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Highlights

• The formulation can add/remove material points to/from the computational domain.

• Imposition of true steady-state boundary conditions are made possible.

• The developed boundaries improve the general applicability of the method.

• Proposed boundary conditions are validated using analytical and experimental results.

• Computational cost of the method is reduced for simulating steady flows.
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Abstract

This paper describes the development and application of inflow and outflow boundary conditions
(BCs) for the material point method (MPM) in order to simulate fluid flow problems. This cor-
responds to velocity and pressure controlled BCs. Due to the coupled Lagrangian and Eulerian
description of the fluid motion in MPM it is necessary to add and remove material points, with
appropriate kinematic properties, to and from the computational domain. The newly-developed
BCs have been used to simulate uniform open channel flow and the phenomenon of free overfall
in open channels, which is transient conditions leading to non-uniform flow due to a sudden bed
level drop. It is shown that the numerical results predict well the flow geometry including end
depth ratio, pressure distribution and accelerations, therefore the velocities and displacements.

Keywords: material point method, inflow/outflow boundary conditions, open channel flows,
free overfall

1. Introduction

Free surface fluid flows are common problems in many fields of engineering. Several ar-
bitrary Lagrangian-Eulerian (ALE) methods have been developed for fluid dynamics in recent
years (e.g. [1, 2, 3, 4]) to simulate free surface flow. The material point method (MPM) [5] is a
specific variant of an ALE method.

MPM is a well-suited method for the solution of flow-like problems involving arbitrary large
deformations in continuum mechanics [4, 6, 7, 8, 9, 10]. In particular, MPM is well suited for the
coupled simulation of fluid and solids, where large deformation and history tracking of variables
is required.

The position of the material is traced by the material points (MPs) thus no specific procedure
is needed to capture or to trace interfaces. MPs can move through a fixed background mesh
during the simulation and, consequently, in order to model continuous flows, MPs must be in-
serted to and/or removed from the domain at boundaries. This paper describes the development,
verification and validation of velocity-controlled inflow and pressure-controlled outflow BCs for
MPM. The implementation has been undertaken in the Anura3D software (www.anura3d.com).
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Originally, the modelling approach to simulate quasi-steady in/outflow conditions in MPM
was to use large reservoirs in order to supply the domain of interest with MPs (e.g. [11, 12, 13]).
This required a large reservoir, increasing the computational effort, only approximated steady
conditions and limited the time able to be simulated. Being able to prescribe in/outflow BCs
allows: (i) true steady-state conditions; (ii) a large reduction of computational cost; (iii) the
simplification of the geometry; and (iv) improving the general applicability of the method.

The proposed algorithm allows the enforcement of different upstream and downstream condi-
tions. For the purpose of model validation, the paper applies the new BCs for modelling eventual
steady-state subcritical flow in an uniform open channel and free overfall, comparing the results
with experimental measurements and analytical solutions.

This paper is structured as follows: in Section 2 the theoretical and numerical formulation
of MPM as implemented in Anura3D is briefly introduced; Section 3 discusses the development
and implementation of the proposed in/outflow BCs; in Section 4 the new algorithm is verified
by simulating a subcritical flow that requires proper simultaneous imposition of upstream and
downstream BCs; in Section 5 the numerical results of a free overfall flow are compared with
existing analytical and experimental results as validation; and the conclusions are presented in
Section 6.

2. Theoretical and numerical formulation

2.1. Governing equations

The strong form partial differential governing equations that describe the motion of fluids
are conservation equations of mass (Eq. 1) and momentum (Eq. 2). These are more commonly
known as Navier-Stokes equations in computational fluid dynamics:

∂ρ

∂t
+ ρ 5 ·v = 0 (1)

ρa = 5 · σ + ρg (2)

where ρ is the fluid density, t is time, v is the velocity, a is the acceleration, σ is the Cauchy
stress tensor and g is the body force exerted, for example, by gravity. The Cauchy stress tensor
can be decomposed in σ = p +σdev where p is the fluid pressure and the subscript (dev) indicates
the deviatoric component of the Cauchy stress tensor. The dynamic viscosity µ is introduced into
the formulation by defining σdev = µε̇dev, where ε̇dev is the shear strain rate.

