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International commitments for ecosystem restoration add-up to one-quarter of the world´s 60 

arable land1. Fulfilling them would ease global challenges such as climate change2 and 61 

biodiversity decline3, but could displace food production4 and impose financial costs on 62 

farmers5. Here we show a novel restoration prioritization approach capable of revealing 63 

these synergies and trade-offs, incorporating for the first time ecological and economic 64 

efficiencies of scale and modelling specific policy options. We show, for an actual large-65 

scale restoration target of the Atlantic Forest hotspot, that our approach can deliver an 66 

eightfold increase in cost-effectiveness for biodiversity conservation compared to a baseline 67 

of non-systematic restoration. A compromise solution avoids 26% of the biome’s current 68 

extinction debt of 2864 plant and animal species (an increase of 257% compared to the 69 

baseline), and sequesters 1 billion tonnes of CO2Eq (a 105% increase) while reducing costs 70 

by US$ 28 billion (a 57% decrease). Seizing similar opportunities elsewhere would offer 71 

substantial contributions to some of humankind´s greatest challenges 72 

Ecosystem restoration can provide multiple benefits to people and help to achieve multiple 73 

Sustainable Development Goals6-8, including climate change mitigation and nature conservation. 74 

For these reasons, 47 countries have collectively committed to have 150 and 350 million hectares 75 

of degraded lands under restoration by 2020 and 2030, respectively, and have included major 76 

restoration targets in national pledges to the Paris Climate Agreement1. Restoration, however, 77 

has both direct costs – those required for implementation and maintenance – and indirect costs, 78 

including the loss of revenues from foregone agricultural production. Crucially, these restoration 79 

costs and benefits present trade-offs and synergies that vary greatly across space9-11. In the 80 

context of safeguarding existing habitats there has been considerable progress in understanding 81 

some of these trade-offs3, with the field of Systematic Conservation Planning (SCP) providing 82 



methods for spatial prioritisation that maximize benefits while minimizing costs12. Despite some 83 

recent efforts9-10,13, applications of comprehensive SCP approaches to complex large-scale 84 

restoration problems with multiple objectives remain sparse. 85 

Here we present a novel restoration prioritization approach based on Linear Programming (LP) 86 

to solve customized complex restoration problems at large scales. We apply this approach to 87 

solve a problem of global significance that will inform restoration policy and practice at a 88 

national scale in the Brazilian Atlantic Forest hotspot14-15, a highly deforested and fragmented 89 

region poised to undergo one of the biggest large-scale restoration efforts16. We identify exact 90 

cost-effective solutions that consider multiple benefits, costs and policy scenarios and 91 

investigate: i) trade-offs in benefits and costs across different scenarios, and ii) the impacts of 92 

increasing the size of restoration projects. LP can find exact solutions that can perform at least 93 

30% better than mainstream SCP software17. It can also be more fully customized, allowing the 94 

incorporation of complex aspects of restoration relevant to particular socioecological contexts. In 95 

this application, we aimed at maximising restoration benefits for biodiversity conservation and 96 

climate change mitigation while reducing restoration and opportunity costs.  97 

We divided the biome into 1.3 million planning units of 1 km2. For biodiversity conservation, 98 

benefit was measured as the reduction in projected extinctions owing to habitat restoration18. We 99 

gathered and analysed species occurrence data in the Atlantic Forest and, following data 100 

cleaning, identification of endemism by specialists and model selection (Methods), generated 101 

potential species occurrence models for 785 species of plants, birds and amphibians endemic to 102 

the Atlantic Forest, representing the best set of biodiversity data currently available for this 103 

biome. We then calculated the marginal contribution of each hectare restored to reducing each 104 

species’ extinction probability, based on a function11,19 derived from the species-area 105 



relationship. The benefit of habitat restoration to each species is dynamic in that the value of 106 

restoring additional habitat for that species diminishes as the total area of habitat increases. Our 107 

approach explicitly accounts for this effect, though for visualisation purposes we can aggregate 108 

the restoration value of each planning unit across all species, thereby generating a biodiversity 109 

conservation benefits surface (Extended Data Fig. 1). Our species data confirmed the severity of 110 

the biodiversity crisis underway in the Atlantic Rainforest, with an estimated 27-32% of the 111 

biome’s endemic species currently committed to extinction (2,621-3,107 plants and animals, see 112 

Methods). For climate change mitigation, benefit was measured as the potential aboveground 113 

carbon sequestration in the first 20 years following habitat restoration20. We produced the 114 

climate change mitigation surface (Extended Data Fig. 2a) by applying and extending a recently 115 

published empirical model of the carbon sequestration potential of restoration20 to the whole of 116 

the Atlantic Rainforest. Restoration implementation costs, including maintenance and 117 

monitoring, were estimated based on a survey with restoration companies active in the Atlantic 118 

Rainforest, spatially adjusted by a proxy for natural regeneration potential based on a recently 119 

published model for ecological uncertainty of tropical forest restoration success21 (Methods). 120 

