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Abstract 

Halide perovskites passivated with potassium or rubidium show superior photovoltaic device 

performance compared to unpassivated samples. However, it is unclear which passivation route is more 

effective for film stability. Here, we directly compare the optoelectronic properties and stability of thin 

films when passivating triple-cation perovskite films with potassium or rubidium species. The 

optoelectronic and chemical studies reveal that the alloyed perovskites are tolerant towards higher 

loadings of potassium than rubidium. Whereas potassium complexes with bromide from the perovskite 

precursor solution to form thin surface passivation layers, rubidium additives favour the formation of 

phase-segregated micron-sized rubidium-halide crystals. This tolerance to higher loadings of potassium 

allows us to achieve superior luminescent properties with potassium passivation. We also find that 

exposure to humid atmosphere drives phase segregation and grain coalescence for all compositions, 

with the rubidium-passivated sample showing the highest sensitivity to non-perovskite phase formation. 

Our work highlights the benefits but also the limitations of these passivation approaches in maximising 

both optoelectronic properties and stability of perovskite films.  
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Metal halide perovskite solar cells have recently emerged as one of the most promising 

candidates for low-cost thin-film photovoltaics (PV)1, having now reached power conversion 

efficiencies (PCEs) close to 23%2, making them comparable to commercialised thin film 

counterparts3. The favorable intrinsic properties of these materials including strong absorption 

coefficient4, sharp bandedges with low levels of disorder5, photon recycling capability6,7 and 

excellent charge transport characteristics8, render them as excellent candidates for related 

optoelectronic applications such as solar cells2, light emitting diodes9 and transistors10. The 

general formula for this class of materials is ABX3, consisting of at least one monovalent cation 

at the A-sites, (e.g., cesium, Cs, methylammonium (MA), CH3NH3; formamidinium (FA), 

CH3(NH2)2); a divalent metal at the B-sites (e.g., Pb, Sn) and a halide at the X-sites (e.g., Cl, 

Br, I or mixtures thereof). There has been intensive research on the addition of monovalent 

cations and halides into the perovskite precursor solutions to enhance the crystallinity11, phase 

stability12 and optoelectronic properties of the perovskite materials13,14. In particular, an alloyed 

perovskite such as (Cs0.06MA0.15FA0.79)Pb(I0.85Br0.15)3 (triple cation or TC) shows superior PV 

performance and moisture stability compared to a single-cation composition such as MAPbI3 

and as a result has become one of the state of the art perovskite compositions15–18. Recently, 

the addition of rubidium (Rb) halide into the TC perovskite has led to further enhanced 

performance and stability of perovskite solar cells, with an optimal loading for performance at 

5% Rb with respect to the other A-site cations19,20. Furthermore, we and others have recently 

shown that passivation of TC films with potassium (K) halides can also significantly enhance 

the optoelectronic properties of perovskite device structures, with photoluminescence quantum 

efficiencies of ~15% in complete solar cell stacks and the inhibition of photo-induced ion-

migration processes across a wide range of perovskite bandgaps21–24. We found that the optimal 

loading of potassium for achieving both high luminescence yield and excellent charge carrier 

transport is 10% K relative to the A-site cation25. The precise location of the passivating ions 
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is still an open question in the community: recent evidence from the literature and our own 

work suggests that neither K nor Rb are incorporated within the perovskite lattice25,26, though 

there is also evidence that these ions may occupy interstitial sites24 at the surfaces25. Despite 

the apparent similarities between the passivation routes of the TC films with Rb or K, a direct 

comparison between the two in terms of tolerance to loading fractions, overall effectiveness 

and the viability of these approaches for stable perovskite thin films has not yet been 

performed.  

Here, we directly compare the optoelectronic properties, and chemical and structural stability 

of TC films passivated with rubidium or potassium additives. We find that the TC films can 

incorporate higher loadings of K than Rb before undergoing large-scale phase segregation at 

larger loading fractions, an observation that correlates with K-passivated films with optimal 

loading levels exhibiting superior optoelectronic properties (such as luminescence efficiency) 

over Rb-passivated films. We find that both passivation routes lead to the formation of non-

perovskite phases; for K, these phases are selectively decorating the grain boundaries and 

interfaces even up to high loadings (~10%), while for Rb above ~5% loading the majority of 

the Rb is locked into large micron-sized non-perovskite crystallites. We track the structural, 

chemical and morphological changes of these perovskites over time under humid conditions. 

