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1 Introduction
Statistical approaches to dialogue modelling allow automatic optimisation of the
Spoken Dialogue Systems (SDS) [Young, 2002]. SDS typically comprise various
statistical components. This includes a spoken language understanding module,
which takes a sentence as input and gives a dialogue act as output, a dialogue
belief state tracker that predicts user intent and track the dialogue history, a
dialogue policy to determine the dialogue flow, and a natural language generator
to convert conceptual representations into system responses.

At the other end of the spectrum, sequence to sequence learning [Sutskever et al., 2014]
has inspired several efforts to build end-to-end trainable conversational systems
[Serban et al., 2015, Wen et al., 2017b]. This family of approaches treats dia-
logue as a source to target sequence transduction problem, applying an encoder
network [Cho et al., 2014] to encode a user query into a distributed vector rep-
resenting its semantics, which then conditions a decoder network to generate
each system response. These models are limited to one domain and involve the
pre-training of some of their components. Moreover, they typically require a
large amount of data to train.

In this report we introduce a multi-domain dialogue architecture with cross-
domain database pointer and the attention over the input sequence. The model
is inspired by the previous works of [Wen et al., 2017b, Eric et al., 2017]. The
model is evaluated on a recently collected multi-domain dataset spanning across
many domains. Initial benchmarks on dialogue-context-to-text generation are
provided illustrating a room for improvement. We discuss inefficiencies of the
current architecture and possible future work.

2 End-to-end dialogue modelling
Advances in sequence to sequence learning [Sutskever et al., 2014] has inspired
several efforts to build end-to-end trainable, task-oriented conversational sys-
tems where modular approach [Young et al., 2013b] can be replaced with one
neural architecture. This approach should in theory reduce the cost of building
and maintaining task-oriented systems and ease-up transfer learning between
different domains.

One family of such approaches treats dialogue as a source to target sequence
transduction problem, applying an encoder network [Bahdanau et al., 2014] to
encode a user query into a distributed vector representing its semantics, which
then conditions a decoder network to generate each system response. [Eric et al., 2017]
proposed to combine attentions over the input sequence and the database.
The output probabilities from both sources are combined to form the gener-
ated answer. Such architectures do not break differentiability, however, these
models typically require a large amount of data to train [Bordes et al., 2017,
Eric et al., 2017].

[Wen et al., 2017b] proposed a neural network-based model for task-oriented
dialogue systems by balancing the strengths and the weaknesses of the two re-
search communities. The model is end-to-end trainable but modularly connec-
ted; it does not directly model the user goal, but nevertheless, it still learns to
accomplish the required task by providing relevant and appropriate responses
at each turn. The model consists of a separate belief tracker, a database pointer
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Figure 1: An architecture of the multi-domain dialogue system.

which is based on results from the understanding, and policy and generation
modules.

All of these models were created and evaluated on simple and single-domain
oriented datasets. Most of dialogues have around 3 system turns making this
more similar to a question-answering set-up. Moreover, reinforcement learning
was used only as a fine-tuning phase to improve the performance per-turn level.

3 Dialogue-Context-to-Text Generation
In this section we focus on modelling the dialogue management and response
generation components. These problems can either be addressed separately [Young et al., 2013a],
or jointly in an end-to-end fashion [Bordes et al., 2017, Wen et al., 2017b, Li et al., 2017].
We experimented with a baseline neural response generation model with an or-
acle belief-state obtained from the wizard annotations. This allows us to obtain
a clear benchmark where the performance of the composite of dialogue manage-
ment and response generation is completely independent of the belief tracking.
Following [Wen et al., 2017b] which frames the dialogue as a context to response
mapping problem, a sequence-to-sequence model [Sutskever et al., 2014] is aug-
mented with an oracle belief tracker and a discrete database accessing compon-
ent as additional features to inform the word decisions in the decoder. Figure 1
presents the architecture of the system.

