

# IP<sub>3</sub> receptors and store-operated Ca<sup>2+</sup> entry: a license to fill

Colin W Taylor<sup>1</sup> and Khaled Machaca<sup>2</sup>

#### Addresses

<sup>1</sup>Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK <sup>2</sup>Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar

Corresponding author: Colin W Taylor (cwt1000@cam.ac.uk)

Word count: 2063

Inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>Rs) are widely expressed intracellular Ca<sup>2+</sup> channels that evoke large local increases in cytosolic Ca<sup>2+</sup> concentration. By depleting the ER of Ca<sup>2+</sup>, IP<sub>3</sub>Rs also activate store-operated Ca<sup>2+</sup> entry (SOCE). Immobile IP<sub>3</sub>Rs close to the plasma membrane (PM) are the only IP<sub>3</sub>Rs that respond to physiological stimuli. The association of these 'licensed' IP<sub>3</sub>Rs with the ER-PM junctions where STIM interacts with Orai PM Ca<sup>2+</sup> channels may define the autonomous functional unit for SOCE. Ca<sup>2+</sup> entering cells through SOCE can be delivered directly to specific effectors, or it may reach them only after the Ca<sup>2+</sup> has been sequestered by the ER and then released through IP<sub>3</sub>Rs. This 'tunnelling' of Ca<sup>2+</sup> through the ER to IP<sub>3</sub>Rs selectively delivers Ca<sup>2+</sup> to different effectors.

### Highlights

- Structural studies are revealing how  $IP_3$  and  $Ca^{2+}$  together cause the  $IP_3R$  to open
- Clusters of immobile IP<sub>3</sub>Rs adjacent to the plasma membrane are licensed to respond
- SOCE signals directly to effectors and through IP<sub>3</sub>Rs, after Ca<sup>2+</sup> tunnelling via ER
- Licensed IP<sub>3</sub>Rs may contribute to both activation of SOCE and Ca<sup>2+</sup> tunnelling

1

#### Introduction

Inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>Rs) are widely expressed intracellular  $Ca^{2+}$ channels through which  $IP_3$  evokes  $Ca^{2+}$  release from the endoplasmic reticulum (ER) [1]. All  $IP_3Rs$  are large tetrameric channels that open only when they bind both  $IP_3$  and  $Ca^{2+}$  [2]. This dual regulation allows IP<sub>3</sub>Rs to propagate  $Ca^{2+}$  signals regeneratively, with IP<sub>3</sub> and the spatial distribution of IP<sub>3</sub>Rs setting the gain on the Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release (CICR) mechanism (Figure 1a,b). The rapid flux of Ca<sup>2+</sup> through IP<sub>3</sub>Rs generates signals on both sides of the ER membrane. On the cytosolic side, large local increases in Ca<sup>2+</sup> concentration around active IP<sub>3</sub>Rs can both propagate regeneratively between IP<sub>3</sub>Rs to give global Ca<sup>2+</sup> signals and fuel Ca<sup>2+</sup> uptake by closely apposed organelles, like mitochondria [3] or lysosomes [4]. IP<sub>3</sub>evoked Ca<sup>2+</sup> release thereby regulates Ca<sup>2+</sup>-sensitive proteins in both the cytosol and organelles. The decrease in ER luminal  $Ca^{2+}$  concentration activates STIM1, which then accumulates at ER-plasma membrane (PM) junctions, where its interaction with Orai channels stimulates store-operated Ca<sup>2+</sup> entry (SOCE) [5<sup>•</sup>]. Ca<sup>2+</sup> provided by SOCE can regulate local effectors or, after sequestration by the ER, it can be 'tunnelled' to deliver Ca<sup>2+</sup> through IP<sub>3</sub>Rs to different targets [6"]. Here, we review recent progress towards understanding how IP<sub>3</sub> and Ca<sup>2+</sup> regulate IP<sub>3</sub>Rs, the assembly of IP<sub>3</sub>Rs into spatially organized signalling units, and the implications of this organization for SOCE.