We find superior moisture stability in ambient conditions for K-passivated TC films compared 

to Rb-passivated films, though in both cases over extended ageing times and elevated humidity 

levels non-perovskite phases form. Interestingly, we also observe a substantial grain 

coalescence concomitant with a further enhancement in the luminescence quantum yield for 

the TC and K-passivated samples under humid conditions. Our work reveals critical insight 

into the behaviour and stability of passivation treatments on perovskite compositions, revealing 

key benefits and shortfalls of each approach. 
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We spin-coated a series of perovskite thin films on glass by diluting the concentration of the 

A-site cations in the TC precursor solutions with KI- and RbI-based solutions in different 

volume ratios (see Methods in Supporting Information (SI))19,25,27. We denote the resulting 

passivated samples as x = [K or Rb]/([K or Rb]+[A]) where A = (Cs, FA, MA) and x represents 

the fraction of K or Rb out of the A-site cations in the precursor solution. In Figure 1a, we 

show the photoluminescence quantum efficiency (PLQE) of the 

(Cs0.06MA0.15FA0.79)Pb(I0.85Br0.15)3 perovskite films with increasing K and Rb content 

measured at excitation densities equivalent to 1-sun solar illumination conditions. We observe 

a large increase from the initial value of 18% for TC to 41% for K-passivated TC (x = 0.05), 

which increases further to 52% for x = 0.2025. However, we do not find an appreciable increase 

in PLQE in the Rb-passivated samples beyond x = 0.05. We find that the loadings of K or Rb 

for peak solar cell device performance match those from luminescence, with open-circuit 

voltage Voc (Figure 1b) and short-circuit current (Figure 1c) maximised at x = 0.05 for Rb-

passivated TC devices but at x = 0.10 for K-passivated TC devices (see Figure S1 and Table 

S1 for current-voltage (J-V) curves and device parameters, respectively). The decrease at very 

high loadings is consistent with an increasing concentration of non-perovskite precipitates18. 

These results show that we can achieve superior optoelectronic properties through passivation 

with K than with Rb; the potassium route offers greater versatility because wider ranges of 

loadings are possible before detrimental effects on performance parameters are observed. 
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Figure 1. (a) PLQE of passivated perovskite thin films measured under illumination with a 

532-nm laser at an excitation intensity equivalent to ~1 sun (~60 mW.cm-2). (b) Open-circuit 

voltage (Voc) and (c) short-circuit current (JSC) extracted from current-voltage characteristics 

of pristine and passivated TC perovskite devices measured under full simulated solar 

illumination conditions (AM1.5, 100 mW.cm-2) (see Fig. S1 for J-V curves). 

  

To investigate the local chemical and morphological composition of the passivated TC 

perovskite thin films, we performed scanning transmission electron microscopy-energy 

dispersive X-ray spectroscopy (STEM-EDX) measurements. We prepared a lamella of the x = 

0.10 sample for both K- and Rb-passivated-TC perovskite films with Spiro-OMeTAD and 

platinum capping layers to preserve the active layer during the specimen preparation (see 

Figure 2a, 2d and Figure S2 for STEM high angle annular dark field (HAADF) cross sectional 

images). We used experimental parameters similar to our previous reports for different 

perovskite compositions in which we have optimised the beam conditions to minimise any 

potential beam-induced damage or phase segregation28. We use a Non-negative Matrix 

Factorisation (NMF) algorithm29 to decompose different phases in the cross-sectional STEM-

EDX of the thin films. This analysis reveals the presence of two different compositional phases 

in both K- and Rb-passivated TC samples, namely a perovskite phase (identified from Br Lα, 

