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Summary 

The distribution of kinetic helicity in a dipolar planetary dynamo is central to the 

success of that dynamo. Motivated by the helicity distributions observed in numerical 

simulations of the earth’s dynamo, we consider the relationship between the kinetic 

helicity, uu h , and the buoyancy field that acts as a source of helicity. We 

show that, in the absence of a magnetic field, helicity evolves in accordance with the 

equation hSth  F , where the flux, F, represents the transport of helicity by 

inertial waves, and the helicity source, hS , involves the product of the buoyancy and 

the velocity fields. In the numerical simulations it is observed that the helicity outside 

the tangent cylinder is predominantly negative in the north and positive in the south, a 

feature which the authors had previously attributed to the transport of helicity by 

waves (Davidson & Ranjan, 2015). It is also observed that there is a strong spatial 

correlation between the distribution of h and of hS , with hS  also predominantly 

negative in the north and positive in the south. This correlation tentatively suggests 

that it is the in situ generation of helicity by buoyancy that establishes the distribution 

of h outside the tangent cylinder, rather than the dispersal of helicity by waves, as had 

been previously argued by the authors. However, although h and hS  are strongly 

correlated, there is no such correlation between th   and hS , as might be expected if 

the distribution of h were established by an in situ generation mechanism. We explain 

these various observations by showing that inertial waves interact with the buoyancy 

field in such a way as to induce a source hS  which has the same sign as the helicity in 

the local wave flux, and that the sign of h is simply determined by the direction of that 

flux. We conclude that the observed distributions of h and hS  outside the tangent 

cylinder are consistent with the transport of helicity by waves. 
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1. Introduction 

One of the major advances in convection-driven dynamos over the last decade has 

been the ability of the numerical simulations to reproduce some of the observed 

features of the earth’s magnetic field, such as a strongly dipolar magnetic field aligned 

with the rotation axis, occasional reversals in polarity, and a slow westward drift of 

the surface magnetic field (Christensen, 2010). This is all the more astonishing as the 

parameter regime in the numerical experiments is very far from that in the core of the 

earth. For example, the simulations are much too viscous, typically by a factor of 109 

as measured by the Ekman number, and substantially underpowered, as measured by 

the ratio of the Rayleigh number to the critical Rayleigh number at which convection 

first sets in (Christensen & Wicht, 2007, Christensen, 2011). There is, therefore, a 

growing need to understand exactly what dynamical mechanisms these numerical 

experiments embrace which allows them to capture planet-like behaviour, despite the 

fact that many aspects of the simulations are distinctly not planet like.  

 It was recognised early in dynamo theory that an important ingredient of a 

dipolar planetary dynamo is the breaking of reflectional symmetry (Moffatt, 1978), 

and in the numerical simulations of such dynamos this usually takes the form of an 

abundance of kinetic helicity, ωuuu h , in the convective flow (Roberts & 

King, 2013). Moreover, an efficient dynamo requires that the mean helicity is 

spatially segregated, being of one sign in the northern hemisphere and another sign in 

the south. Precisely such an asymmetric distribution in the azimuthally-averaged 

helicity was observed quite early in the numerical simulations (Olson, Christensen, & 

Glatzmaier, 1999), and indeed it occurs even in the absence of a magnetic field 

(Glatzmaier & Olson, 1993, Kitauchi, Araki & Kida, 1997). In particular, outside the 

tangent cylinder (an imaginary cylinder that circumscribes the solid inner core and is 

parallel with the rotation vector, Ω), the helicity is observed to be negative in the 

north and positive in the south. This is important because nearly all of the current 

numerical dynamos operate outside the tangent cylinder (Christensen, 2011). So, two 

important questions are: what basic mechanism is responsible for the generation and 

subsequent spatial segregation of helicity in the numerical simulations, and why is it 

predominantly negative in the north and positive in the south (outside the tangent 

cylinder)? To date, these questions remain unanswered.  

  The production and segregation of helicity was attributed to Ekman pumping 

in some of the early simulations (Roberts & King, 2013, Kono, Sakuraba & Ishida, 
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2000), but these simulations were particularly viscous and weakly forced, and this has 

now been largely abandoned as a realistic mechanism. For example, it is not the 

primary source of helicity in slightly less viscous simulations (Olson, Christensen, & 

Glatzmaier, 1999), it plays almost no role whatsoever in the most recent low-Ekman 

number numerical simulations (Schaeffer et al, 2017), and numerical simulations 

involving slip boundary conditions, in which there can be no Ekman pumping, also 

produce dipolar dynamos (Kageyama, Watanabe & Sato, 1993, Yadav, Gastine & 

Christensen, 2013). Moreover, Ekman pumping is unlikely to play any role at all in 

planetary cores, where the Ekman number is tiny,  ~10-15 in the case of the earth.  