For weakly compressible fluids, the mass density is related to the fluid pressure as:

∂ρ

∂t
=

1
c
∂p
∂t

; c =

√
K
ρ

(3)

where c is the compression wave velocity and K is the bulk modulus of the fluid.
In MPM, the nonlinear convective term is not present (in Eq. 2) as a result of the Lagrangian

framework [14]. Instead, the positions of the MPs are updated each time step. Heat effects or
any source of thermal energy is disregarded and the mechanical work is the only considered
source/sink of energy.
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2.2. Numerical algorithm
The Navier-Stokes equations are discretized in space and time using standard finite element

method techniques. A mixed Gauss algorithm is used in which integration is at the elements’
Gauss point locations for fully filled element, and at material points for partially filled elements,
e.g. at fluid surfaces. This leads to smoother stress fields and mitigates some effects of grid
crossing error [6]. Explicit time integration and tetrahedral elements with linear shape functions
are used here.

MPM requires a second solution domain discretization that consists of a cluster of MPs, each
one with a fixed mass. It is assumed that each MP corresponds to a representative volume of the
continuum body Ω, with the initial volume V0

p, where the superscripts (0) indicates the time step,
the subscript (p) indicates the MP values and it is calculated as:

V0
p =

1
nep

∫

dΩe

dΩ ≈ 1
nep

neq∑

q=1

wq|J(xq)| (4)

where nep is the number of points per element, neq is the number of integration points (i.e. Gauss
points or MPs) per element, dΩe is the volume associated with the eth tetrahedral element, so
that Ω =

⋃nel

el=1 Ωel, wq is the local integration weight associated with the integration point (q), J
is the Jacobian matrix, xq is the position vector.

Information can be mapped between points and nodes by linear interpolation with the same
shape functions used for the mapping between global and local coordinate systems. This process
is done in fully filled elements to map information to the integration points location prior to
numerical integration. For example, when mapping information between nodes and MPs, a
displacement field u can be written as:

up(xp) ≈
nn∑

j=1

N j(xp)u j(t) (5)

in which the subscript ( j) indicates the nodal values, nn is the number of nodes per element
and N is the interpolation function (from the combination of linear shape functions of the nodes
evaluated in global coordinate system). The same interpolation can be applied for other quantities
(i.e. acceleration, mass, stress, etc.).

The details of the mathematical framework, including a description of the computational
cycle can be found in, e.g., [15]. Using the constitutive equation (Eq. 3) and the standard finite
element method (FEM) spatial discretisations, the weak form of the momentum balance equation
(Eq. 2) can be written as:

Mt
ja

t
j = Fint,t

j + Fext,t
j (6)

where M is the lumped mass matrix, Fint and Fext are the internal and external nodal forces and
a is the vector of nodal acceleration. These are respectively defined as:

Mt
j =

ne j∑

e=1

neq∑

q=1

N j(xq)mq

∣∣∣∣
t

(7)

Fint,t
j =

ne j∑

e=1

neq∑

q=1

BT
j (xq)σqVq

∣∣∣∣
t

(8)
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Fext,t
j =

ne j∑

e=1

neq∑

q=1

mqN j(xq)g
∣∣∣∣
t
+ fext

j

∣∣∣∣
t

(9)

where B is the strain-displacement matrix, fext
j are the prescribed boundary nodal tractions and

mq is the mass associated with the integration point in consideration. The general MPM explicit
numerical algorithm for weakly compressible Navier Stokes solution is as follows:

1. Map the information carried by the MPs to the background mesh using linear shape func-
tions;

2. Determine the lumped mass matrix (Eq. 7), the internal force Fint (Eq. 8) and external
force Fext (Eq. 9) vectors at the nodes;

3. Compute the nodal acceleration field from (Eq. 6), imposing zero acceleration at the inflow
nodes (see Fig. 1a);

4. MP velocities are updated using the nodal acceleration as:

vt+1
p = vt

p + ∆t
nn∑

j=1

N j(xp)at
j (10)

5. The MP positions are updated:

xt+1
p = xt

p + ∆t
nn∑

j=1

N j(xp)vt+1
j (11)

6. The incremental MP strains are calculated as:

∆εt+1
p = B(xp)∆ut+1

j (12)

7. The stresses are derived from the constitutive relation (Eq. 3);
8. Determine the density of MPs, which is used to update the MP’s volumes, as:

ρt+1
p =

ρt
p

1 + ∆εt+1
vol,p

(13)

where εt+1
vol,p is the incremental volumetric strain.