Pb Mα and I Lα lines) and an additive-rich phase (Figure 2b,c and 2e,f; see Figure S3 and S4 

for complete NMF decomposition results, and Figure S5 and Figure S6 for perovskite phases). 
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In the K-passivated TC, we find most of the potassium-(additive)-rich phase is composed of K 

and Br and situated at the grain boundaries (GBs) and interfaces of the perovskite film (Figure 

2b), as we observed previously at higher loadings25. However, in the Rb-passivated TC at the 

same loading as the potassium sample, we observe that the majority of the Rb is contained in 

large, micron-sized crystals rich in rubidium and iodide (Figure 2d-f) with no evidence for the 

presence of Rb selectively moving to the surfaces of the film within our experimental resolution 

(estimated to be ~1 atomic percent). Complementary Photoelectron Spectroscopy (PES) 

measurements on the samples reveal that Rb is more uniformly distributed throughout the film, 

with a negligible change when probing the surface (XPS) and probing deeper into the bulk (via 

the use of Hard X-Rays, HAXPES); on the other hand, the potassium content is higher on the 

surface than in the bulk (Figure 2g,h and Figure S7). We note that we also did not observe any 

significant changes in binding energy within experimental resolution of the lead (Pb 4f) or 

halide (I 3d and Br 3d) core levels, consistent with these additives not incorporating into the 

perovskite lattice 21,30 (Figure S8). These results highlight an important finding: in the K-

passivated samples, the K (even when added as KI) complexes selectively with the Br present 

in the TC precursor solution with an almost 1:1 atomic percent ratio, while the rubidium 

interacts primarily with iodide with an atomic percent ratio of 1:2, with only smaller fractions 

of Br (I:Br  ~8, see Table S2 for atomic percent analyses from the STEM-EDX analyses). These 

results are consistent with a larger red-shift of the PL peaks for K than for Rb at the same 

loading of each due to a lower fraction of Br incorporated into the final perovskite lattice for 

K than for Rb (Figure S9). These differences are also consistent with the lower formation 

energies of bonds comprising KBr and RbI relative to KI and RbBr, respectively31,32.  
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Figure 2. (a) HAADF STEM cross sectional image of a TC perovskite thin film passivated 

with potassium (x = 0.10). (b) NMF decomposition of the K-passivated TC sample showing 

the KBr phase and (c) the corresponding EDX spectra (see Figure S5 for perovskite phase). (d) 

HAADF STEM cross sectional image of a TC perovskite thin film passivated with rubidium 

(x = 0.10). (e) NMF decomposition of the Rb-passivated TC sample showing the Rb-I-Br phase 

and (f) the corresponding EDX spectra (see Figures S5 and S6 for perovskite phase). Intensity 

ratios between different core levels of the (g) potassium and (h) rubidium additives with respect 

to the lead with different probe beam energies from XPS (1486.6 eV) and HAXPES (4000 eV) 

measurements. We used Pb 4f, K 2p, Cs 4d and Rb 3d core levels for all beam energies (see 

Figure S7 and S8 for full spectra). 

 

Br  Lα

K Kα

(a) (c)(b)
STEM-HAADF

Silicon

Perovskite

Spiro-OMeTAD

Pt

500  nm

(d) (e)
Rb-I-Br  phase

(f)

Silicon

Perovskite

Spiro-OMeTAD

Pt

300  nm

STEM-HAADF

0.0

0.36
Intensity  [a.u.]

K
-p
as
si
va
te
d  
TC

R
b-
pa
ss
iv
at
ed
TC I  LαRb Lα

Br  Lα

Br–K  phase

0.0

0.2

Intensity  [a.u.]

K/Pb  intensity  
ratio x  =  0.05 x  =  0.10 x  =  0.20

1486.6  eV 0.035 0.061 0.12

4000  eV 0.011 0.025 0.046

Rb/Pb  intensity  
ratio x  =  0.05 x  =  0.10

1486.6  eV 0.033 0.052

4000  eV 0.031 0.057

(g) (h)



  
 