Opportunity costs, a measure of potential conflict with agricultural production, were estimated 121 

based on land acquisition costs and spatial distributions of agriculture and pasturelands22. A 122 

restoration costs surface (Extended Data Fig. 2b) was built based on these two costs (hereafter 123 

referred to as total cost). 124 

We also introduced advances regarding the impacts that the scale of a restoration project has on 125 

its costs and benefits. Costs per unit area restored reduce with increasing area of the restoration 126 

project, so we modelled these economies of scale using field evidence on how unitary costs fall 127 

as projects grow (Methods and Extended Data Fig. 3). The size of the restoration project also 128 



affects ecological outcomes, an effect which we term “ecologies of scale”, such as biomass 129 

accumulation through edge effects. We also incorporated this into the prioritization using 130 

empirically derived edge-effects estimate for Atlantic Forest remnants23. 131 

The Brazilian Native Vegetation Protection Law (popularly known as the “the New Forest 132 

Code”24) requires Atlantic Forest farmers to keep at least 20% of their farms under native 133 

vegetation. Farmers currently below this threshold must meet it either by restoration in their own 134 

farms, or by financing conservation or restoration offsets elsewhere within the biome. If 135 

enforced, it could lead to up to 5.17 million hectares of restoration24, which is the restoration 136 

target area we used in all scenarios. This represents approximately 4% of the original area of the 137 

biome, which has lost 73-84% of its native vegetation cover. This target was chosen so that the 138 

maps produced could guide restoration efforts even if all farmers decided to compensate their 139 

debts by financing restoration efforts outside their farms. Our dynamic approach allocates this 140 

target area in 20 steps, so our restoration priority maps can guide restoration projects with 141 

smaller targets as well (Methods and Extended Data Fig. 4). In our “baseline scenario”, farmers 142 

restore this target inside their own farms until this minimum threshold is met. In a large set of 143 

alternative scenarios we simulate different ways of prioritizing benefits and costs of restoration, 144 

considering variation in the size of restoration projects. These 362 alternative scenarios focus on 145 

combinations of maximizing the benefits for biodiversity conservation and climate change 146 

mitigation, while minimizing costs (Methods and Extended Data Fig. 5). We also investigate the 147 

impacts of limiting offsets to the farmer’s own state (a policy option currently being pursued by a 148 

few Brazilian states).    149 

 150 



Results 151 

The baseline scenario has the worst performance for biodiversity conservation, the fourth worst 152 

for carbon sequestration and had the highest costs across all 363 scenarios analysed (“Baseline”, 153 

in Fig. 1). This allocation would avoid 7.2%  of the projected extinctions (for the central 154 

estimate, or 6.8% for the lower and 7.7% for the upper estimate) and sequester 0.5 billion tonnes 155 

of CO2Eq (for the central estimate, or 0.4 for the lower and 0.6 for the upper estimate; further 156 

lower and upper estimates are presented in extended Data Tables 1 and 2) at a total cost of US$ 157 

50.2 billion. This poor outcome suggests that pursuing alternative spatial allocations for 158 

restoration would deliver greater benefits at lower costs, therefore aligning species conservation 159 

and climate mitigation targets with the farmer’s interests.   160 

One of the advantages of compensation outside farms is the potential to increase the size of 161 

individual restoration projects – and this has a very strong positive impact on cost-effectiveness, 162 

due to both economic and ecological efficiencies of scale (Fig. 2). First, economies of scale 163 

result in a substantial reduction in unitary restoration costs, with a 57% drop when projects grow 164 

from 1 to 100 hectares (Fig. 2a). Second, ecologies of scale lead to improved efficiencies in 165 

climate mitigation outcomes for larger projects (Fig. 2b), with 100-hectare projects sequestering 166 

58% more than the same area of 1-hectare ones. The combination of both economic and 167 

ecological efficiencies of scale results in synergistic and marked increases in cost-effectiveness 168 

for larger restoration projects (Fig. 2c), with carbon prices needed to cover restoration costs 169 

dropping 73% when increasing projects from 1 to 100 hectares – a 268% improvement in cost-170 

effectiveness. These scale impacts occur across all scenarios and are independent of the relative 171 

weights of the benefits. Although we did not model the impacts of restoration projects’ size on 172 



biodiversity conservation, we expect the same to apply to biodiversity outcomes given the 173 

importance of edge-effects on populations in small forest fragments25. 174 

The other advantage of compensation outside farms is implementing restoration in areas that 175 

would maximise benefits, thus improving the likelihood of long-term socio-ecological success. 176 

Allocations based on maximising a single benefit reveal the maximum outcomes that restoration 177 

prioritisation can achieve for each benefit. For biodiversity conservation, results are striking: 178 

29.7% of the species committed to extinctions could be saved (“Maximum Biodiversity”, in Figs. 179 

1a and 1b), an improvement of 311% in relation to the baseline scenario. Likewise, a focus on 180 

climate change mitigation could sequester up to 1.3 GtCO2Eq (“Maximum Climate”, in Figs. 1a 181 

and 1c), a 174% increase from the baseline scenario. Focusing on costs would reduce them to 182 

US$ 15.2 billion (“Minimum Costs”, in Figs. 1a and 1d), a 69% saving on the baseline scenario. 183 

But despite the marked improvements in relation to baseline, these single-focus allocations have 184 

mixed and varied outcomes when all benefits and costs are considered.  For instance, aiming 185 

solely for biodiversity conservation benefit yields a much larger fraction of the greatest possible 186 

climate change mitigation benefit (75% of those under “Maximum Climate”) than the reverse, 187 

with only 51% of the “Maximum Biodiversity” benefit being captured by the climate-focused 188 

allocation (Fig. 1). The latter metric is much higher for birds (72%), with plants benefiting the 189 

least (45%) from the climate-focused solution (extended Data Figure 6). The biodiversity-190 

focused solution would cost US$ 35 billion (delivering 44% of the potential costs savings and 191 

resulting in benefit-costs ratios of US$ 9 million per species saved and US$ 35 per tonne of 192 