#### Towards a structural understanding of IP<sub>3</sub>R activation

Progress towards understanding how IP<sub>3</sub> and Ca<sup>2+</sup> control opening of the Ca<sup>2+</sup>-permeable pore of the IP<sub>3</sub>R has come from structural analyses of cytosolic fragments of the IP<sub>3</sub>R [7-10,11<sup>•</sup>], cryo-EM structures of complete IP<sub>3</sub>R1 [12<sup>••</sup>] and IP<sub>3</sub>R3 [13<sup>••</sup>], and from similar analyses of the closely related family of intracellular Ca<sup>2+</sup> channels, ryanodine receptors [14-19]. IP<sub>3</sub>R activation begins when IP<sub>3</sub> partially closes the clam-like IP<sub>3</sub>-binding core (IBC) [7,10,13<sup>••</sup>] on each of the four subunits of an IP<sub>3</sub>R [20<sup>•</sup>] and it culminates with hydrophobic residues near the cytosolic end of the pore, and some 7 nm from the IBC, re-orienting to open a path through which hydrated Ca<sup>2+</sup> ions can pass. It is not yet clear how conformational changes pass from IBC to pore, but they must traverse a nexus immediately above the ER membrane, where the underside of the huge cytosolic region extends into a leaflet that interdigitates with another leaflet at the end of the pore-lining helix (**Figure 1c,d**) [11<sup>•</sup>]. Residues provided by different parts of this structure together form a Ca<sup>2+</sup>-binding site [13<sup>•</sup>,18<sup>•</sup>]. This architecture suggests an activation scheme wherein IP<sub>3</sub> binding may be communicated from the IBC to the nexus to stabilize a Ca<sup>2+</sup>-binding site. Binding of Ca<sup>2+</sup> to this site, part of which is formed by the C-terminal extension of the pore-lining helix, might then cause dilation of the pore to create a path for  $Ca^{2+}$  to move rapidly from the ER lumen to the cytosol [21]. However, the function of this  $Ca^{2+}$ -binding site is unproven, and an additional  $Ca^{2+}$ -binding site, which also straddles different domains, was recently identified in the IP<sub>3</sub>R cap [13"] (**Figure 1d**).

Structural analyses also shed light on another key feature of IP<sub>3</sub>Rs, namely their ability to conduct large Ca<sup>2+</sup> fluxes. The narrow selectivity filter at the luminal end of the pore is shorter and wider than in related channels, and sufficient to allow passage of hydrated Ca<sup>2+</sup> ions [12<sup>•</sup>,16]. The cation-selectivity of the pore is provided by abundant acidic residues at its luminal and cytosolic vestibules. These features allow Ca<sup>2+</sup> to move quickly through the pore (~5x10<sup>5</sup> Ca<sup>2+</sup>/s *in situ*) [22] and, because the weak cation-selectivity of the pore allows K<sup>+</sup> to move as counterions [23], without the charge accumulation that would otherwise terminate Ca<sup>2+</sup> release. These features allow IP<sub>3</sub>Rs to rapidly generate large, local cytosolic Ca<sup>2+</sup> signals.

# Ca<sup>2+</sup> puffs – licensed to respond

Pioneering work from Ian Parker's lab, using confocal [24], total internal reflection fluorescence microscopy (TIRFM) [25], and most recently lattice light-sheet microscopy [26] revealed a hierarchy of  $Ca^{2+}$  release events as the IP<sub>3</sub> concentration increases (**Figure 1b**). The smallest events, probably reflecting the opening of single IP<sub>3</sub>Rs, are 'Ca<sup>2+</sup> blips' that typically last only a few milliseconds. Greater stimulus intensities evoke larger and more long-lasting (~100 ms) 'Ca<sup>2+</sup> puffs'. These report the nearly simultaneous opening of a few clustered IP<sub>3</sub>Rs, as Ca<sup>2+</sup> released by one IP<sub>3</sub>R rapidly recruits the activity of its IP<sub>3</sub>-bound neighbours. Similar Ca<sup>2+</sup> puffs are observed in cells expressing each of the three IP<sub>3</sub>R subtypes, suggesting they are a conserved feature of IP<sub>3</sub>-evoked Ca<sup>2+</sup> signalling [27]. As stimulus intensities increase further, Ca<sup>2+</sup> diffusing between puffs ignites a regenerative wave that invades the entire cell. These waves become more frequent with increasing stimulus intensity. An important point is that the nature of the Ca<sup>2+</sup> signal, local or global, and so the Ca<sup>2+</sup> sensors recruited, changes with stimulus intensity.

There are, however, some puzzling features of these elementary  $Ca^{2+}$  release events. First, most IP<sub>3</sub>Rs appear to be mobile yet  $Ca^{2+}$  puffs repeatedly initiate at fixed sites [28,29, see discussion in 30"]. What is so special about the few IP<sub>3</sub>Rs that repeatedly respond? Second,

since all four IP<sub>3</sub>-binding sites of an IP<sub>3</sub>R must be occupied for the channel to open [20<sup>•</sup>], how do enough IP<sub>3</sub>Rs within a small cluster become fully occupied and capable of generating a Ca<sup>2+</sup> puff [31]? How is IP<sub>3</sub> binding distributed across IP<sub>3</sub>Rs and what are the functional consequences? Third, numerous studies suggest regulated assembly of IP<sub>3</sub>Rs into clusters [32 and references therein], but others suggest that the clusters from which Ca<sup>2+</sup> puffs initiate are pre-assembled [33]. Does regulated clustering of IP<sub>3</sub>Rs contribute to IP<sub>3</sub>-evoked Ca<sup>2+</sup> signals?