Page 9 of 21 
  

In our previous work, we proposed that the K selectively draws out the Br from the lattice in 

the precursor solution. This allows the exploitation of the beneficial effects of Br in the seeding 

of high-quality grain growth but then the removal of a fraction of the Br from the lattice of the 

final film, which would otherwise negatively impact optoelectronic properties33. By contrast, 

the Rb binds the iodide more strongly and we do not see the same effects. Furthermore, the 

inferior solubility of RbI compared to KBr in the dimethylformamide (DMF) /   dimethyl 

sulfoxide (DMSO) precursor solution31,32 means that Rb precipitates into large Rb-halide 

crystals at a lower loading than KBr, with the K-passivated samples primarily showing GB and 

surface decoration with the KBr species. These results provide an explanation for the superior 

optoelectronic properties of the K-passivation route over Rb-passivation: the greater solubility 

of the key non-perovskite phase in the former (KBr) than the latter (Rb-I-Br-based phase) 

means the system is tolerant to a higher loading of beneficial passivating species of K than Rb, 

and the specificity of K for Br also contributes to the particularly large enhancements.  

We then compared the atmospheric stability of the passivated films in each case, with the 

passivated samples fixed herein at x = 0.05 to ensure reasonable optoelectronic properties for 

both Rb and K. In Figure 3, we show top-view scanning electron microscopy (SEM) images 

of perovskite thin films exposed to ambient air (30% relative humidity, RH) for a week in dark 

conditions. We observe that the TC and K-passivated TC films remain unchanged while 

needle-like crystals, distributed homogenously across the sample area, form in the Rb-

passivated TC films. Recent work suggests that these crystals are Rb-rich and that humidity 

accelerates their formation18; these crystals are likely to be similar species to those we observe 

distributed more sparsely in the films with higher Rb loadings without humidity exposure (x = 

0.10, Figure 2d-f). The formation of crystallites in the Rb samples but not in the K (or TC) 

samples can be attributed to the higher solubility of RbI at room temperature in water (1.69 

g/ml) compared to KBr (0.681 g/ml)31,32.   
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Figure 3. SEM top-view images at different magnifications of (a) TC, (b) Rb-passivated TC 

and (c) K-passivated TC films prepared on glass/FTO/TiO2, with the images acquired after 

storage of the films in ambient laboratory air (30% RH) for one week in the dark. 

 

In order to further investigate the moisture stability and the local chemistry of the passivated-

TC perovskite thin films, we stored the films under elevated humidity conditions (50% RH, 

N2) for a period of 24 hours. In Figure 4, we show the morphology of the TC and Rb- and K-

passivated TC perovskite films before (Figure 4a-c) and after (Figure 4d-f) this humidity 

treatment. We observe uniformly packed grains each of size ~200-400 nm for all the unexposed 

perovskite films (Figure 4a-c). However, following humidity exposure for 24 hours we observe 

the formation of material on the surfaces of all films. We propose that the surface material for 

the TC specimen corresponds primarily to PbI2 (cf. X-Ray Diffraction studies below), which 

is particularly abundant at the grain boundaries (Figure 4d, g). This is similar to degradation in 

other polycrystalline materials where GBs are centres for degradation, often called an 

intergranular degradation34. We also find sparsely-spaced long needle-like crystals (≥ 30 µm) 
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that, based on SEM-EDX analyses (Figure S10 and Figure S11), are rich in Cs. Furthermore, 

we again observe the formation of rubidium-rich crystals in Rb-passivated TC, which appear 

to be primarily rich in I but also smaller fractions of Br (Figure 4e, h). Finally, we also observe 

the formation of KBr-rich surface crystallites in the K-passivated TC films after the humidity 

treatment, which have similar composition to those in our cross-sectional STEM-EDX 

decomposition profile but are of larger size and distributed across the surface. These results 

suggest that moderate humidity exposure promotes the formation of non-perovskite material 

in each of the film compositions, with the composition of the non-perovskite material being 

consistent with that observed at elevated loadings of additives.   