CO2Eq) whereas the climate-focused solution would cost US$ 29 billion (59% of the cost-193 

savings achieved by “Minimum Costs” and benefit-costs ratios US$ 15 million per species saved 194 

and US$ 23 per tonne of CO2Eq).  195 



In turn, restoration plans designed solely to minimize costs have a very poor environmental 196 

performance. The “Minimum Costs” scenario underperforms substantially for climate mitigation 197 

and biodiversity conservation. It would yield only 25% and 42% of the potential biodiversity and 198 

climate mitigation benefits, respectively. These outcomes are even worse than those under a 199 

random allocation of restoration efforts, which would on average achieve 29% and 62% of the 200 

potential biodiversity and climate mitigation benefits, respectively (“Random”, Fig 1). 201 

Compromise solutions can simultaneously deliver a substantial fraction of the maximum 202 

outcome for each benefit. Our approach allowed us to combine the efficiencies of scale with 203 

multicriteria spatial prioritisation to systematically generate and evaluate solutions that combine 204 

different weights for benefits and costs, generating efficiency frontiers (Fig 1). The outer frontier 205 

is generated by eliminating the costs component from the algorithm, whereas the “Cost-effective 206 

frontier” is produced by maximising cost-effective benefits for biodiversity and climate change 207 

mitigation. One of the solutions on the cost-effective efficiency frontier (“Compromise” in Figs. 208 

1a and 1e) increases biodiversity benefits by 257% (equivalent to 94% of those achieved under 209 

“Maximum Biodiversity”), improves by 105% the climate change mitigation benefit (79% of 210 

“Maximum Climate”), and reduces costs by 57% (83% of the reduction achieved by “Minimum 211 

Costs”), when compared to the baseline scenario. This translates into an eightfold increase in 212 

cost-effectiveness for biodiversity conservation.   213 

These compromise solutions arise from the concave shape of the efficiency frontier curves (Fig. 214 

1a), which indicate that when departing from single-focus solutions, large gains for one benefit 215 

can be achieved at relative modest cost to others. Indeed, moving from “Maximum Climate” to 216 

“Compromise” results in a loss of 20% in climate change mitigation but a gain of 95% in 217 

avoided extinctions. In absolute terms, sequestering 0.27 GtCO2Eq less would save 411 animal 218 



and plants from extinction, when applying the relative reduction in extinctions to the overall 219 

extinction debt of plants and animals in the biome (Extended Data Table 1), a trade-off ratio of 1 220 

animal or plant extinction avoided for every 0.7 million tonnes of CO2Eq not sequestered. Given 221 

biodiversity’s key role in driving the productivity of ecosystems26, such compromise might result 222 

in climate mitigation gains in the long term. Climate change adaptation might also benefit from 223 

improved ecosystem-based adaptation27 due to more resilient ecosystems. Furthermore, it can be 224 

argued that species extinctions are irreversible losses whereas reductions in carbon sequestration 225 

are reversible and can be compensated for, suggesting that greater importance should be given to 226 

the former. Revealing trade-offs in units that people can relate to helps to inform the stark 227 

decisions that need to be made in a context of scarcity.   228 

The substantial reductions in total costs arise from the combination of efficiencies of scale and 229 

the ability to prioritise areas with lower opportunity costs and higher potential for natural 230 

regeneration. The relative contribution of each of these factors varies across scenarios (Fig. 4). In 231 

comparison with the baseline scenario, assumed to comprise 1-hectare projects, economies of 232 

scale reduce costs by US$ 23.9 billion when moving to 100-hectare projects. Identifying areas 233 

with lower opportunity costs reduces these by between US$ 10.8 billion (“Compromise”) and 234 

US$ 17.0 billion (“Minimum Costs”), demonstrating great scope for avoiding restoration 235 

conflicts with agricultural production. The strong impact of natural regeneration to reduce 236 

restoration costs is felt across all scenarios, reducing restoration costs by 56% (or US$ 35 billion) 237 

in the baseline scenario, 76% (or US$ 29 billion) in the “Minimum costs” and 74% (or US$ 28 238 

billion) in the “Compromise” scenario. 239 

Spreading restoration across wider areas by considering that not all deforested lands in priority 240 

landscapes would be restored might be more feasible in practice and would not have overly large 241 



impacts on the benefits. Indeed, restricting the maximum restoration allowed in each planning 242 

unit has moderate impacts for biodiversity outcomes and small ones for carbon. When restricting 243 

the proportion of the planning unit that can be reforested to 65% and 35%, biodiversity outcomes 244 

fall by 6% and 17% respectively (Extended Data Figure 9). For climate mitigation, the same 245 

restrictions result in reductions of 2% and 6% respectively (Extended Data Figure 9). These 246 

decreased outcomes arise from selecting areas that have comparatively lower priority for those 247 

benefits, as these caps lead to restoration being allocated beyond the very highest priority 248 

planning units. 249 

Our results also provide important insights for considering how to share the costs of achieving 250 

the restoration targets between farmers and the wider society. Benefits from restoration are 251 

shared between farmers and the wider society (in Brazil and elsewhere), whereas the opportunity 252 

and restoration costs would be borne by the farmers, as the target being analysed here arises from 253 

past deforestation beyond legal limits. On the one hand, the overall cheapest solution for farmers 254 