Whether activated by endogenous signalling pathways, where IP<sub>3</sub> might be selectively delivered to IP<sub>3</sub>Rs [34], or by photolysis of caged-IP<sub>3</sub>, where IP<sub>3</sub> is uniformly delivered to the cytosol,  $Ca^{2+}$  puffs initiate at the same fixed sites [28,29]. In each case, the sites are all close to the PM  $[26,30^{\circ}]$ . By tagging native IP<sub>3</sub>R with EGFP, it was possible to observe the geography of IP<sub>3</sub>Rs as they evoke Ca<sup>2+</sup> signals (Figure 1d) [30"]. Most IP<sub>3</sub>Rs are assembled into rather loose clusters (each typically including  $\sim 8 \text{ IP}_3 \text{Rs}$ ), wherein some IP<sub>3</sub>Rs are several 100 nm apart. These clusters are distributed throughout the cell and most are mobile. However, the only IP<sub>3</sub>R clusters that initiate  $Ca^{2+}$  puffs are those that are parked near the PM, adjacent to the ER-PM junctions where SOCE occurs. These IP<sub>3</sub>Rs, a small fraction of the several thousand expressed in a cell, are 'licensed' to respond to IP<sub>3</sub>. Neither the licensing factor nor the scaffold that holds IP<sub>3</sub>Rs within their loose clusters has been identified. We speculate, based on patch-clamp analyses suggesting that IP<sub>3</sub> promotes local clustering of IP<sub>3</sub>Rs [32], that IP<sub>3</sub> may cause the loose confederations of IP<sub>3</sub>Rs to huddle more closely and so increase the opportunity for CICR between them. A similar clustering of IP<sub>3</sub>Rs has been proposed to underlie the increased sensitivity of IP<sub>3</sub>Rs to IP<sub>3</sub> as oocytes mature in preparation for fertilization [35].

It is not clear whether licensing of IP<sub>3</sub>Rs increases their affinity for IP<sub>3</sub> and so diverts IP<sub>3</sub> binding to a subset of IP<sub>3</sub>Rs, or whether licensing acts downstream of IP<sub>3</sub> binding. The latter would entail that to achieve complete occupancy of at least a few of the IP<sub>3</sub>Rs within a licensed cluster, most IP<sub>3</sub>Rs in the cell would have some of their subunits bound to IP<sub>3</sub>. We might then ask whether partial occupancy of an IP<sub>3</sub>R has functional consequences, possibly driving local clustering, for example [31,32]. Furthermore, since the intracellular concentration of IP<sub>3</sub>Rs (~7200 IP<sub>3</sub>Rs/cell, ~100 nM of IP<sub>3</sub>-binding sites) is similar to their affinity for IP<sub>3</sub> (K<sub>D</sub> = 119 nM under physiological conditions [36]), IP<sub>3</sub>Rs may provide appreciable buffering and thereby slow IP<sub>3</sub> diffusion [31]. That appears to be the case; indeed the intracellular buffering of IP<sub>3</sub> may be greater than can be explained by IP<sub>3</sub>Rs alone [37<sup>•</sup>]. This has important implications because, with IP<sub>3</sub> diffusing some 30-times slower than expected, its range of action is reduced. Hence, IP<sub>3</sub>, like  $Ca^{2+}$  [38], probably functions as a local intracellular messenger [37<sup>•</sup>].

#### IP<sub>3</sub>Rs and SOCE: short-cuts and tunnels

Activation of SOCE requires substantial loss of  $Ca^{2+}$  from the ER [39-41]. Yet the ER forms a luminally continuous network [42,43], and during  $Ca^{2+}$  signalling it must support other  $Ca^{2+}$ -requiring activities, including protein folding [44]. Furthermore, the ER-PM junctions where SOCE occurs, perhaps 400 junctions in a HeLa cell [5<sup>•</sup>], are just 10-20 nm wide and involve no more than a few percent of the PM area [5<sup>•</sup>,45]. How, then, do physiological stimuli both activate SOCE without compromising ER functions and deliver  $Ca^{2+}$  signals beyond ER-PM junctions? In most analyses, SOCE is activated by using thapsigargin to inhibit the sarcoplasmic/endoplasmic reticulum  $Ca^{2+}$ -ATPases (SERCA) responsible for ER  $Ca^{2+}$  uptake. However, under physiological conditions, IP<sub>3</sub>Rs mediate the loss of ER  $Ca^{2+}$ that triggers SOCE, and SERCA remain active throughout. Both features are important.