 Given that the earth rotates rapidly with a low convective Rossby number,    

Ro = u/Ωl<< 1, it has long been recognised that an alternative source of helicity may 

be the propagation of helical waves supported by the Coriolis force, (Moffatt, 1970, 

Olson, 1981). The point is that, while a low value of Ro demands that uu   is much 

weaker than the Coriolis force, we have no right to similarly neglect tu , as there is 

no a priori reason why the time derivative should scale on the convective time, and as 

soon as we allow for a non-negligible tu , waves are inevitable. This idea was 

taken up again in Davidson (2014) and Davidson & Ranjan (2015), who focussed 

particularly on the simplest type of helical wave – inertial waves. The hypothesis put 

forward in Davidson (2014) and Davidson & Ranjan (2015) is that most planets are 

rapid rotators and so are natural wave-bearing systems which are almost certainly 

awash with helical waves, such as inertial waves and magnetostrophic waves. In 

particular, it is argued that fast inertial waves are required to maintain the approximate 

geostrophy observed in the simulations, a quasi-geostrophy that is maintained despite 

the chaotic evolution of the thermal forcing and the turbulent nature of the resulting 

velocity field. Moreover, outside the tangent cylinder the temperature perturbations 

and buoyancy flux, which act as triggers for helical waves, are observed to be 

concentrated in and around the equatorial plane. This was noticed as early as Gilman 

(1977) and then later by Glatzmaier & Olson (1993). This is illustrated in Figure 1(a), 

which is taken from Sakuraba & Roberts (2009) and shows the computed radial 

velocity in one of their simulations. It is also evident in Figure 1(b), which is from 

Ranjan et al (2018) and shows the computed r.m.s. azimuthal temperature gradient, 

averaged in the azimuth. In both of these cases the primary source of excitation for 

waves lies in the equatorial regions. This is significant because upward propagating 
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helical waves, either inertial or magnetostrophic waves, are known to carry negative 

helicity, while downward propagating helical waves carry positive helicity (Moffatt, 

1978). So waves triggered in and around the equatorial plane will tend to support 

negative helicity in the north and positive helicity in the south, exactly as seen in the 

numerical simulations (Figure 1(c)), and exactly as required for dynamo action. 

 

 

 

Figure 1. (a) The computed radial velocity in one of the simulations of Sakuraba & 

Roberts (2009). (b) The r.m.s. azimuthal temperature gradient, averaged in the 

azimuth, in the simulation of Ranjan et al (2018). (c) The helicity distribution in a 

simulation by Schaeffer et al (2017). 

 

 There is a second, intriguing feature of the numerical simulations that requires 

some explanation. As noted in Davidson & Ranjan (2015), it is possible to write a 

low-Ro evolution equation for the helicity of the form  

 

      hS
t





Fωu .           (1.1) 

The origins and interpretation of this equation are spelt out in §2, where it is shown 

that F is a wave flux involving the Coriolis force, and hence Ω, while the source term, 

hS , is a function of u(x,t) and of those buoyancy fluctuations which act as triggers for 

helical waves. A comparison of the azimuthally averaged distributions of h and hS  in 

a numerical dynamo is shown in Figure 2 (a, b), where panel (a) is taken from Ranjan 
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et al (2018) and panel (b) has been calculated from the same data set. It is 

extraordinary how close the azimuthally averaged spatial distributions of h and hS  

are. At first sight this argues for an in situ generation of helicity, such as the quasi-

static mechanism suggested by Hide (1976), rather than the dispersal of helicity by 

waves. Curiously, though, no such correlation is observed between th   and hS  in 

the same numerical simulation (Figure 2 c). This suggests that there may be an 

alternative explanation for the observed correlation between h and hS , and we shall 

argue here that this is indeed the case. Specifically, we shall show the source term in 

(1.1) automatically adjusts to take the same sign as the prevailing helical wave flux. 

That is to say, hS  is not independently prescribed, but is itself shaped by the wave 

dynamics. 

 

 

Figure 2. A comparison of the azimuthally averaged values of h, hS  and th   in 

equation (1.1). Panel (a) is taken from Ranjan et al (2018) and (b, c) have been 

calculated from the same dataset.  

 

 Because of the presence of both an ambient magnetic field and a background 

rotation, there are several classes of helical waves which might exist in the core of a 

planet. However, these share many common features and differ mostly in their time 

scales (Moffatt, 1978). Consequently, we shall follow Davidson & Ranjan (2015) and 

focus on the simplest case – that of inertial waves. In the parlance of dynamo theory, 

we consider the weak-field regime. Our primary task is to test the hypothesis that the 

antisymmetric distribution in h observed in the numerical simulations, as well as the 
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spatial correlation between h and Sh in (1.1), could arise from the spontaneous 

emission of inertial waves from buoyant anomalies. Because the numerical 

simulations exhibit highly complex dynamics, with many distinct physical processes 

occurring simultaneously on multiple time scales, we restrict ourselves to a sequence 

of idealised model problems, designed to expose the underlying dynamics. 