(“Minimum Costs”) would be US$ 19 billion cheaper than a solution that combines large 255 

benefits for biodiversity and climate change mitigation without considering costs (“Environment 256 

Only”), so it could be argued that the collective benefits would justify that society pay for this 257 

difference if the latter solution is to be achieved. Payments for Ecosystem Services (PES) 258 

schemes are a way to incentive farmers to pursue options more beneficial to the wider society. 259 

Carbon-based incentives of US$ 38/t CO2Eq, species-based incentives of US$ 30 260 

million/extinction avoided or a combination of both would be enough to pay for the difference in 261 

costs. On the other hand, the “Environment Only” solution is US$ 14 billion cheaper than the 262 

baseline scenario, which would have to be paid individually by farmers. Therefore, it could be 263 

argued that farmers could choose intermediate solutions, since this reduction in costs is made 264 



possible by the Brazilian society decision in 2012 to allow compensation outside their farms. The 265 

intermediate “Compromise” solution still delivers reasonable environmental outcomes and, being 266 

US$ 7 billion more expensive than the cheapest possible but US$ 29 billion cheaper than the 267 

baseline scenario, could be seen as a reasonable compromise for farmers to invest in. 268 

Alternatively or complementarily, carbon incentives of US$ 15/t CO2Eq, species-based 269 

incentives of US$ 9 million/extinction avoided or a combination of both would be enough to 270 

cover the difference from the cheapest solution. It is important to highlight that restoration 271 

projects can lead to positive financial returns based on revenues from sustainable management of 272 

timber or non-timber forest products, potentially complemented by PES schemes5.  273 

Introducing broad scale spatial restrictions on restoration – such as allowing off-farm 274 

compensation but only within state borders – generates more nuanced outcomes. On the one 275 

hand, constraining restoration by state borders leads to worse outcomes when compared to the 276 

unconstrained version of each goal, whether assessed for biodiversity conservation (10% lower), 277 

climate change mitigation (14% lower) or cost minimization (17% more expensive) (Extended 278 

Data Table 1). On the other hand, a state-constrained cost-minimization scenario would yield 279 

103% and 44% higher returns for biodiversity and climate respectively, compared with an 280 

entirely unconstrained “Minimum Costs” scenario (Extended Data Table 1). So if the alternative 281 

is that farmers offset in the cheapest areas of the biome, constraining their choices to the 282 

cheapest areas in their home states would bring substantially higher environmental benefits at 283 

modest additional cost.  284 

Discussion 285 



It is important to highlight that while the baseline scenario performs very poorly in terms of all 286 

three outcomes analysed in this study, having smaller patches of restoration dispersed across the 287 

entire biome would have other benefits. For instance, the provision of local ecosystem services 288 

such as soil retention, improved water quality and pollination tends to be more widely distributed 289 

across the landscapes with small and dispersed restored sites28, while the ecological equivalence 290 

between remnants , the representation of different ecological communities and community 291 

integrity across the biome29 can be higher. Crucially, the Law of Native Vegetation Protection 292 

also mandates that mountaintops and riparian areas should be preserved, a requirement estimated 293 

to lead to another 5.2 million hectares of restoration. As these are fixed in space (so not subject 294 

to spatial prioritisation) and dispersed throughout all watersheds of the biome, the combination 295 

of restoring legal reserves in priority areas and riparian and mountaintop areas throughout the 296 

biome could deliver increased local, regional and global benefits at lower costs. 297 

Although we strived to apply recognised best practices in all stages of our analyses, some 298 

limitations should be highlighted (see methods for further discussions). Some species distribution 299 

models relied on a relative small number of occurrences and all present the usual limitations 300 

associated to correlative models. The approach to estimate extinction risk is an imperfect 301 

approximation and our climate benefits did not include belowground biomass or soil carbon. 302 

Also importantly, shifts in species distribution as a result of climate change were not taken into 303 

account.  304 

The technical advances and high degree of customisation to context-specific policies and goals 305 

led the Brazilian Ministry of Environment to decide to use the decision supporting tool and the 306 

maps introduced here as the key prioritization information for restoring the Atlantic Rainforest, 307 

and to commission the replication of our approach to the other five Brazilian biomes as part of 308 



the National Plan for Native Vegetation Recovery - PLANAVEG30. The potential of this 309 

approach for easily exploring large numbers of scenarios will be of particularly importance for 310 

two PLANAVEG strategies, the Spatial Planning & Monitoring and Finance. These ongoing 311 

biome-specific initiatives are tapping into our approach’s ability to include customised sets of 312 

benefits and costs, such as water (Atlantic Forest); farmers income (originated from ecosystem 313 

services and forest products in all biogeographical regions); pollination (Amazon), firewood 314 

production (Caatinga) and ecotourism-related species (Pantanal). Furthermore, the time-315 

efficiency of the linear programming approach permits assessment of thousands of variations of 316 

factor weightings in a few hours (for applications of the size and complexity presented here), 317 

allowing stakeholders to select the most desirable allocations based on final outcomes, avoiding 318 

the often-contentious task of selecting relative weights a priori.  319 

To fulfil its promise as a substantial contributor to overcoming major global and local sustainable 320 

development challenges, large-scale restoration needs to carefully balance its multiple costs and 321 

benefits with diverse stakeholders’ interests. Our results show that substantial benefits for 322 

biodiversity conservation and climate change mitigation can be achieved in the Atlantic Forest 323 

alongside marked reduction in total costs. They illustrate that multicriteria spatial planning can 324 

be an important tool to reveal and manage the trade-offs and synergies involved in and, 325 

consequently, increase the impact and feasibility of large-scale restoration. 326 