In order to solve the system of governing equations, it is possible to distinguish three kinds of
BCs: essential (Dirichlet, acceleration), natural (Neumann, force) or a combination of the two
(e.g. Newton/Robin). Other state variables, i.e. acceleration, velocitiy and pressure in this case,
also need to be initialised. Further, strain and pressure smoothing procedures are used to mitigate
the stress oscillations due to grid crossing [16].

To ensure the stability of the explicit scheme, the critical time step should satisfy the so-
called Courant-Friedrichs-Levy (CFL) condition [17], meaning that the time increment should
not exceed a certain value depending on material density, stiffness and the minimum size of the
elements.

∆tcrit =
le
cp

(14)

where ∆t is the critical time step, le is the minimum length of the element. In our study, a
reduction factor αCourant is introduced in the above expression to obtain the time step size (i.e.
∆t = αCourant × ∆tcrit), where αCourant is fixed as 0.98 in our study.
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3. In/outflow boundary conditions

Fluid flows are problems of practical interest for many engineering applications. Their sim-
ulation requires accurate and efficient numerical methods in versatile numerical tools that can be
further used to study real industrial problems [18]. As opposed to solid mechanics problems, in
problems which consider fluid flowing, mass generally enters and leaves an area of interest. For
example, this may be the flow over a weir or dyke overtopping where the area of interest is fixed
around the structure (the weir or dyke) and water flows into and out of the area. This may also
apply in, for example, porous media or in erosional or depositional processes. Therefore, to make
an efficient computational solution, BCs allowing this mass to enter or leave the domain under
realistic conditions are essential. The novel contribution here is the description of well-posed
problems able to simulate flows, with special emphasis on BCs.

BCs exist in nature as natural boundaries. Due mainly to limitations in computational power,
large domains are often truncated and confined between artificial boundaries (ABCs). The lo-
cation of the required ABCs can be fabricated by intuition, experience, asymptotic behaviour
and numerical experimentation [19]. Clearly, the minimal necessary requirement of ABCs is to
ensure the solvability of the truncated problem, but this does not ensure a physcially reasonable
response.

To simulate a segment of a flow, the BCs must allow mass to enter and leave the domain at
a predefined flowrate, and to control the pressure imposed from the water outside the boundary.
For a solvable governing equation, all boundaries must only have one of these ABCs. However,
this would not necessarily (i) impose a prescribed flow, or (ii) ensure mass enters and leaves
the domain between timesteps. To ensure a segment of flow is achieved, a specific combination
of ABCs to solve the governing equation along with a strategy on how to consistently add and
remove mass (to ensure mass continuity and thus satisfying Eq. 1 is needed. These are here
termed inflow and outflow BCs.

One of the BCs must control the kinematics, i.e. fix the acceleration or velocity. If both the in-
flow and outflow conditions conotrol kinematics, physcially impossible situations may arise, e.g.
not enough mass in the domain to satisfy the ABC, this could be considered to be over-defined.
If neither BCs controls the kinematics, the problem is not well-posed. Many flow segments finish
in either subcritical hydraulic conditions or zero pressure conoditions and therefore a pressure
boundary is more appropriate for the outflow boundary. Therefore, the inflow boundary has been
selected to control the kinematics.

A steady inflow is considered here for the inflow boundaries, although it would be straight-
forward to update this procedure for a temporally varying inflow. A fixed pressure is considered
for the outflow boundaries; again it would be straightforward to update this procedure to change
in time. To consistently add and remove mass, an ad-hoc element layer is attached to the com-
putational domain where the ABCs are applied.

The steady inflow BC, i.e. constant velocity and zero acceleration, is applied to the boundary
shown by the dotted line in Fig. 1a. The ad-hoc element layer, called here inflow elements
(shown in green in Fig. 1a), is added to the computational domain (shown in blue). At the
beginning of the computational cycle, MPs are placed in the inflow elements with appropriate
Initial Conditions (ICs), i.e. the prescribed velocity and zero acceleration. The inflow nodes
that are shared with the elements of the computational domain (highlighted in Fig. 1a by red
ellipses) have a prescribed acceleration (zero) so as to maintain the prescribed velocity field at
the boundary, applied to the solution of the governing equation by updating a in step 3 of Section
2.2. When an inflow element is empty, new MPs will be introduced in the inflow elements at the
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Constant pressure
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MPs removed

jth time step j+1th time step j+1th time step
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(b)

Figure 1: Illustration of the BCs: (a) Inflow BC, with inflow elements (green) and (b) outflow BC, with outflow elements
(red).

same local position as material which is initially discretized inside the domain, i.e. the Gauss
point locations. Since the mass of the MPs is initialized according to the initial (inflow) element
volume and it is constant throughout the calculation, it is straightforward to impose a velocity
such that the MPs move by the length of one element before a new set of MPs can be introduced,
i.e. at every nth time step, defined as:

n =
∆L

v0∆ti
(15)

where ∆L is the element size in direction parallel to the prescribed velocity vector, v0 is the
prescribed input velocity and ∆ti is the ith time step size.