Licensed IP<sub>3</sub>Rs are immobilized alongside the ER-PM junctions where SOCE occurs [30"]. These IP<sub>3</sub>Rs, with their large Ca<sup>2+</sup> conductances [22], may provide a transient 'short-circuit' for Ca<sup>2+</sup> that briefly drains the ER within the ER-PM junction, thereby causing the large drop in ER Ca<sup>2+</sup> concentration needed to activate SOCE (**Figure 2a**). The active IP<sub>3</sub>Rs will also drain Ca<sup>2+</sup> from the more central ER, but that Ca<sup>2+</sup> pool is much larger and, with Ca<sup>2+</sup> diffusing rapidly within the ER lumen [46], its luminal Ca<sup>2+</sup> concentration will be minimally affected. These ideas lead to the proposal that each ER-PM junction forms an autonomous SOCE unit, regulated by its associated licensed IP<sub>3</sub>Rs. We envisage this scheme operating during the low stimulus intensities that evoke Ca<sup>2+</sup> concentration [39]. The model would allow IP<sub>3</sub>Rs to stimulate SOCE without trespassing into other ER functions. It also entails only local movements of STIM after store depletion, which might allow local activation of SOCE to be very rapid.

Several effectors, including activation of the transcription factor NFAT by calcineurin [47] and some adenylyl cyclases [48] are directly regulated by  $Ca^{2+}$  signals evoked by SOCE, but for others the route from SOCE to effector is through the ER [6<sup>•</sup>,39,49-51<sup>•</sup>, reviewed in 52]. Here,  $Ca^{2+}$  entering the cell through SOCE is sequestered by the ER and then released back to

the cytosol through IP<sub>3</sub>Rs that may be remote from ER-PM junctions where SOCE occurs [52]. This 'tunnelling' of  $Ca^{2+}$  from SOCE through the ER is reminiscent of the original 'capacitative' model for SOCE [53]. Patrick Hogan has estimated that the handful of active Orai channels within each maximally activated ER-PM junction collectively deliver ~30,000  $Ca^{2+}/s$  [5], most of which will rapidly diffuse out of the junction. By contrast a single IP<sub>3</sub>R in a replete ER can deliver 500,000  $Ca^{2+}/s$  to the cytosol, while SERCA working at its maximal capacity can remove fewer than 40  $Ca^{2+}/s$  [5,54]. Hence, unless SERCA are very concentrated within ER-PM junctions and adequately provisioned with ATP therein, they are unlikely to have much impact on Ca<sup>2+</sup> concentrations within an active junction, but SERCA can deliver  $Ca^{2+}$  to the ER lumen and so sustain  $Ca^{2+}$  tunnelling [6<sup>••</sup>,51<sup>•</sup>,55,56]. Recent studies suggest three different categories of effectors for which SOCE can be important (Figure 2b). Effectors in the first category, typified by calcineurin [47], are closely associated with the SOCE apparatus and directly regulated by  $Ca^{2+}$  signals in the ER-PM junction. The second category, typified by  $Ca^{2+}$ -activated K<sup>+</sup> and Cl<sup>-</sup> channels in the PM, is regulated by SOCE, but only after the  $Ca^{2+}$  has been sequestered by the ER and then released through nearby IP<sub>3</sub>Rs [6<sup>•</sup>,51<sup>•</sup>]. These may be the licensed IP<sub>3</sub>Rs that sit alongside the SOCE machinery (Figure 2a,b). The third category, which includes the mitochondrial uptake system (MCU) in HeLa cells [51<sup>•</sup>], is activated by IP<sub>3</sub>-evoked Ca<sup>2+</sup> release from replete ER, but not during SOCE and  $Ca^{2+}$  tunnelling. These effectors are probably coupled to IP<sub>3</sub>Rs deeper within the cell. These IP<sub>3</sub>Rs are deprived of Ca<sup>2+</sup> when licensed IP<sub>3</sub>Rs respond and divert  $Ca^{2+}$  sequestered from the ER-PM junctions back to the cytosol before it can fill the deeper ER [51<sup>•</sup>].

#### **Concluding remarks**

Remarkable progress has brought us close to understanding the structural basis of  $IP_3R$  activation and of the interactions between STIM and Orai that mediate SOCE [57]. Licensed  $IP_3Rs$  adjacent to the ER-PM junctions where SOCE occurs may contribute to both local activation of SOCE and allow delivery of Ca<sup>2+</sup> tunnelled through the ER to specific intracellular effectors.

#### **Conflicts of interest**

CWT declares that he has no conflicts of interest. KM is a co-founder of Valdia Health, but declares no conflict of interest with this work.

6

## Acknowledgements

CWT is supported by the Wellcome Trust (101844) and Biotechnology and Biological Sciences Research Council UK (BB/P005330/1). KM is supported by the Qatar National Research Fund (NPRP 7-709-3-195; NPRP 8-110-3-021), and the Biomedical Research Program (BMRP) at Weill Cornell Medical College in Qatar, a program funded by Qatar Foundation.