 327 

Figure 1 - Spatial configurations and outcomes for climate change mitigation, avoided 328 

extinctions and total costs of selected scenarios. In panel a, point “I” corresponds to the 329 

baseline scenario without offsets, “II” is the “Maximum Biodiversity” scenario, “III” is 330 

“Maximum Climate; “IV” is “Minimum Costs”, “V” is “Random”, “VI” corresponds to the 331 

“Compromise” scenario and “VII” to a “Environment Only” scenario. The full (outer) line 332 

connects points in the efficiency frontier of environmental benefits, when excluding costs from 333 



the prioritisation algorithm. The dashed (inner) line connects allocations for the cost-effective 334 

frontier. Panels b-e present the spatial configurations and radar diagrams of outcomes for the 335 

“Maximum Biodiversity”, “Maximum Climate, “Minimum Costs” and “Compromise” scenarios, 336 

respectively. Colours are related to the cost scale presented in panel a.  337 



Figure 2 - Impacts of economic and 338 

ecological efficiencies of scale on cost-339 

effectiveness. a. shows the relation 340 

between increasing restoration project 341 

sizes and the restoration costs per unit 342 

area; b. shows the relation between 343 

increasing project size and the total CO2Eq 344 

sequestered in the “Maximum Climate” 345 

scenario; c. shows their combined effect 346 

on mitigation cost-effectiveness as project 347 

sizes grow. All data presented are results 348 

from the “Maximum Climate” scenario. 349 

350 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Se
qu

es
te

re
d 

CO
2E

q 
(T

g 
CO

2E
q)

b

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Re

st
or

at
io

n 
Co

st
s (

U
S$

/h
ec

ta
re

)
a

0

5

10

15

20

25

30

35

0 20 40 60 80 100

M
iti

ga
tio

n 
Co

st
-e

ffi
ci

en
cy

  (
U

S$
 / 

tC
O

2E
q)

Restoration Project Size (hectares)

c



  351 
 352 
Figure 3 – Impacts of economies of scale and of spatial prioritization for reducing 353 

opportunity and restoration costs across different scenarios. Filled rectangles are actual 354 

restoration (green) and opportunity (yellow) costs incurred in each scenario. Diagonally stripped 355 

rectangles represent reductions in costs due to natural regeneration (green stripes), reduction in 356 

opportunity costs (yellow stripes) and economies of scale (blue stripes).   357 
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Methods 449 

In this study, we developed a multi-criteria spatial restoration prioritization approach for the 450 

Brazilian Atlantic Forest hotspot to investigate alternative restoration scenarios. We simulated 451 

the restoration of approximately 5.17 Million hectares (estimated deficit of Legal Reserve in the 452 

Atlantic Forest24) to: 1) quantify variation in costs and benefits of restoration among a range of 453 

possible scenarios governing where restoration occurs; 2) quantify trade-offs among costs and 454 

benefits in order to identify good compromise solutions; 3) quantify the effects of economies of 455 

scale and analogous ecologies of scale impacts on carbon sequestration by using restoration 456 

block sizes of 1, 5, 10, 25, 50 or 100 ha; and 4) quantify the effects of restricting the maximum 457 

proportion of land that can be restored within each planning unit (up to 35, 65 and 100%). 458 

Our multi-criteria spatial restoration prioritization approach was based on five main steps: 1) 459 

conduct consultations with representatives of the Ministry of Environment and other 460 

stakeholders of the Atlantic Forest biogeographical region to identify critical variables to be 461 

included in our modelling and to develop restoration scenarios that reflect the policy objectives 462 

and multi-stakeholder preferences; 2) gather and model variables to be used as inputs; 3) develop  463 

a novel  multi-criteria spatial restoration prioritization framework implemented as an Integer 464 

Linear Programming problem (hereafter ILP); 4) simulate restoration scenarios; and 5) analyse 465 

and interpret the solutions and their trade-offs.  466 

We developed spatial surfaces for the three benefits of biodiversity – conservation, climate 467 

change mitigation and costs reduction. We detail each of these below, followed by explanations 468 

of the scenarios analysed and the optimisation model itself.  469 

Biodiversity conservation benefits 470 



Benefits to biodiversity conservation are quantified using species extinction functions reflecting 471 

diminishing returns associated with increasing areas of habitat for each species (Extended Data 472 

Figure 1). This function is based on a re-working of the Species-area relationship and operates at 473 

the level of individual species18. This approach is imperfect, as it ignores the possibility of 474 

negative density-dependence at very low population sizes, and says nothing about the time scale 475 

of resulting extinctions, which will vary with species' life history and ecology. However unlike 476 

simpler formulations, it takes account of the non-linearity of the response of persistence to 477 

changes in population size, and has been used in several similar studies11,18,19. If existing habitat 478 

area is small there is a large benefit to increasing that area, but as the area of habitat increases 479 

there is a diminishing benefit for the addition of more habitat area. Following reference #11, the 480 

change in extinction risk (r) for each individual species as a function of habitat area was 481 

modelled as  482 

r = 1 − (x/A0)
z        (1) 483 

where A0 is the current habitat area, x is additional habitat area that would arise from habitat 484 

restoration, and the power z describes the rate of diminishing returns in value of additional area 485 

at reducing extinction risk. We used z = 0.25 for the central estimates presented in the main text 486 