In order to impose on the outflow BC, a fixed pressure is required at the boundary. This is
achieved by fixing the external forces at the nodes of the background grid at the boundary. Again
a strategy of removing mass is needed: MPs are removed from the computational domain as soon
as they enter an outflow element. If one desires to model the outflow of a steadily flowing fluid,
it is reasonable to assume a hydrostatic distribution of the pressure on the outflow nodes when
solving the momentum balance equations, although any pressure distribution could be applied.
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For the outflow BC, additional elements, called outflow elements, are also introduced (Fig.
1b). The fixed pressure BCs are assigned on the nodes shared with the computational domain
in step 2 of Section 2.2. As soon as a MP enters an outflow element it is removed from the
computation. The target level of accuracy of the numerical solver can be systematically achieved
adjusting time and space discretization.

4. Verification of boundary conditions

In order to verify the application of the in/outflow BCs a simple case is simulated. An ini-
tially empty domain is considered of 0.15× 0.15× 0.01 m, in x-, y-, z-direction, with frictionless
walls, a prescribed horizontal inflow velocity of 1.0 m/s and a zero acceleration along the in-
flow boundary as indicated in Fig. 2a. The three-dimensional domain is discretised by linear
tetrahedral elements and has a thickness of one element with only the front face shown in Fig.
2. A band of outflow elements is attached to the right side of the computational mesh with a
prescribed hydrostatic pressure. Outflow elements and their BCs are only activated when MPs
enter the adjacent elements. The water is modelled by a Newtonian compressible constitutive
model. It has an initial density ρ0 = 1000 kg/m3, dynamic viscosity µ = 1 × 10−6 kPa·s and bulk
modulus K = 20000 kPa. The water bulk modulus was reduced by a factor of 100 from reality in
order to increase the time step as an explicit integration scheme is adopted. It was pointed out in
Liang (2010) [20] that, as long as the modelled water has a speed of sound over 10 times larger
than the maximum flow velocity, the increased compressibility of water does not significantly
affect the results. The minimum time step is obtained as described in Section 2.2.

Fig. 2 shows the simulation results in terms of pressure (b) and velocity (c) at different time
steps. After an initial time interval of transient moving water front, a steady uniform flow is
achieved. It is worth mentioning that the prescribed traction BC at the outflow boundary nodes
causes unreasonably high pressures near the bottom when the flow is not yet fully developed,
which is especially evident at 0.15 s and 0.20 s. This is caused by the prescribed hydrostatic
pressure which is initiated based on the final water depth. As the calculation continues, and the
outlet water level keeps rising, this inconsistency vanishes. This phenomenon can be avoided if
the hydrostatic pressure at the outflow elements would be updated during calculation based on
the water depth. However, the purpose of present simulation is to verify the capabilities of the
newly proposed in/outflow BCs. After 0.8 s it can be seen that a constant velocity, a hydrostatic
pressure and a horizontal free surface is achieved, which proves the correctness of the applied
BCs.

5. Validation benchmark

In order to validate the theoretical formulation and numerical implementation of in/outflow
BCs, a well-known open channel flow problem has been simulated. This is the situation where a
fluid flow encounters a sudden drop at the bed, also known as a free overfall. The free overfall
simulation is chosen as validation benchmark for the in/outflow BCs since the rapid change in
bed geometry is considered a stringent validation case.

5.1. Existing free overfall studies

Rouse (1936) [21] measured the pressure distribution in a steady horizontal rectangular free
overfall using wall and bed piezometers. It was observed that a free overfall in rectangular
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1.02 0.981.0

v

Figure 2: (a) Computational mesh of a rectangular channel and application of in/outflow BCs for the simulation of a
subcritical flow. Representation of the fluid flow converging to a steady solution enforced by the downstream BC: (b)
Pressure field; (c) Velocity field at different time steps.

channels could be used as a simple flow measuring device that required no calibration. Since
then, due to its practical importance, many investigators have studied free overfall in various
channels (e.g., [22], [23], [24]). In [24], water was provided from a constant head tank supplied
by a pump and was measured by means of a calibrated orifice meter located in the supply line.
At the end of the channel, the side walls were continued beyond the brink so that the nappe
was confined between the side walls. The water surface profile was measured by means of a
point gauge. The pressure distribution at the end section, as well as in the upstream region, was
measured.