 

2. The Equations Governing the Dispersal of Helicity from a Localised 

Source of Buoyancy  

2.1 Inertial Waves at Low Rossby Number 

We consider a rapidly-rotating, Boussinesq fluid at low Rossby number, 

12Ro  u , in which motion is driven by density anomalies. The governing 

equations of motion in the rotating frame of reference are  

 

      ugΩu
u 22 



p

t
,  (2.1) 

    0 u ,    (2.2) 

where zeΩ ˆ  is the background rotation, p is pressure,   the viscosity,   the 

background density, g is gravity,   ,  and   is the perturbation in density. We 

have in mind cases where g is perpendicular to Ω , reminiscent of a buoyant anomaly 

sitting near the equatorial plane of the earth’s core, and we take   to be negative, in 

line with the notion of buoyant anomalies floating out towards the mantle in the core. 

 If we introduce a solenoidal vector potential, a, for the velocity, au  , then 

we may rewrite (2.1), and its curl, in the alternative form, 

 

      ugaΩ
u 22 


  p
t

,  (2.3) 

    ωguΩ
ω 22 





t
,  (2.4) 

where 

       g  p2 .   (2.5) 

The buoyancy field,  , is assumed to be advected by a simple advection diffusion 

equation, with a diffusivity   equal to that of the kinematic viscosity. From (2.1) we 

see that /~ gu  , and so a characteristic Rossby number is  2

0 2Ro  g , 
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where 0  is a characteristic density fluctuation and   is a typical length-scale for the 

buoyancy field. 

 We are interested in how energy and helicity disperse from localised buoyancy 

sources at low Ekman numbers. In the absence of viscosity, and away from buoyancy 

sources, (2.3) supports inertial waves governed by the wave-like equation  

         0uΩu 


 22

2

2

4
t

,  (2.6) 

which allows for plane waves of the form   tj  xkuu expˆ . These have the 

dispersion relationship 

       kΩk  kk ,2 ,  (2.7) 

with  20   and the lowest frequency corresponding to horizontal wave-vectors, 

0Ωk . The group velocity of inertial waves is then 

 

    
 

3

2

3

)(
22

k

kΩkΩ

k

kΩk
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k

ki

g


. (2.8) 

Note, in particular, that  

       22232 ΩkΩcg   kk ,  (2.9) 

which tells us that the positive sign in (2.7) corresponds to wave energy travelling 

upward, while the negative sign corresponds to energy propagating downward.  

 Note also that low-frequency waves have a group velocity of k/2Ωcg  , and 

so Ro~/ gcu . It follows that, at low Ro, the buoyancy field, and hence p , may be 

regarded as quasi-static on the timescale of the wave dispersion. Inverting (2.5) tells 

us that this quasi-static pressure field falls off with distance as 
3

~
 xp  from a 

localised source of buoyancy. This is faster than the radiation field, which falls as 

1
~


xu  for on-axis radiation (radiation parallel to Ω ) and 

2/3
~


xu  for off-axis 

radiation (see Davidson et al, 2006, and Davidson, 2013).  

 Inertial waves have a non-zero helicity, ωu h . This follows from (2.4) 

combined with the dispersion relationship (2.7), which yields ukω ˆˆ  , where ω̂  is 

the amplitude of the vorticity in the wave. Evidently the vorticity and velocity fields 

are parallel and in phase, and so monochromatic inertial waves have maximum 

possible helicity, with the positive sign in (2.9) corresponding to negative helicity, 
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and the negative sign to positive helicity (Moffatt, 1978). Although this argument 

applies only to a single Fourier mode, wave packets containing a range of 

wavenumbers also have a high relative helicity, and of the sign expected for a 

monochromatic wave (Davidson & Ranjan, 2015, Ranjan, 2017). Thus, when wave 

packets disperse from a localised disturbance, waves with negative helicity propagate 

upward, 0Ωc g , while those with positive helicity travel downward, 0Ωc g . 

 

2.2 An Inviscid Evolution Equation for Helicity. 

We are interested in how helicity disperses from localised sources of buoyancy. As 

noted in Davidson & Ranjan (2015), we can obtain an evolution equation for h by 

taking the dot product of ω  with (2.3), the product of u with (2.4), and then adding 

the two equations. Ignoring viscosity, this yields 

 

                 gωguωωaΩuΩωu  


 p
t

22 .  (2.10)       

The two terms arising from the Coriolis force may be rewritten as a divergence, 

 

         aΩuΩuωaΩuΩ  2)2(2 22 ,      (2.11) 

while it will be convenient to rewrite the source terms involving buoyancy as   

 

            uggugωgu 2)( .      (2.12) 

Our evolution equation for helicity can therefore be written symbolically as 

 

       hS
t





Fωu ,              (2.13) 

where the flux, F, and helicity source, hS , are 

 

        ωaΩuΩuF  p22 2 ,             (2.14)  

and 

         uggu 2)(21 SSSh .            (2.15) 

Note that 1S  integrates to zero over a spherical domain, though 2S  need not. We shall 

now examine the flux, F, and source, hS , individually. 