(following references #11, 18 and 19) and z=0.15 and z=0.35 for sensitivity analyses presented 487 

in the Extended Data. To implement these curves in an ILP framework we quantify benefit as the 488 

tangent to these curves at a given current area of species habitat and update these benefit values 489 

after solving each of the 20 increments of total restoration area target. 490 

Ecological niche models  491 

In order to identify areas that, if restored, would be suitable habitat for each species, we 492 

developed ecological niche models for endemic amphibians, birds and woody plants in the 493 



Brazilian Atlantic Forest. We used the potential species distribution instead of the current species 494 

distribution because restoration would expand available habitat area for the species. This is a 495 

different approach than usual in conservation prioritization where the aim is to conserve current 496 

habitats by using species’ distribution that falls within native vegetation. 497 

Species occurrence data 498 

We collated all freely available occurrence data on endemic amphibians, birds and woody plants 499 

in the Brazilian Atlantic Forest. Data on amphibian occurrence was obtained from31, with 500 

updates from the authors, and comprised 114 endemic species (3,786 occurrences). Data on bird 501 

occurrence was obtained from the Global Biodiversity Information Facility database32, and 502 

comprised 223 endemic species (12,085 occurrences). Data on plants occurrence was obtained 503 

from NeoTropTree and SpeciesLink33 , and comprised 846 endemic species and 44, 024 records. 504 

The original plant names were based on the NeoTropTree database34 and updated according to 505 

the List of Species of the Brazilian Flora35, using R package ‘flora’ 36, which is based on the 506 

List’s Integrated Publishing Toolkit database37.  507 

We cleaned the data for each species by deleting: i) records that fell out of the environmental 508 

layers, ii) duplicated records, iii) non-duplicated records that fell in the same planning unit (1 509 

km-pixel).  The species’ endemism status was assessed by consulting amphibian experts, 510 

following reference #38 for birds, and the Brazilian Flora 2020 for woody plants.  511 

 512 

Environmental data 513 

The initial environmental dataset was composed of 28 variables –the 19 bioclimatic variables 514 

from Worldclim39, four CGIAR CSI geohydrologic variables (actual evapotranspiration, aridity 515 

index, soil water balance and potential evapotranspiration40) and five USGS topographic 516 



variables (elevation, slope, aspect and topographic index40). All variables had a spatial resolution 517 

of 1 km². Since aspect is a circular variable, its sine and cosine were calculated to be used as two 518 

different variables instead.  519 

We summarized these variables into ten orthogonal variables, calculated through a PCA of the 520 

whole raster set. These account for 95% of the overall environmental variation in the BAF. The 521 

PCA variables were used to reduce errors in the modelling process, caused by the spatial 522 

autocorrelation of presence data or the multi-collinearity of the environmental predictors41-42.  523 

Ecological niche modelling methods 524 

Preliminary ecological niche models were produced to define the best algorithms to run the final 525 

models. The tested algorithms were Bioclim, Domain, Generalized Linear Models, MaxEnt, 526 

RandomForest, and Support Vector Machines. Their performance was tested by calculating the 527 

True Skill Statistics (TSS)43. During the preliminary round of models only MaxEnt, Random 528 

Forest and SVM showed average high TSS scores (>0.7) and low variance (Extended Data 529 

Figure 7). The final models were thus run using these three algorithms. TSS values for each 530 

algorithm used in the Environmental Niche Modelling varied little across the three biodiversity 531 

groups (Extended Data Figure 8). 532 

For each species, random pseudo-absence points were sorted within a maximum distance buffer 533 

(i.e. the radius of the buffer is the maximal geographic distance between the occurrence points). 534 

This procedure reduces the modelling background area, assuring better estimates, once 535 

pseudoabsences were sampled only in areas where species could disperse44-46 at the same time 536 

controlling the low prevalence associated with generating pseudoabsences inside large range 537 

areas. 538 



Species were modelled using a three-fold cross-validation procedure, to guarantee a minimum 539 

number of presence records in the test set due to the small number of samples for some species. 540 

For each partition and algorithm, a model was fitted and its performance was tested by 541 

calculating TSS. Only models with TSS > 0.7 were retained. As a consequence, at the end of this 542 

modelling phase 51 amphibian species, 122 bird species, and 612 woody plant species endemic 543 

to the Brazilian Atlantic Forest composed the final potential richness maps. Retained models 544 

were cut by the threshold that maximizes their TSS and ensemble models were built by the 545 

majority consensus rule (i.e. area where at least half of the algorithms predict a potential 546 

presence of the species47), resulting in a binary map of species potential distribution. The steps 547 

described above were taken in order to reduce some of the limitations of the species distribution 548 

models, such as the fact that they are merely correlative, and not mechanistic models, and to 549 

control overfitting and inflated evaluation statistics when species are very restricted compared to 550 

the total geographic area..  551 

 552 

The modelling was performed using ModelR48, a set of R scripts for species distribution model 553 

fitting and assessment based on packages, XML49, dismo50, raster50, rgdal51, maps52, rgeos53, 554 

randomForest54, and e1071[55].  555 

 556 

Climate mitigation Benefits  557 

We built a potential above ground biomass recovery map for the Brazilian Atlantic Forest, which 558 

is a proxy for above ground potential carbon sequestration in degraded areas (Extended Data 559 