## **References and recommended reading**

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- •• of outstanding interest
- 1. Berridge MJ: The inositol trisphosphate/calcium signaling pathway in health and disease. *Physiol Rev* 2016, **96**:1261-1296
- Taylor CW, Tovey SC: IP<sub>3</sub> receptors: toward understanding their activation. *Cold* Spring Harb Persp Biol 2012, 2:a004010
- Csordas G, Weaver D, Hajnoczky G: Endoplasmic reticular-mitochondrial contactology: structure and signaling functions. *Trends Cell Biol* 2018, 28:523-540
- Lopez Sanjurjo CI, Tovey SC, Prole DL, Taylor CW: Lysosomes shape Ins(1,4,5)P<sub>3</sub>evoked Ca<sup>2+</sup> signals by selectively sequestering Ca<sup>2+</sup> released from the endoplasmic reticulum. *J Cell Sci* 2013, 126:289-300

5. Hogan PG: The STIM1-ORAI1 microdomain. *Cell Calcium* 2015, 58:357-367.
•A thoughtful review that brings together some quantitative thinking on what Ca<sup>2+</sup> signals might look like within an ER-PM junction.

 Courjaret R, Machaca K: Mid-range Ca<sup>2+</sup> signalling mediated by functional coupling between store-operated Ca<sup>2+</sup> entry and IP<sub>3</sub>-dependent Ca<sup>2+</sup> release. *Nat Commun* 2014, 5:3916. ••Compelling evidence that  $Ca^{2+}$  entering cells through SOCE is 'tunnelled' or 'teleported' from ER-PM junctions through the ER to IP<sub>3</sub>Rs, where the released  $Ca^{2+}$  regulates ion channels in the PM.

- Bosanac I, Alattia J-R, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, et al.: Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. *Nature* 2002, 420:696-700
- Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M: Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5trisphosphate receptor. *Mol Cell* 2005, 17:193-203
- Lin CC, Baek K, Lu Z: Apo and InsP<sub>3</sub>-bound crystal structures of the ligandbinding domain of an InsP<sub>3</sub> receptor. *Nat Struct Mol Biol* 2011, 18:1172-1174
- Seo M-D, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA, Dale P, Li C, Ames JB, Ikura M, et al.: Structural and functional conservation of key domains in InsP<sub>3</sub> and ryanodine receptors. *Nature* 2012, 483:108-112
- Hamada K, Miyatake H, Terauchi A, Mikoshiba K: IP<sub>3</sub>-mediated gating mechanism of the IP<sub>3</sub> receptor revealed by mutagenesis and X-ray crystallography. *Proc Natl Acad Sci USA* 2017, 114:4661-4666.

•Crystal structures of the entire N-terminal cytosolic domain of IP<sub>3</sub>R1 with and without IP<sub>3</sub> bound. Mutagenesis lends support to the suggestion that a nexus created by the C-terminal extension of TM6 (the linker domain, LNK), the underside of the cytosolic domain (the C-terminal end of the ARM3 domain) and its C-terminal extension (the intermediate lateral domain, ILD) mediates communication between cytosolic and pore domains.

 Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II: Gating machinery of InsP<sub>3</sub>R channels revealed by electron cryomicroscopy. *Nature* 2015, 527:336-341.

••The first structure of a complete  $IP_3R$  derived from single-particle analysis of cryo-EM images with sufficient resolution to cast light on structural determinants of  $IP_3R$  behaviour. The structure, from purified cerebellar  $IP_3R$  in a closed state, shows the pore occluded at its

cytosolic end by hydrophobic residues that must move when the pore opens. The four IP<sub>3</sub>binding cores (IBC) sit at the top of a large mushroom-like structure, with the stalk formed by the transmembrane (TM) helices that enclose the pore. About 7 nm separates the IBC from the residues that occlude the closed channel. The only contact between the large cytosolic region and pore domain occurs at a small platform immediately above the ER membrane, where structures from the C-terminal end of the cytosolic region and the cytosolic end of the pore-lining TM form an interleaved assembly that may also provide a Ca<sup>2+</sup>-binding site.

# Paknejad N, Hite RK: Structural basis for the regulation of inositol trisphosphate receptors by Ca<sup>2+</sup> and IP<sub>3</sub>. Nat Struct Mol Biol 2018, 25:660-668.

••Recent cryo-EM structures of IP<sub>3</sub>R3 alone and with IP<sub>3</sub> and high concentrations of Ca<sup>2+</sup>. The structures identify two Ca<sup>2+</sup>-binding sites, one of which coincides with that found in ryanodine receptors, and is formed by residues contributed from the base of the large cytosolic structure and by the C-terminal extension of TM6. An additional site is formed by residues contributed by ARM1 and ARM2 domains. The relationship between these Ca<sup>2+</sup>-binding sites and the biphasic regulation of IP<sub>3</sub>Rs by cytosolic Ca<sup>2+</sup> remains to be defined.

