinity, a desirable target for designed

peptides.

Our objective here is intended to demonstrate mutational basin-hopping, rather

than to provide an extensive study of the bound complex. The starting point for the

simulation was the crystal structure43 and mutations were allowed in positions 2, 3

and 8, since residue 2 has been associated with a large influence on binding,38,42 and

residues 3 and 8 permit the switch between oxytocin and vasopressin.The simulation

was 150,000 basin-hopping steps long and mutations were accepted or rejected after
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4,000 steps, using the interaction energy between the carrier and the hormone in the

penalty function. The separation imposed between hormone and carrier to calculate

the penalty function was 150 Å. Exploration of the configuration space used group

rotation moves,24,25 and cis-trans isomers and chirality were conserved.

The lowest potential energy and the interaction energy for the structures encoun-

tered are illustrated in Fig. 2. The simulation features an early set of accepted mu-

tations (L8R and I3F), which transform the hormone into vasopressin. We expect

vasopressin to be a better ligand for neurophysin II, and the algorithm correctly iden-

tifies this property. Later in the run there are many proposed mutations of residue 8,

back to the oxytocin sequence, all of which are rejected.
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Figure 2: Progress of a mutational basin-hopping run of 150,000 steps (local minimisations),
with 10,000 steps between each attempted mutation, and 4,000 steps before a mutation is
accepted or rejected. The top panel shows the lowest potential energy encountered for the
current sequence. The bottom panel shows the binding interaction between the hormone
and the carrier protein. The plotted values for the binding energies correspond to 105,986
structures with physically reasonable energies. Accepted mutations are highlighted in green,
and rejected mutations are in red.

In summary, we have developed a new algorithm, mutational basin-hopping, which

involves biminimisation21 of sequence and structure. The algorithm is flexible, ac-

commodating a wide variety of potentials, propagation moves, and penalty functions.
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Application to the neurophysin II – oxytocin complex as proof of principle shows that

the algorithm can faithfully reproduce experiment. Pierce and Winfree hypothesised

that an approach looking beyond the backbone configuration might provide practical

and computational improvements over other methods.9 The clear connection to energy

landscape theory in the present work provides this advance.
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