Figure 2). The map has a resolution of 1 km2 and followed the methods of reference #[20]. That 560 

study included three biomes: 1) tropical and subtropical moist broadleaf forests, 2) tropical and 561 



subtropical dry broadleaf forests, and 3) tropical and subtropical coniferous forests20. These 562 

biomes were defined based on a map of world ecoregions obtained from the Nature 563 

Conservancy56. Total annual precipitation was calculated by summing the individual monthly 564 

totals provided by WorldClim57. Data for mean annual rainfall (defined as the average of 1950–565 

2000) and rainfall seasonality were obtained at a 30” resolution (approx. 1 km × 1 km) from 566 

WorldClim57, and Climatic Water Deficit (CWD) was obtained from reference #[58].  567 

We calculated the total potential above ground biomass recovery (AGB) accumulation over 568 

20 years of secondary forest growth (assuming that the initial year 0 condition was a fully 569 

cleared area), based on annual rainfall, rainfall seasonality, and CWD. The regression equation 570 

obtained by reference #[20] estimates AGB after 20 years based on best-fit models that 571 

incorporate climatic variables as follow: 572 

AGB_20y =135.17 – 103,950 × 1/rainfall + 1.521983 × rainfall seasonality + 0.1148 × CWD (2) 573 

where estimated AGB_20y indicates the absolute biomass recovery potential over 20 years based 574 

on chronosequence models20. Realized local rates of biomass recovery may vary because of 575 

differences in local soil conditions, land use history, the surrounding matrix, and availability of 576 

seed sources. 577 

In order to insert uncertainty measures into this analysis, the raw data from reference #[20] was 578 

obtained and used to generate similar equations for the lower bound and upper bound of the 95% 579 

confidence interval. These estimates were incorporated into the optimisation and the 580 

corresponding results are presented in Extended Data Table 1. 581 

We did not include changes in carbon stocks in the soils, as very few studies investigate the 582 

carbon accumulation or loss in soils following restoration in the Atlantic Rainforest59. We 583 

believe this is a conservative assumption. A recent global study showing the impact of land-use 584 



change on soil organic carbon60shows significant losses following deforestation in the Atlantic 585 

Rainforest. Further research would enable future studies to overcome this limitation.   586 

 587 

Costs 588 

The cost of land restoration for each area within the Brazilian Atlantic Forest was based on the 589 

opportunity cost for restoration of the land and the cost associated to restoring it, actively or 590 

passively. Opportunity cost is the potential loss of revenue from agriculture or livestock from 591 

areas being restored. We used the land acquisition cost as a proxy for opportunity cost, which is 592 

based on an established economic assumption that higher acquisition costs are due to land 593 

generating greater economic gains22, as land acquisition cost should reflect the discounted future 594 

revenues from that land. We combined spatial data on the distribution of pasturelands and 595 

croplands (MMA unpublished data) with county level data on the land acquisition costs for these 596 

two categories61.  597 

The restoration costs vary widely according to the methods applied, ranging from lower-cost 598 

approaches for natural regeneration (passive or assisted) to higher-cost approaches for active 599 

restoration (e.g., tree plantings using nursery stock)62-63. Natural regeneration is the spontaneous 600 

recovery of native tree species that colonize and establish in abandoned fields, while active 601 

restoration requires planting of nursery-grown seedlings, direct seeding, and/or the manipulation 602 

of disturbance regimes (e.g. thinning and burning)63. 603 

The likelihood of an area requiring active or passive restoration is determined by socio-economic 604 

factors that determine the likelihood of an area been abandoned to regrowth and on ecological 605 

factors that determine the resilience of the ecosystem to disturbance. As this information is not 606 

available for the Atlantic Forest, we used the ecological uncertainty of forest restoration success 607 



for plant biodiversity21 as a proxy for it. The recent global meta-analysis of reference #21 608 

revealed a clear pattern of increasing the success of forest restoration (by comparing plant 609 

biodiversity in reference and restored/degraded systems) and decreasing uncertainty as the 610 

amount of forest cover increases. We built our map on the ecological uncertainty of forest 611 

restoration success by calculating the amount of forest cover surrounding each non-forested pixel 612 

within a buffer size of 5 km (the strongest scale of effect). We subsequently applied the negative 613 

non-linear equation of reference #[21] over the map. Finally, we standardized the values within 614 

each pixel (dividing its value by the highest value found across all pixels) to provide an index 615 

that varies from 0 (low uncertainty) to 1 (high uncertainty). Our restoration costs map therefore 616 

identifies areas where natural regeneration and/or active restoration methods are most likely to 617 

foster plant biodiversity recovery to similar levels found in reference systems (i.e. old-growth or 618 

less-disturbed forests). 619 

Restoration cost (r) was calculated as  620 

r = u × c + f           (3) 621 

where u is the ecological uncertainty of forest restoration success, c is the cost of the full 622 

planting, and f is the cost of the fencing. Areas with lower ecological uncertainty of forest 623 

restoration success will be less expensive for restoration, i.e. will require less human 624 

intervention. The cost of full planting method (the most expensive method for active restoration) 625 

was obtained from30. Thus, our total costs map (Extended Data Figure 3) was produced by 626 

adding, for each panning unit, the values of the opportunity costs map with the values from the 627 

restoration costs map.  628 

We also incorporated cost reductions based on economies of scale for restoration projects of 629 

different sizes for the first time. To understand how per-unit costs reduce with scale, we gathered 630 



information from five active forest planting companies in the Atlantic Forest. We obtained cost 631 

estimates for restoration projects of the following sizes: 1, 5, 10, 25, 50 and 100 ha. We then 632 

analysed how the average costs per project scaled with project size and fitted linear functions to 633 

this data (Extended Data Figure 4). In each of the size-related scenarios (corresponding to the six 634 

project sizes listed above), restoration was constrained to happen up to that size.  635 