# 14. Van Petegem F: Ryanodine receptors: allosteric ion channel giants. *J Mol Biol* 2014, 427:31-53

- Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T, Peng W, Yin CC, Li X, Scheres SH, et al.: Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. *Nature* 2015, 517:50-55
- Efremov RG, Leitner A, Aebersold R, Raunser S: Architecture and conformational switch mechanism of the ryanodine receptor. *Nature* 2015, 517:39-43
- Zalk R, Clarke OB, Georges AD, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR: Structure of a mammalian ryanodine receptor. *Nature* 2015, 517:44-49
- des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J: Structural basis for gating and activation of RyR1. *Cell* 2016, 167:145-157 e117.

••Cryo-EM-derived structure of RyR1 in complex with stimulatory ligands (Ca<sup>2+</sup>, caffeine, ATP and ryanodine). The structure reveals the sites to which these ligands bind and their effects on the pore region. Structures at the interface between pore and cytosolic domains reveal a Ca<sup>2+</sup>-binding site formed by residues contributed from both the underside of the huge cytosolic domain and the C-terminal extension of the pore-lining helix. The same residues are conserved within a similar structure in the IP<sub>3</sub>R.

- Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SR, Yan N: Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. *Science* 2016, 354:aah5324
- Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE, 2nd, Van Petegem F, Yule DI: Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca<sup>2+</sup> release. *Sci Signal* 2016, 9:ra35.

•Concatenated tetramers of  $IP_3R$  subunits demonstrate that all four subunits of the  $IP_3R$  must be able to bind  $IP_3$  for the channel to open.

- 21. Rossi AM, Taylor CW: Intracellular Ca<sup>2+</sup> release channels lessons from beyond the cell. *J Cell Sci* 2018, In press
- Vais H, Foskett JK, Mak DO: Unitary Ca<sup>2+</sup> current through recombinant type 3 InsP<sub>3</sub> receptor channels under physiological ionic conditions. *J Gen Physiol* 2010, 136:687-700
- Zsolnay V, Fill M, Gillespie D: Sarcoplasmic reticulum Ca<sup>2+</sup> release uses a cascading network of intra-SR and channel countercurrents. *Biophys J* 2018, 114:462-473
- Parker I, Choi J, Yao Y: Elementary events of InsP<sub>3</sub>-induced Ca<sup>2+</sup> liberation in *Xenopus* oocytes: hot spots, puffs and blips. *Cell Calcium* 1996, 20:105-121
- 25. Smith IF, Parker I: Imaging the quantal substructure of single IP<sub>3</sub>R channel activity during Ca<sup>2+</sup> puffs in intact mammalian cells. *Proc Natl Acad Sci USA* 2009, 106:6404-6409

- 26. Ellefsen KL, Parker I: Dynamic Ca<sup>2+</sup> imaging with a simplified lattice light-sheet
   microscope: A sideways view of subcellular Ca<sup>2+</sup> puffs. Cell Calcium 2018, 71:34-44
- Mataragka S, Taylor CW: All three IP<sub>3</sub> receptor subtypes generate Ca<sup>2+</sup> puffs, the universal building blocks of IP<sub>3</sub>-evoked Ca<sup>2+</sup> signals. *J Cell Sci* 2018, In press
- Lock JT, Smith IF, Parker I: Comparison of Ca<sup>2+</sup> puffs evoked by extracellular agonists and photoreleased IP<sub>3</sub>. *Cell Calcium* 2017, 63:43-47
- 29. Keebler MV, Taylor CW: Endogenous signalling pathways and caged-IP<sub>3</sub> evoke Ca<sup>2+</sup> puffs at the same abundant immobile intracellular sites. *J Cell Sci* 2017, 130:3728-3739
- Thillaiappan NB, Chavda AP, Tovey SC, Prole DL, Taylor CW: Ca<sup>2+</sup> signals initiate at immobile IP<sub>3</sub> receptors adjacent to ER-plasma membrane junctions. *Nat Commun* 2017, 8:1505.

••Gene-editing to attach EGFP to native IP<sub>3</sub>R allowed the subcellular distribution of IP<sub>3</sub>Rs to be determined at the same time as the Ca<sup>2+</sup> signals they evoke. The results demonstrate that IP<sub>3</sub>Rs are assembled into loose clusters (typically 8 IP<sub>3</sub>Rs) that are distributed throughout the cell. Most of these IP<sub>3</sub>Rs are mobile, but only immobile clusters tethered close to the PM are 'licensed' to respond to IP<sub>3</sub>. The licensed IP<sub>3</sub>R clusters are parked adjacent to the ER-PM junctions within which STIM activates Orai, suggesting a close link between their activity and regulation of SOCE.