When the free overfall enters the air, there is no reverse curve in the water surface until it
strikes the bottom at a lower elevation. According to the momentum conservation law, provided
that no external energy is added to the system, the water surface will seek its lowest possible
energy configuration. The theoretical flow depth for parallel flows with a rectangular cross-
section is then equal to the critical flow depth yc, as shown in Fig. 3 [25], where H is the total
water head. The critical flow depth yc is expressed as yc =

3
√
α(v̄hi)2/g , where v̄ is the mean flow

velocity of the cross-section, hi is the initial flow depth and α is the velocity coefficient which
can be approximately taken as 1.0 .

For the free overfall flow and rapidly varied bed geometry problems, the actual surface fol-
lows the profile represented by the solid blue line in Fig. 3. Rouse (1936) [21] experimentally
found that for almost horizontal geometries, the computed critical depth based on parallel flow
assumption yc is about 1.4 times the brink depth yb.

Montes (1994) [26] proposed an analytical solution for the analysis of open channel flows
near a discontinuity of the bed geometry (i.e. free overfall). Assuming the flow in each termi-
nal section to be nearly parallel with the bottom, negligible viscous effects, irrotational flow and
energy conservation, it is possible to use a potential-flow solution of the inverse type (a vari-
ant of Stokes inverse mapping [27]). The solution of the potential-flow equations was solved
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Figure 3: Free overfall problem.

numerically by a finite difference grid (successive over relaxation method), and the unknowns
(free-surface location, velocity and pressure fields) were determined by an iterative procedure.
This solution is used as reference for the numerical solution as shown in Fig. 7 and 8.

Readers are referred to Dey (2002) [28] for a comprehensive review of the research on free
overfall in rectangular open channels flows.

5.2. Computational setup

In Fig. 4, an initially empty section of the computational domain of 0.60 × 0.21 × 0.01 m
in x-, y-, z-direction represents a rectangular open channel with a sudden discontinuity of the
bed on the bottom right part represented by an additional section of the computational domain
of 0.15 × 0.28 × 0.01 m in x-, y-, z-direction. A 0.15 m deep inflow BC with horizontal velocity
of 1.213 m/s is prescribed as indicated in green in Fig. 4. All contact surfaces of the domain
are frictionless. As in the subcritical flow case (Section 4), the three-dimensional domain is
discretised by linear tetrahedral elements and has a thickness of one element with only the front
face shown in Fig. 4. An outflow BC is prescribed to the right and bottom right boundaries of the
computational mesh (outflow elements shown in red), with zero traction prescribed at the nodes.
The cross section for the analysis of the result around the brink are shown in Fig. 4. Frictional
effects are neglected for all contact surfaces. The material properties (e.g. density, viscosity and
bulk modulus) are as assigned in Section 4 and the time step is calculated as in Section 2.2. In the
following section, the dependencies of the simulation results on the number of material points
per element and mesh size are evaluated.

5.3. Results

5.3.1. Effect of mesh size and number of material points per element
A sensitivity study of the free overfall simulations by varying the computational mesh size

and the initial number of material points per element (PPE) is given in this section. Figs. 5 and
6 show results of open channel flow simulations with initial water depth of 0.15 m and velocity
of 1.213 m/s. Three mesh sizes are used: 0.03 m, 0.01 m and 0.005 m when studying the effect
of the mesh size, and 4 PPEs are used as first approximation (Fig. 5).

It can be observed that there are frequent pressure fluctuations when using finer meshes which
are attributed to grid-crossing errors. It is discussed in Guilkey et al. (2006) [29] and Al-Kafaji
(2013) [6] that using a finer mesh causes more frequently migration of MPs between elements

10
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A

A

B

B

Figure 4: Computational mesh of a rectangular channel for free overfall simulation. The in/outflow BC elements are
highlighted respectively in green and red. At the overfall brink two cross sections (A-A and B-B) are investigated.

and therefore, the grid-crossing errors are more pronounced. The problem is more severe when
the PPE is low [6] and the stiffness of the material is high. However, the mesh resolution plays
an important role for the accuracy of the results: decreasing the mesh size the brink height in the
numerical solution converges to the analytical one (see Table 1, where 8 PPE are used).