Other variables 636 

Forest cover data was obtained from the map produced by64, derived from TM/Landsat 5, 637 

ETM+/Landsat 7 or CCD/CBERS-2 images, available at a scale of 1:50,000 in vector format, 638 

and delimiting remnants ≥ 3 ha. This data was used to calculate the: i) proportion of existing 639 

forest (f) within a planning unit, ii) environmental deficits according to the Native Vegetation 640 

Protection Law, and iii) amount of area that could be restored within each planning unit. Our 641 

analysis was focused on areas where the native vegetation was forest, therefore excluding areas 642 

such as natural grasslands or mangroves. In addition to the forest cover, we also masked areas 643 

that could not be restored (e.g. urban areas, roads, lakes, etc) within each planning unit. All 644 

geographic information system data were converted to Albers projection to assure accurate area 645 

and distance calculations. 646 

Prioritization model 647 

Our objective function determines how much forest to restore in each planning unit in order to 648 

maximize ecosystem services benefits (biodiversity conservation and/or carbon sequestration) 649 

and/or minimizes total cost (opportunity and restoration costs). Specifically:  650 

 651 

 652 

 653 



                  (4) 654 

 655 

 656 

where x is the decision variable representing the proportion of forest to restore within each 657 

planning unit i. The two components of the objective function represent the returns (benefit/cost) 658 

of forest restoration to biodiversity conservation (b/(c + e); benefit US$−1 km−2) for each species j 659 

and carbon sequestration (s/(c + e); tonnes US$−1 km−2), where the total cost of forest restoration 660 

is the sum of the opportunity cost (c; US$−1 km−2) and the restoration cost (e; US$−1 km−2). N is 661 

the total number of planning units and M is the total number of species. The first constraint 662 

ensures that the proportion of forest restored ranges from 0 to a maximum value (f), which 663 

accounts for the proportion of the planning unit that is already forested or represents a land use 664 

that cannot be restored. In scenarios that limited the maximum proportion of forest in each 665 

planning unit to 35% or 65%, the functions min(0.35, f) or min(0.65, f) were used to define the 666 

upper limit of x. The second constraint limits the total area of forest to be restored (A; km2), 667 

where A = 5,179,088 ha. The user-defined parameters w1 and w2 weight the relative contribution 668 

of the biodiversity and carbon sequestration components of the objective function. They are 669 

required because the equivalence of objectives with different units is a subjective decision that 670 

must be made by decision makers. The objective function can be solved over a range of relative 671 

weights in order to understand how these components trade-off. The model was solved 672 

iteratively in 20 increments of the target area A in order to approximate the non-linear function 673 

describing biodiversity conservation values, that is, the target was not prioritized at once only. 674 

We tested the influence that running even greater intervals (up to 1000), and found very marginal 675 

gains after 10 runs (biodiversity benefits varied by -1,20E-06 between the 10 and 1000 runs 676 



simulations). Alternative scenarios involved removal of components of this model, such as the 677 

removal of the total cost denominators (c + e) in order to maximise benefits regardless of cost, or 678 

the addition of further constraints for the scenarios that limited the area of restoration within each 679 

state. Exact solutions to this ILP problem were found using the software Gurobi (version 6.5.1). 680 

Scenarios 681 

We evaluated 382 restoration scenarios. These included 360 that combined 10 different weights 682 

to the objectives of maximising biodiversity conservation, maximising carbon sequestration and 683 

minimising total cost with variations in the maximum area of the planning unit allowed to be 684 

restored (35, 65 and 100%)(Extended Data Figure 9), and six restoration project sizes (1,5,10,25. 685 

50 and 100 ha).  686 

Another 20 scenarios repeated some of the above combinations but restricted restoration to 687 

within state borders by allocating the Legal Reserves deficit of each state only within state 688 

borders. We repeated this last exercise allowing restoration within state borders or outside the 689 

state in priority areas for biodiversity conservation. Finally, we also ran a scenario where the 690 

restoration target was uniformly distributed to farms below the 20% threshold of Legal Reserve 691 

in the Atlantic Forest (our Baseline scenario). These scenarios reflect a range of possible 692 

implementations of the Native Vegetation Protection Law.  693 

We contrasted these restoration scenarios in terms of both cost-effectiveness, i.e. benefits per 694 

unit of cost, and trade-off curves between biodiversity conservation and carbon sequestration. 695 

Code Availability 696 

The R package with the workflow for species distribution modelling is available and can be 697 

installed from https://github.com/Model-R/Model-R. A repository with example data can be 698 

found at https://github.com/Model-R/Back-end/releases/tag/coordenador-IIS 699 



Data availability 700 

The datasets generated during the current study are available from the corresponding author on 701 

reasonable request. A free online platform for integrated land-use planning including these 702 

datasets will be available at www.iis-rio.org/ilup from 2019. 703 
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