- 31. Taylor CW, Konieczny V: IP<sub>3</sub> receptors: Take four IP<sub>3</sub> to open. Sci Signal 2016,
  9:pe1
- Rahman TU, Skupin A, Falcke M, Taylor CW: Clustering of IP<sub>3</sub> receptors by IP<sub>3</sub> retunes their regulation by IP<sub>3</sub> and Ca<sup>2+</sup>. *Nature* 2009, 458:655-659
- 33. Smith IF, Wiltgen SM, Shuai J, Parker I: Ca<sup>2+</sup> puffs originate from preestablished stable clusters of inositol trisphosphate receptors. *Sci Signal* 2009, 2:ra77

- 34. Olson ML, Sandison ME, Chalmers S, McCarron JG: Microdomains of muscarinic acetylcholine and InsP<sub>3</sub> receptors create InsP<sub>3</sub> junctions and sites of Ca<sup>2+</sup> wave initiation in smooth muscle. *J Cell Sci* 2012, **125**:5315-5328
- Sun L, Yu F, Ullah A, Hubrack S, Daalis A, Jung P, Machaca K: Endoplasmic reticulum remodeling tunes IP<sub>3</sub>-dependent Ca<sup>2+</sup> release sensitivity. *PLoS One* 2011, 6:e27928
- 36. Ding Z, Rossi AM, Riley AM, Rahman T, Potter BVL, Taylor CW: Binding of inositol 1,4,5-trisphosphate (IP<sub>3</sub>) and adenophostin A to the N-terminal region of the IP<sub>3</sub> receptor: thermodynamic analysis using fluorescence polarization with a novel IP<sub>3</sub> receptor ligand. *Mol Pharmacol* 2010, 77:995-1004
- Dickinson GD, Ellefsen KL, Dawson SP, Pearson JE, Parker I: Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. *Sci Signal* 2016, 9:ra108.

•By photoreleasing a metabolically stable analogue of IP<sub>3</sub> focally or across the entire cell, the authors use the latency before the first  $Ca^{2+}$  puff to report intracellular diffusion of IP<sub>3</sub>. These measurements, alongside diffusion models, indicate that IP<sub>3</sub> diffuses some thirty-times more slowly than hitherto supposed. While binding of IP<sub>3</sub> to IP<sub>3</sub>Rs contributes to the hindered diffusion, IP<sub>3</sub>Rs alone seem not to provide sufficient buffering to account for the massive reduction in diffusion. The data provide compelling evidence that IP<sub>3</sub>, like Ca<sup>2+</sup>, is a local messenger.

- Allbritton NL, Meyer T, Stryer L: Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. *Science* 1992, 258:1812-1815
- Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW, Jr.: STIM1 is a calcium sensor specialized for digital signaling. *Curr Biol* 2009, 19:1-6
- Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS: Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. *Nature* 2008, 454:538-542

- Brandman O, Liou J, Park WS, Meyer T: STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca<sup>2+</sup> levels. *Cell* 2007, 131:1327-1339
- 42. Dayel MJ, Hom EF, Verkman AS: Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. *Biophys J* 1999, **76**:2843-2851
- Park MK, Petersen O, Tepikin AV: The endoplasmic reticulum as one continuous
   Ca<sup>2+</sup> pool: visualization of rapid Ca<sup>2+</sup> movements and equilibration. *EMBO J* 2000, 19:5729-5739
- Carreras-Sureda A, Pihan P, Hetz C: Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. *Cell Calcium* 2018, 70:24-31
- 45. Orci L, Ravazzola M, Le Coadic M, Shen WW, Demaurex N, Cosson P: STIM1induced precortical and cortical subdomains of the endoplasmic reticulum. *Proc Natl Acad Sci USA* 2009, 106:19358-19362
- Okubo Y, Suzuki J, Kanemaru K, Nakamura N, Shibata T, Iino M: Visualization of Ca<sup>2+</sup> filling mechanisms upon synaptic inputs in the endoplasmic reticulum of cerebellar Purkinje cells. *J Neurosci* 2015, 35:15837-15846
- 47. Kar P, Nelson C, Parekh AB: CRAC channels drive digital activation and provide analog control and synergy to Ca<sup>2+</sup>-dependent gene regulation. *Curr Biol* 2012, 22:242-247
- Cooper DM, Tabbasum VG: Adenylate cyclase-centred microdomains. *Biochem J* 2014, 462:199-213
- 49. Mogami H, Nakano K, Tepikin AV, Petersen OH: Ca<sup>2+</sup> flow via tunnels in polarized cells: recharging of apical Ca<sup>2+</sup> stores by focal Ca<sup>2+</sup> entry through basal membrane patch. *Cell* 1997, 88:49-55

- Courjaret R, Dib M, Machaca K: Store-operated Ca<sup>2+</sup> entry in oocytes modulate the dynamics of IP<sub>3</sub>-dependent Ca<sup>2+</sup> release from oscillatory to tonic. *J Cell Physiol* 2017, 232:1095-1103
- Courjaret R, Dib M, Machaca K: Spatially restricted subcellular Ca<sup>2+</sup> signaling downstream of store-operated calcium entry encoded by a cortical tunneling mechanism. *Sci Rep* 2018, 8:11214.