 

2.3 The Flux Term in the Helicity Equation. 
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Well removed from a localised source of buoyancy the quasi-static modified pressure 

is weak, 
2

~


xp , and so, to leading order in 
1

x , equations (2.13) and (2.14) can be 

approximated by  

      Fωu 




t
,       

t




u
uΩuF 22 .      (2.16) 

Moreover, we shall see in §3 that dispersion from a localised buoyancy source is 

usually dominated by low-frequency wave packets, 0Ωk , and in such cases 

Ω , so that the helicity flux is simply  ΩuF
22 . This is consistent with 

upward propagating wave packets carrying with them negative helicity and downward 

propagating wave packets transporting positive helicity. To see why this is so, 

suppose the buoyancy source is localised near the plane z = 0, say confined to the 

region   z . If we integrate (2.13) over all space that lies above the horizontal 

plane  z  , then we obtain 

     



zS

dAddV
dt

d 22 uSFωu .       (2.17a) 

Similarly, integrating (2.13) over all space that lies below the horizontal plane z  

yields 

     



zS

dAddV
dt

d 22 uSFωu .      (2.17b) 

So we obtain negative helicity above the source and positive helicity below, as 

expected from an analysis of monochromatic waves. 

 More generally, if we are remote from all sources of buoyancy, and we consider 

only the helicity transported by the fast, low-frequency waves, we may integrate 

(2.16) over a cylindrical control volume RV  to give  

 

    












 
BTR SSV

dAdAdV
dt

d 222 uuωu ,        (2.18) 

where TS  is the top of the cylindrical control volume and BS  the bottom. Evidently, 

the growth of helicity in RV  due to the flux of low-frequency inertial waves depends 

on only the difference in kinetic energy between the top and bottom of RV . In 

particular, inertial waves carry helicity from regions of high kinetic energy to regions 

of low kinetic energy. 
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2.4 The Source Term in the Helicity Equation. 

Since the buoyancy field can be considered as quasi-static at low Ro, the source term 

g  in the linear equation (2.3) is effectively prescribed and independent of the wave 

dynamics. We therefore have a source of waves of unambiguous magnitude and 

distribution. However, this is not the case with the helicity equation (2.13) because of 

the appearance of u in the source term hS , and so some caution must be exercised 

when discussing this source term. In fact, we shall see that, during the dispersion of 

waves from a localised distribution of buoyancy, the velocity field automatically 

adjusts the local sign of hS  so that, on average, the upper regions of a buoyant cloud 

develop a negative sign in hS , while the lower regions develop a positive sign. In 

short, the local value of hS  automatically adjusts to be of the same sign as the helicity 

emanating from the buoyant cloud in the form of inertial waves. 

 We can gain some insight into this process by supposing that, once again, the 

buoyancy source is localised near the plane z = 0, say confined to the region 

  z . Consider, for example, the first contribution to (2.15),  )(1 gu S . 

If we integrate this over the top half of the buoyancy field, z > 0, we obtain 

 

   



000

1 )()()(
zzz

dAddVS ΩugSgu  .  (2.19) 

However, from (2.1) we expect the approximate force balance   gΩu   p2  

in low-frequency waves, and so we find 

 

    



00

2

0

1 )(2
zzz

dApdAdVS  gg .  (2.20) 

Similarly 

    



00

2

0

1 )(2
zzz

dApdAdVS  gg ,  (2.21) 

and so, pressure terms apart, 1S  integrates over the top or bottom half of the cloud to 

have the same sign as the helicity locally emanating from the cloud in the form of 

inertial waves. Of course, we must add to this the contribution from 2S , which turns 

out to be more complicated. Nevertheless, we shall see that, on average, hS  near the 
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edges of a buoyant cloud does indeed take the same sign as the helicity associated 

with local inertial waves leaving the cloud. 

 We shall now illustrate this by considering first a simple Gaussian distribution 

of   located at the origin, reminiscent of the studies detailed in Loper (2001) and 

Shimizu & Loper (2000). We then consider a random field of buoyancy confined to 

the layer   z . 

 

3. The Dispersal of Helicity from a Single Buoyant Blob at Low Ro 

Consider the case where  yeg ˆg  and 

 

     22222

0 )(exp)(exp  zyx  .         (3.1) 

The wave dispersion pattern associated with such a Gaussian blob is discussed in 

Davidson (2014). The first point to notice is that the dispersion pattern is dominated 

by low-frequency waves propagating along the rotation axis above and below the 

blob, in the sense that the radiation density is highest within an imaginary cylinder 

which is aligned with Ω  and circumscribes the buoyant anomaly. To understand why 

the radiation density is highest in this cylindrical region we must recall that the group 

velocity of inertial waves is perpendicular to k. Thus the energy associated with all 

horizontal wave-vectors radiates along the rotation axis, and so all the energy 

contained within a thin horizontal disc in k-space propagates along a narrow cylinder 

in real space. On the other hand, only one orientation of k will transport energy to a 

particular location remote from the cylinder that circumscribes the buoyant anomaly. 

The process of channelling energy from a two-dimensional object in k-space (a disk) 

to a one-dimensional object in real space (the tangent cylinder which circumscribes 

the blob) amplifies the radiation density on the rotation axis (Davidson, 2013). In 

short, the dispersion pattern is dominated by columnar vortices (transient Taylor 

columns) composed of low-frequency waves which propagate along the rotation axis. 