Fig. 6 shows the comparison of simulations of open channel flow with four different values
of PPE: 4, 8, 10 and 20 MPs per element, respectively for a mesh size of 0.03 m. It can be
observed that 4 PPE is a too coarse discretisation as it emphasises the grid crossing error while
simulations with 8, 10 and 20 PPE produce much better results in terms of pressure distribution.

p (Pa)
0 300 600 900 1200 1500

(a)

(b)

(c)

t = 0.50s t = 1.25s t = 2.0s

Figure 5: Comparison of open channel simulations with different mesh sizes. a) ∆L = 0.03 m; b) ∆L =0.01 m; c) ∆L =

0.005 m for different time instants.

These results led to the conclusion that the nodal density oscillations are the main cause
of pressure fluctuations due to the weakly compressible behaviour of the fluid. The change in
calculated nodal density in this method is directly due to the proportional change in PPE in the
elements surrounding the node, and therefore by increasing the PPE the oscillations are reduced.
Table 1 gives a quantitative analysis of the brink depth relative error combining different mesh
sizes and using 8 PPE. In this paper, we propose to use a finer mesh because that improves the
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(a)

(b)

(c)

(d)

p (Pa)
0 300 600 900 1200 1500

t = 0.50s t = 1.25s t = 2.0s

Figure 6: Comparison of open channel simulations with different PPEs. a) PPE = 4; b) PPE = 8; c) PPE = 10; d) PPE =

20 for different time instants.

depth at the brink and the drawback of more pressure oscillation is compensated by introducing
a higher number of PPE.

Table 1: Relative error of brink depth estimation using meshes with various sizes (8 PPE)

Mesh size Time yb Analytical Error
(m) (s) (s) (m) (%)
0.03 2 0.1109 0.10725 3.44
0.01 2 0.1093 0.10725 1.90

0.005 2 0.1093 0.10725 1.88

5.3.2. Pressure distribution at brink
The pressure distribution with the numerical solution provided by MPM are compared with

laboratory measurements (Sec. 5.1) and the analytical solution. The pressure distribution at the
brink (cross-section A-A in Fig. 4) is plotted with data from literature in Fig. 7, where γ is the
water unit weight and y is the height of the MP above the brink. Note that the MPs selected for
analysis are actually located within a thin area (about one fifth of the element size) in the flow
direction containing the chosen cross-sections. From the comparison, it can be seen that near
the free surface, the numerical pressure distribution in both cross sections agree relatively well
with experimental data obtained by other researchers. For the region near the bed, the numerical
simulations seem to over-predict the pressure in cross section A-A. This may be attributed to
the vertical fixities applied on the corner nodes of the brink, which prevent the material points
from leaving the mesh. This vertical fixity also restricts the material point from moving freely
downward once they pass the brink, within one element, causing the pressure near the bottom to
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increase. This can be shown by selecting MPs one element away (cross-section B-B in Fig. 4),
where the influence of the vertical fixity is negligible, and the pressure distribution near the bed
is significantly closer to the experimental results.
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Figure 7: Pressure distribution at brink in rectangular overfall.

5.3.3. Velocity distribution at brink
Fig. 8 shows the comparison of the velocity distribution with the results calculated by semi-

analytical solution given in [26], where v and vc are the velocity and critical velocity, respectively.
Material points are chosen in the same manner as in Fig. 7. It can be seen that the velocity close to
the channel bed is slightly underestimated in cross-section A-A. Several factors may contribute to
that: in experiments there is a slight contraction of the flow at the brink where the water detaches
from the bed which is not occurring in the numerical simulation; the low order shape functions
produce a slightly over stiff behaviour that reduces the velocity where the largest deformations
occur. Last but not least, the impact of the fixity mentioned above also adds to underestimation
of the velocity in cross-section A-A.

6. Conclusions

In/outflow BCs suitable for MPM simulations of open channel flow have been developed.
These have been applied to the simulation of eventually steady subcritical flow and free overfalls
in rectangular open channels to effectively validate the BCs. The brink depth, pressure distri-
bution and velocities have been analysed for several geometries and flow velocities and a good
agreement between the MPM results, analytical solutions and experimental results is seen. The
BCs are considered validated and can be used to simulate a wide range of flow conditions.
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Figure 8: Fluid velocity at the brink. Comparison of analytical solution with MP velocity for steady state flow conditions.
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