•When ER  $Ca^{2+}$  stores are depleted in HeLa cells,  $Ca^{2+}$  tunnelled through the ER from SOCE to IP<sub>3</sub>Rs is selectively delivered to PM ion channels, but not to mitochondria located deeper in the cell. IP<sub>3</sub>Rs deliver  $Ca^{2+}$  to mitochondria only when the ER is replete with  $Ca^{2+}$ .

- 52. Petersen OH, Courjaret R, Machaca K: Ca<sup>2+</sup> tunnelling through the ER lumen as a mechanism for delivering Ca<sup>2+</sup> entering via store-operated Ca<sup>2+</sup> channels to specific target sites. J Physiol 2017, 595:2999-3014
- 53. Putney JW, Jr.: A model for receptor-regulated calcium entry. *Cell Calcium* 1986, 7:1-12
- Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH: Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 1992, 267:14483-14489
- 55. Manjarres IM, Alonso MT, Garcia-Sancho J: Calcium entry-calcium refilling (CECR) coupling between store-operated Ca<sup>2+</sup> entry and sarco/endoplasmic reticulum Ca<sup>2+</sup>-ATPase. *Cell Calcium* 2011, 49:153-161
- 56. Jousset H, Frieden M, Demaurex N: STIM1 knockdown reveals that store-operated Ca<sup>2+</sup> channels located close to sarco/endoplasmic Ca<sup>2+</sup> ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J Biol Chem 2007, 282:11456-11464
- 57. Zhou Y, Cai X, Nwokonko RM, Loktionova NA, Wang Y, Gill DL: **The STIM-Orai** coupling interface and gating of the Orai1 channel. *Cell Calcium* 2017, **63**:8-13

#### Figure 1

Regulation of IP<sub>3</sub>Rs by IP<sub>3</sub> and Ca<sup>2+</sup>. (**a**) IP<sub>3</sub> is produced when G-protein coupled receptors (GPCRs) or receptor tyrosine kinases (RTK) stimulate phospholipase C (PLC). IP<sub>3</sub> binding to IP<sub>3</sub>Rs in the ER unmasks a Ca<sup>2+</sup>-binding site, and when Ca<sup>2+</sup> binds to it the channel can open. Ca<sup>2+</sup> signals can then propagate regeneratively by Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release (CICR). (**b**) As the IP<sub>3</sub> concentration increases, it evokes a hierarchy of Ca<sup>2+</sup> release events. (**c**) The IP<sub>3</sub>R is a large tetrameric mushroom-like structure [12<sup>•</sup>]. IP<sub>3</sub> binding near the cap of the mushroom causes the clam-like IBC to close and initiate conformation changes. These propagate to the pore-lining helices to cause the gate, formed by hydrophobic residues near the cytosolic surface of the ER membrane, to open. A nexus of entwined structures from the pore and cytosolic domains allow communication between them, and may provide a critical Ca<sup>2+</sup>-binding site [13<sup>•</sup>,18<sup>•</sup>]. (**d**) Within the ER (red), most IP<sub>3</sub>Rs (green) assemble into small clusters of loosely associated IP<sub>3</sub>Rs [30].

#### Figure 2

Licensed IP<sub>3</sub>Rs and SOCE. (**a**) IP<sub>3</sub>Rs licensed to respond to IP<sub>3</sub> are anchored alongside the ER-PM junctions where SOCE occurs. Activation of a licensed IP<sub>3</sub>R cluster may 'shortcircuit' the ER by transiently providing a large-conductance  $Ca^{2+}$  leak. The leak drains  $Ca^{2+}$  from the small ER region within the ER-PM junction, causing its luminal  $Ca^{2+}$  concentration to fall, providing an effective signal for activation of SOCE (right panel). Draining  $Ca^{2+}$  from the more extensive ER on the other side of the leak will minimally affect its luminal  $Ca^{2+}$  concentration. We suggest that the fundamental functional unit for SOCE is the ER-PM junction with its associated licensed IP<sub>3</sub>Rs. (**b**)  $Ca^{2+}$  entering cells through SOCE can directly regulate effectors (1, eg, calcineurin) within ER-PM junctions. SERCA allows sequestration by the ER of some incoming  $Ca^{2+}$ , which may then be tunnelled through the ER lumen (red arrows) to licensed IP<sub>3</sub>Rs close to the PM, from which it is released and regulates distinct effectors (2, eg,  $Ca^{2+}$ -activated K<sup>+</sup> channels). We suggest that the short-circuit provided by licensed IP<sub>3</sub>Rs diverts  $Ca^{2+}$  to different effectors only when the ER is replete with  $Ca^{2+}$  (3, eg, mitochondria in HeLa cells).



a2+

←gate

cytosol

ER lumen

nexus