 To obtain the dispersion pattern within this tangent cylinder, we invoked the 

idea of vertical jump conditions across the buoyant blob after the initial passage of 

inertial waves. This rests on the fact that the waves within the tangent cylinder are of 

low frequency, and so time dependence is significant only near the advancing front of 

the columnar wave packets. Near the blob, on the other hand, equation (2.4) and its 

curl gives us  

    02  guΩ  ,   (3.2) 
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     )(2 2 ggωΩ .             (3.3) 

Integrating vertically through the blob yields the jump conditions (Davidson, 2014)  

0 yx uu ,  

      


 dzx
g

uz 
2

,            (3.4) 

and 

     0 z .             (3.5) 

 From (3.5) we see that a cyclonic (or anticyclonic) columnar vortex which 

forms above the blob must correspond to a cyclonic (or anticyclonic) vortex below the 

blob. Moreover, for the Gaussian profile (3.1) we have 0 zu   for x > 0 and 

0 zu  for x < 0. Given that zu  is antisymmetric about the plane z = 0, we conclude 

that zu  diverges from the blob for x > 0 and converges onto the buoyant anomaly for 

x < 0.  Finally, noting that upward propagating inertial waves carry negative helicity 

and downward propagating waves positive helicity, we conclude that the dispersion 

pattern within the tangent cylinder consists of a cyclone-anticyclone pair of columnar 

vortices above the blob matched to a cyclone-anticyclone pair below. Moreover, the 

cyclonic wave packets above and below the blob are confined to x < 0 and the 

anticyclones to x > 0.  

 This is illustrated in Figures 3 and 4 using the results of direct numerical 

simulations of the full Navier-Stokes equation, including the nonlinear and viscous 

forces. The Courant condition is based on the group velocity of inertial waves and the 

buoyancy field,  , is advected by an advection-diffusion equation, with a diffusivity 

  equal to that of the viscosity. The simulations were performed in a 5123 periodic 

domain using the pseudo-spectral code described in Yeung & Zhou (1998) and 

Ranjan & Davidson (2014). Because the boundary conditions are periodic, the 

simulations were halted before waves reached the upper and lower boundaries. Figure 

3 shows the results for the case of 01.02Ro 2

0   g , an Ekman number of 

029.0Ek 2   , 2  and time 8t , while Figure 4 gives the results for the 

same values of Ro, Ek and t , but for 2/1 . Note that the vertical jump 

conditions are indeed satisfied in both cases and that the dispersion pattern is as 

expected. 
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Figure 3. The dispersion pattern from a Gaussian blob for the case of Ro =0.01, 2  

and time 8t . Contours of energy coloured by (a) zu , (b) yu , (c) z  and (d) h. 

 

 

Figure 4. The dispersion pattern from a Gaussian blob for the case of Ro =0.01, 

2/1  and 8t . Contours of energy coloured by (a) zu , (b) yu , (c) z  and (d) h. 

 

 The distribution of h on the z axis is shown for different times in Figure 5. It is 

clear that, after a time of 6t , the magnitude of h just above and below the 

buoyant anomaly saturates. This can be understood from the fact that the source hS  is 

linear in u whereas the flux is quadratic in the velocity. As the magnitude of u, and 

hence h, increases there comes a point at which the flux of helicity equals the rate of 

generation of helicity within the buoyant blob, which occurs when /~ gu  . After 

this, the peak in h is fixed and helicity simply spreads out along the rotation axis at the 

group velocity of low-frequency inertial waves, k/2Ωcg  . 
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Figure 5. The distribution of h on the z axis is shown for different times corresponding 

to the cases shown in Figures 3 and 4. (a) 2/1 , (b) 2 . 

 

 Of particular interest is the distribution of the source term 21 SSSh   within 

the buoyant anomaly, which is shown in Figures 6 and 7. In both cases the 

contribution from  )(1 gu S  is predominantly negative for z > 0 and positive 

for z < 0, as suggested by (2.20) and (2.21), whereas   ug22S  is often of the 

opposite sign. In particular, while the contribution to 2S  associated with xguz    

has the same sign as hS , that associated with zgux   does not. However, when all 

the terms are added to give hS , we see that in both cases the source term is uniformly 

negative in the top half of the blob and positive in the lower half. Moreover, in Figure 

8 we show the horizontal averages of hS , h and th   as a function of z for the case 

of 2  at 8t . While hS  and h are well correlated, at least within the buoyant 

blob, there is no such strong spatial correlation between hS  and th  . This is 

consistent with what is observed in the numerical dynamos, as discussed in §1. 
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Figure 6. The distribution of the helicity source terms 1S , 2S  and 21 SSSh   for a 

Gaussian blob for the case of Ro =0.01, 2  and time 8t . 

 

 

Figure 7. The distribution of the helicity source terms 1S , 2S  and 21 SSSh   for a 

Gaussian blob for the case of Ro = 0.01, 2/1  and time 8t . 