3.1 Model
3.1.1 Intent modelling

We consider a dialogue that consists of T turns. Where it does not create
confusion, we denote by L a length of both user and system sentences per turn.
The full ontology consists of D domains, each with Sd slots and Vd values. We
differentiate between a user output (u) and a machine (system) output (m). At
each turn, the encoder takes a sequence of input tokens ut = (wt

0, wt
1, ..., wt

L)
and uses a (bi-directional) recurrent neural network to output a distributed user
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utterance representation ut which is the final hidden state:

ut = hu
L = RNNθ(ut).

[Wen et al., 2017b] defines this as a distributed intent representation which re-
places the hand-coded dialogue act representation.

The summarised belief state is formed by going through the user belief state.
For each slot, we encode whether the slot was not mentioned until this turn,
some value has been given or the user does not care about this constraint. This
gives 3-bin one-hot encoding for each slot. The global belief state vector is then
formed by concatenating all slot-dependent vectors over all domains:

bt =
⊕

d

⊕
s

bsd
.

Given an oracle belief state bt, we can use this information to query the
database for all the domains. Based on the numbers of entities in the database
that satisfy the query, we form a 6-bin one-hot encodings for each domain kbd.
The vector indicates if 0, 1, 2, 3, 4 or more entities were matched by the query.
All domain-dependent vectors are then concatenated:

kbt =
⊕

d

kbd

to form a global domain vector.

3.1.2 Decision making

In the next step, a policy vector is created to mimic the dialogue manager in
the traditional modular approach. The intent vector ut, the belief state vector
bt and the knowledge database vector kbt are combined together and processed
through a nonlinear layer [Wen et al., 2017b]:

at = tanh(Wuut + Wkkbt + Wbbt).

This vector can be seen as a continuous version of a system act in the tradi-
tional modular approach summarizing the current state and action in a high-
dimensional space.

3.2 Generation
The generation module uses a language model in the form of the recurrent neural
network that outputs probabilities over the vocabulary set at each time step:

P (wj+1|wj , hm
j−1) = softmax(RNN(wj , hm

j−1)),

where wj is the last output token and hm
t−1 is the hidden vector from the previous

step. We condition a language generator through the action vector at by using
it as the first hidden vector, i.e:

hm
0 = at.

To begin the generation process we use a special token (signifying the beginning
of a sentence, SOS) as w0. The generation process stops when the network
outputs a special token informing about the end of the sentence (EOS).
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The standard cross entropy is adopted as our objective function to train a
language model:

L(θ) =
∑

t

∑
j

yt
j log pt

j ,

where yt
j and pt

j are output token targets and predictions respectively, at turn
t of output step j. In our case every token is treated equally to make the model
as simple and as general as possible.

3.2.1 Attention mechanism

The signal from the user sentence can be amplified through the attention mech-
anism that enable focusing on the most relevant part of the utterance at each
step. After each pass of the RNN over the user sentence the hidden vectors for
each word are stored as:

hu = (hu
1 , hu

2 , ..., hu
L).

These are combined through a score function with the current hidden vector in
the generation module hm

j−1:

aij = score(hu, hm
j−1) = vT tanh(WT (hu

i ⊕ hm
j−1) + b)

and passed through a softmax operator to produce the attention weights:

αij = eaij∑L
i=1 eaij

.

The current attentive hidden vector (the context vector) from the user sentence
is created by weighting each hidden output with the attention weights:

hu
c =

L∑
i=1

αijhu
i .

The context vector is concatenated with the previous generated embedded word

wnew
j−1 = hu

c ⊕ wj−1

to output the prediction for the next word:

P (wj+1|wj , hm
j−1, hu) = softmax(RNN(wnew

j−1 , hm
j−1)).