 
 

Figure 8. The horizontal averages of hS , h and th   as a function of z for the case of  

of  Ro =0.01, 2  and 8t . The horizontal lines indicate the extent of the blob. 
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 We can understand this behaviour using (2.13). To focus thoughts, consider 

the half-space z > 0. Let us divide the dispersion pattern into three regions, a lower 

region, sourceV , in the vicinity of the buoyant blob, an upper region , frontV , which 

includes the advancing wave front, and the region in between, fluxV . Recalling that we 

are dealing with low-frequency waves, time dependence is significant only in frontV . 

So the helicity equation in these three regions takes the form 

 

  frontV :   Fωu 




t
,        (3.6) 

  fluxV :  0 F ,         (3.7) 

  sourceV :  hS F ,             (3.8) 

Expression (3.6) then tells us that the advancing front, which has h < 0, must be fed 

by an upward flux of negative helicity, while (3.7) tells us that this same negative flux 

must emerge from the source region lower down. Finally, (3.8) tells us that this 

upward flux of negative helicity must be generated by the integral of hS  over the 

upper half of the buoyant blob. In short, the integral of hS  over z > 0 must be negative 

in order to feed the negative helicity in the advancing front higher up. Cleary, a 

similar argument applied to z < 0 tells us that the integral of hS  over the lower half of 

the blob must be positive. 

 Finally, before leaving the Gaussian blob, we note that a simple analysis of the 

advancing front explains why upward (downward) propagating wave-packets carry 

negative (positive) helicity. Consider the region frontV  above the blob where, viscous 

forces apart, (2.4) gives,      

     uΩ
ω





2

t
.          (3.9) 

We now move into a frame of reference moving with the dominant group velocity of 

the upward propagating wave packet. In such a frame of reference the front will look 

approximately steady, and so (3.9) becomes  

 

      uΩ
ωω










2Ω2

z
k

z
c dg ,         (3.10) 
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where dk  is the dominant wavenumber. It follows that, near the front, we have 

uω dk  and hence 2
udkh  . Clearly, a similar argument applied to the downward 

propagating front yields 2
udkh  . We believe that this is the first time a simple 

physical explanation has been given for the asymmetry in the sign of h associated 

with inertial waves dispersing from a localized source. 

      

4. The Dispersal of Helicity from a Radom Layer of Buoyancy 

 

4.1 Low Rossby Number 

 

Let us now consider the dispersion of helicity from a random layer of buoyancy. Once 

again, we show the results of direct numerical simulations of the full Navier-Stokes 

equation corresponding to zeΩ ˆ  and yeg ˆg . As before,   is advected by an 

advection-diffusion equation, with a diffusivity   equal to that of the kinematic 

viscosity. This time, however, we use an elongated periodic domain of 

1536512512   modes. Our initial condition consists of 2000 randomly located 

density perturbations which are restricted to a horizontal slab located at the mid-

height of the triply periodic domain. Each of the density perturbations is of the form 

  22

0 exp iii  xx  , where ix  locates the center of the blob and the length-

scales i  are chosen uniformly from the range  22/  i . The centers ix  are 

restricted to a horizontal layer  8.28.2  z  which fills the computational domain 

in the x and y directions. The size of the computational domain is  1505050  .

 In Figures 9→12, the Rossby number is set to 01.02Ro 2

0   g , the 

Ekman number is 0023.0Ek 2    and time is 12t . Figure 9 shows 

snapshots of - , zu  and h in the x-z plane, and as expected we see wave-packets in 

the form of cyclone-anticyclone pairs emerging from the buoyant cloud, carrying 

negative helicity upward and positive helicity downward. The corresponding helicity 

source terms, 1S , 2S  and 21 SSSh  , averaged in y, are shown in Figure 10, again in 

the x-z plane. As with a single buoyant blob, the spatially averaged values of hS  take 

the same sign as the local value of h, being predominantly negative in the upper half 

of the buoyancy field and positive in the lower half. This distribution of hS  is an 

inevitable consequence of (3.6)→(3.8).  
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Figure 9. A horizontal layer of buoyant blobs provides the initial condition for a 

simulation with 01.0Ro   and 0023.0Ek  . (a) the buoyancy field, - , (b) zu , and 

(c) h, all in the x-z plane at time Ωt=12. 

 

 

 

Figure 10. Helicity sources in a horizontal layer of buoyant blobs: (a) 1S , (b) 2S  and 

(c) 21 SSSh  , all averaged in y and all shown in the x-z plane.  01.0Ro  ,  

0023.0Ek   and Ωt=12. 
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 The corresponding horizontally averaged values of h, th   and hS  are shown 

in Figure 11 as a function of z, with  40/40  z  and th   estimated as th  . 

This shows the evolution of h, th   and hS  over a range of times, 204t . As 

with the Gaussian blob, the magnitude of the helicity at the top and bottom of the 

cloud eventually saturates. Also, as the helicity propagates away from the cloud at the 

group velocity of low-frequency inertial waves, the spatial extent of the source 

remains more or less constant, which is a consequence of the low value of Ro. (At low 

Ro there is very little advection of the buoyancy field.) Finally note that, while h is 

well correlated with hS  within the buoyant slab, there is no corresponding correlation 

between th   and hS  at large times, consistent with what we observed for a single 

buoyant blob. 

 

 

Figure 11. The evolution of the horizontally averaged values of h , th   and hS  for 

01.0Ro  , 0023.0Ek   and 204t . 

 

 Finally, Figure 12 shows the corresponding spatial distributions of   (top), 

helicity (middle), and helicity source, hS  (bottom), in the three horizontal planes 

8.2,0,8.2/ z . While the detailed distributions of h and hS  are highly 

intermittent, the statistically asymmetric distribution about z = 0 is clear. 
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Figure 12. The buoyancy field,   (top), helicity (middle), and helicity source, hS  

(bottom), for a layer of buoyant blobs, each viewed in the horizontal planes, 

8.2,0,8.2/ z . 01.0Ro  , 0023.0Ek   and  Ωt=12 . 

 

4.2 Rossby Number of Order Unity 

In some planetary dynamo simulations the value of Ro corresponding to the small-

scale structures is not that much less than unity, perhaps Ro ~ 0.1. In order to 

determine the sensitivity of our results to Ro, we now consider a case in which Ro is 

of order unity. Figures 13→16 show the results where the initial Rossby number is set 

to 12Ro 2

0   g . All other parameters remain unchanged. Figure 13 shows 

snapshots of  (a) - , (b) zu  and (c) h, all at 12t  and all in the x-z plane. Rather 

remarkably, despite the much higher value of Ro, the wave field looks very similar to 

the low-Ro case. The main difference between Figures 9 and 13 is that there is now 

significant advection of the buoyancy by the wave field, which causes some mixing of 

 . This, in turn, causes the characteristic transverse length-scale to increases as a 

result of cross-diffusion of the buoyancy field, growing by a factor of ~3 by 12t . 

The growth in this length-scale results in the effective value of Ro falling from unity 

at t = 0 to ~0.3 at 12t . 
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Figure 13. A horizontal layer of buoyant blobs provides the initial condition for a 

simulation with 1Ro   and 0023.0Ek  . (a) the buoyancy field - , (b) zu , and (c) h, 

all in the x-z plane and at time 12t . 

 

 The horizontal movement of the  -field leads to the observed inclination of the 

columnar eddies which, in principle, is similar to the trailing Taylor columns observed 

by Hide, Ibbetson and Lighthill (1968). The corresponding distributions of the helicity 

source terms, 1S , 2S  and 21 SSSh  , averaged in y, are shown in Figure 14, again in 

the x-z plane and for 12t . In this case all three source terms are predominantly 

negative at the top of the buoyant cloud and positive at the bottom. There is also a 

marked oscillation in 2S , though not in hS , which is less evident (though still 

detectable) in the low-Ro case. 

 The horizontally averaged values of h, th   and hS  are shown in Figure 15 as 

a function of z, with 40/40  z . This shows the evolution of h, th   and hS  

over a range of times, 204t . Unlike the low-Ro case, the magnitude of the 

helicity at the top and bottom of the cloud does not saturate, almost certainly because 

the r.m.s. buoyancy field declines throughout the simulation as a result of the mixing-

induced cross diffusion of  . Nevertheless, we see the usual spatial correlation in the 

signs of the horizontally averaged values of h and hS .   
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Figure 14. The helicity sources in a horizontal layer of buoyant blobs: (a) 1S , (b) 2S , 

and (c) 21 SSSh  , all averaged in y and shown in the x-z plane.  1Ro  ,  

0023.0Ek   and  Ωt=12 . 

 

 
Figure 15. The evolution of the horizontally averaged values of h, th   and hS  for 

1Ro  ,  0023.0Ek  , 204t . 

 

  Finally, Figure 16 shows the distribution of   (top), helicity (middle), and 

helicity source, hS  (bottom), in the three horizontal planes 8.2,0,8.2/ z . As in 

Figure 12, the distributions of h and hS  are complicated, but the statistically 

asymmetric distribution about z = 0 is clear. The main effect of increasing Ro is that 

the   field is smoother (less spotty) and has a larger transverse length-scale, almost 

certainly as a result of the mixing of the buoyancy by the wave-induced velocity field, 

and by the enhanced diffusion that ensues. It is also notable that there is now 

significant anisotropy in the x-y plane, with hS  adopting a streaky structure with the 

streaks aligned with g. 
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Figure 16. The buoyancy field,   (top), helicity (middle), and helicity source, hS  

(bottom), for a layer of buoyant blobs, each viewed in the horizontal planes 

8.2,0,8.2/ z . 1Ro  ,  0023.0Ek   and  Ωt=12 . 