3.3 Training set-up
All models were trained for 20 full passes over the training dataset. The best set
of hyper-parameters was found by a grid search, evaluating on the held-out val-
idation subset of the date. We varied between size of embedding vectors, hidden
representation, l2-norm penalty and the size of the dictionary. The gradients are
clipped by 5.0 throughout the whole training process. Since often times the eval-
uation of a dialogue system without a direct interaction with the real users can
be misleading [Liu et al., 2016], three different automatic metrics are included
to ensure the result is better interpreted. Among them, the first two metrics
relate to the dialogue task completion - whether the system has provided an
appropriate entity (Inform rate) and then answered all the requested attributes
(Success rate); while fluency is measured via BLEU score [Papineni et al., 2002].
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Cam676 MultiWOZ
w/o attention w/ attention w/o attention w/ attention

Inform (%) 99.17 99.58 71.29 71.33
Success (%) 75.08 73.75 60.29 60.96
BLEU 0.219 0.204 0.188 0.189

Table 1: Performance comparison of two different model architectures using a
corpus-based evaluation.

3.4 Evaluation
Neural approaches to statistical dialogue development, especially in a task-
oriented paradigm, are greatly hindered by the lack of large scale datasets. That
is why, following the Wizard-of-Oz (WOZ) approach [Kelley, 1984, Wen et al., 2017b],
we ran text-based multi-domain corpus data collection scheme through Amazon
MTurk. The WOZ paradigm allowed us to obtain natural and semantically rich
multi-topic dialogues spanning over multiple domains such as hotels, attrac-
tions, restaurants, booking trains or taxis. The dialogues cover from 1 up to 5
domains per dialogue greatly varying in length and complexity. We gathered
around 10400 multi-domain dialogues of an average length and complexity sub-
stantially higher than in previous corpora. As expected, the model achieves
almost perfect score on the Inform metric on the Cam676 dataset taking the
advantage of an oracle belief state signal. However, even with the perfect dia-
logue state tracking of the user intent, the baseline models obtain almost 30%
lower score on the Inform metric on the new corpus. The addition of the atten-
tion improves the score on the Success metric on the new dataset by less than
1%. Nevertheless, as expected, the best model on MultiWOZ is still falling
behind by a large margin in comparison to the results on the Cam676 corpus
taking into account both Inform and Success metrics. As most of dialogues span
over at least two domains, the model has to be much more effective in order to
execute a successful dialogue. Moreover, the BLEU score on the MultiWOZ is
lower than the one reported on the Cam676 dataset. This is mainly caused by
the much more diverse linguistic expressions observed in the MultiWOZ dataset.

4 Future work
Recently, [Wen et al., 2017a] employed a discrete latent variable to learn under-
lying dialogue intentions in the framework of neural variational inference. In a
goal-oriented dialogue scenario, these latent intentions can be interpreted as ac-
tions guiding the generation of machine responses, which can be further refined
autonomously by reinforcement learning. We plan to employ models presented
in the previous section in order to create a model that is easier to learn and
does not suffer from the disconnection phenomenon [Wen et al., 2017a]. The
recent advances allows for creating only one loss that the model is optimized
over contrary to previous approaches.

Moreover, the recently acquired dataset is annotated with system dialogue
acts which enables pre-training in a supervised way [Su et al., 2017]. Initial
analysis shows that over 55% of the annotated turns have multiple actions.
These pose theoretical challenges requiring adapting standard RL framework to
parallel action-choice [Harmer et al., 2018].
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Finally, we are planning to incorporate the fine-tuning phase with dialogue-
level RL loss. Previous methods used turn-level RL loss which results in an
over-informative dialogue agent that does not learn multi-turn policy.

5 Conclusion
In this report, we have examined end-to-end dialogue modelling with neural
architectures. Recently proposed methods were analyzed in the context of
multi-domain dialogue systems. We created a multi-domain dialogue system
with multi-domain belief state, database pointer and attention component over
decoded space. The initial model was evaluated on the recently collected multi-
domain dataset MultiWOZ. The initial framework is falling behind the per-
formance of the model in the single-domain set-up. Multi-domain dialogues are
longer often including two domains in one turn requiring better architectures
that will allow for producing richer system outputs.
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