 

5. Discussion: Implications for Numerical Dynamos and Planetary Cores 

So far we have ignored the presence of boundaries, which are of course important for 

the dynamics in a planetary core. The first point to note is that low-frequency inertial 

wave packets travelling along the rotation axis will reflect at the mantle, reversing 

their group velocity and helicity in the process (Greenspan, 1968). In the absence of 

dissipation, this produces standing waves, which are of course Taylor columns. The 

helicity in a Taylor column is zero, and so the mechanism of helicity segregation 

described here will be effective in a planetary core only if there is significant 

dissipation. That is to say, in order to avoid the perfect cancelation of helicity in the 

reflected and incident waves, we require that waves launched in the interior be 

somewhat dissipated before they reach the mantle. Since the Ekman number is tiny in 
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the core of the earth, this dissipation can only be Ohmic in nature. In principle, the 

magnitude of the Ohmic dissipation can be estimated, but the calculation is very 

sensitive to the assumed magnitude of the magnetic field, which is a poorly 

constrained parameter, and to the size of the smallest scales in the core, which is 

unknown. So the question of dissipation remains an open one.  

 A second difficulty arises from the fact that, although the simulations exhibit a 

statistical bias in the concentration of buoyant anomalies towards the equatorial 

regions, in practice the fluctuations in density are everywhere. So buoyant anomalies 

which are closer to the mantle than the equator will emit waves whose helicity in the 

interior is opposite in sign to that of the waves which were launched close to the 

equator. Once again, there will be a tendency for cancellation in helicity, and so the 

segregation mechanism proposed here will be effective only if the statistical 

inhomogeneity in buoyancy sources is strong enough.  

 A third weakness of the inertial-wave model for establishing planetary helicity 

distributions is that the magnetic field within a planet will modify the inertial waves, 

forming hybrid magnetic-Coriolis waves. This process is discussed in, for example, 

Bardsley & Davidson (2016, 2017), where it is noted that the main effect of the 

magnetic field is to reduce the magnitude of the group velocity. However, such hybrid 

waves still carry negative helicity northward and positive helicity to the south, just 

like inertial waves. 

 Given the three caveats above, perhaps the strongest argument in favour of 

helicity segregation by inertial waves is the simplicity of (2.18). Perhaps it is worth 

taking a closer look at this equation. Rearranging the terms in the inviscid helicity 

equation (2.10), we find that, without approximation, 

 

        2S
t





Fωu ,     

t




u
uΩuF 22 .   (5.1) 

Now  

        22 u
u

u 





t
, 

since the highest frequency for inertial waves is 2 . It follows that  ΩuF
22  is 

always the larger of the two contributions to the wave flux. Moreover  
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and so we may drop the term t uu  all together in one of two situations:  

 

(i) the helicity is being carried by low-frequency wave packets, Ω , as in 

equation (2.18); 

(ii) we have maximal helicity in the waves, with the velocity and vorticity fields 

proportional, uω k , as in a monochromatic inertial wave and as observed in 

inertial wave-packets by Davidson & Ranjan (2015).  

 

In either of these situations we have the approximation  

 

             



ugΩuωu 22 2

t
.    (5.3) 

Let us integrate this over a cylindrical annulus, NV , lying outside the tangent cylinder, 

of radial extent s , and bounded above by the mantle and below by the equator 

 

     














NN VmantleequatorV

dVSdAdAdV
dt

d
2

222 uuωu ,  (5.4) 

Similarly, for the corresponding annulus in the south, SV , which is bounded below by 

the mantle and above by the equator, we have 

 

     














SS VmantleequatorV

dVSdAdAdV
dt

d
2

222 uuωu ,  (5.5) 

where u in (5.4) and (5.5) is the fluctuating velocity. Now it is difficult predict what 

the integral of S2 will be, as can be seen by comparing Figures 10(b) and 14(b). 

Moreover, we have omitted all dissipative and magnetic effects in these equations. 

Nevertheless, it seems that a relatively large fluctuating kinetic energy in the 

equatorial regions will favor the north-south asymmetry in the azimuthally-averaged 

helicity shown in Figure 1(c) and 2(a), and this applies to inertial waves of all 

frequencies. Of course, physically this reflects the fact that, if we have more wave 

activity near the equator than the mantle, then waves will tend to disperse away from 

the equatorial regions, carrying with them helicity of the observed signs. 
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6. Conclusions 

The strong spatial correlation between the distribution of h and of hS  in the dynamo 

simulations tends to suggest an in situ generation of helicity in dynamo simulations, 

rather than the dispersal of helicity by waves, as previously argued by the authors. 

However, the observation that there is no such correlation between th   and hS  

argues against such an in situ generation mechanism. Either way, the correlation, or 

lack of correlation, between h, th   and hS  needs to be explained. 

 We have offered an explanation for the paradoxical observation that h and hS  

are strongly correlated, yet there is no such correlation between th   and hS , by 

showing that inertial waves interact with the buoyancy field in such a way as to 

induce a source hS  which adopts the same sign as the helicity in the local wave flux. 

Moreover, we have confirmed that, in simple model problems, the sign of h is simply 

determined by the direction of the wave flux. We conclude that the observed 

distributions of h and hS  in the numerical dynamos are consistent with the transport 

of helicity by waves. 
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