 

Figure 4. Top-view SEM images of pristine (top row) and humidity treated (50% RH, N2 over 

a course of 24 hours; second row) (a, d) TC, (b, e) Rb-passivated TC and (c, f) K-passivated 

TC perovskite thin films. SEM-EDX elemental maps of the same (g) TC, (h) Rb-passivated 

TC and (i) K-passivated TC perovskite films. 
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Interestingly, we observe a significant coalescence of small perovskite grains into larger 

‘fused’ domains in the perovskite thin films upon the 50% RH treatment in the TC and K-

passivated TC (Figure 4a,d and c,f). We find that the average grain size increases remarkably 

from ~200 nm to ~2 µm in both samples (see Figure S12 for grain size distributions). Curiously, 

the perovskite grains in Rb-passivated TC preserve their original average grain size distribution 

(Figure S12), though we note that under more extreme humidity conditions (i.e. 75% RH), we 

also see the coalescence in the Rb-passivated TC (Figure S13). This suggests that the Rb-

passivated TC perovskite films are more resistant to grain reconstruction.  

 

Table 1. PLQE of the perovskite thin films measured before and after storage in humid nitrogen 

(50% RH) for 24 hours. Films were illuminated with a 532-nm laser at an excitation intensity 

equivalent to 1 sun (~ 60 mWcm-2). 

Sample   PLQE  (%)  
Before   After  

TC   18.6   27.9  
Rb-passivated  TC   22.8   12.9  
K-passivated  TC   39.5   49.6  

 

In Table 1, we show the PLQE of the perovskite thin films before and after storage in the 

moderate humid environment (50% RH, N2). We observe a significant enhancement in the 

radiative efficiency of the perovskite films for TC and K-passivated TC, with PLQE increasing 

from 18.6% and 39.5%, respectively, to 27.9% and 49.2%, respectively. In contrast, the PLQE 

of Rb-passivated TC drops from 22.8% to 12.9% after the exposure. We therefore find that the 

PLQE trend mirrors the grain fusing phenomena as the radiative efficiency of the humidity-

treated TC and K-passivated sample with substantial grain coalescence increases substantially. 

This observation is consistent with previous reports showing that crystal (grain) coalescence is 
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observed concomitant with enhanced optoelectronic properties of MAPbI3 perovskite thin 

films and the photovoltaic performance of the subsequent devices35,36, but to the best of our 

knowledge this is the first time this has been observed in the alloyed perovskite structures. We 

note that the positive impact on the PLQE of the grain coalescence in these samples must 

outweigh any negative effects induced from the observed crystallites on the surface (Figure 4g, 

i), which are in any case comprised of large bandgap material that won’t quench luminescence 

and may also further passivate (cf. PbI2)37. We and others have also previously reported 

enhancements in MAPbI3 device performance with controlled exposure to humidity but did not 

observe grain coalescence in these cases38,39.  We speculate that the drop in PLQE of the Rb-

passivated TC films can be attributed to the degradation of perovskite to the non-perovskite 

Rb-rich phases but without any beneficial grain coalescence. This is consistent with the 

reported drop in performance of the similarly treated Rb-passivated TC based perovskite solar 

cells18. We note that the surface crystallites in the K and TC samples may still negatively 

influence interfacial charge collection. Furthermore, it is likely that any residual moisture will 

need to be removed, for example through a thermal annealing post-treatment, to prevent long-

term degradation issues for ultimate device utilisation. Thus, future work will be required to 

implement the samples with coalesced grains into full, optimized devices. 

To further explore the structural stability of the perovskite thin films and to track the growth 

of perovskite and non-perovskite crystals upon humidity exposure, we performed XRD 

measurements on pristine films that were aged in humid nitrogen (50% RH) over the course of 

one day (Figure 5 and Figure S14). For the TC film, we observe a PbI2 peak (2q = 12.7o) that 

becomes narrower and more intense with extended ageing (Figure 5a), consistent with the 

formation of larger PbI2 crystallites at the perovskite surfaces and grain boundaries (cf. Figure 

4d). The humidity exposure also leads to the emergence of new reflections with peaks at 2q = 

10.0o and 2q = 11.2o that we assign to the yellow δ-phase of Cs-rich (Cs,FA,MA)(I0.85Br0.15)340 
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and CsPb2I4Br18, respectively, in agreement with the segregation of highly crystalline Cs-rich 

phases observed in the SEM-EDX analyses (Figure S10 and Figure S11). For the pristine Rb-

passivated perovskite (Figure 5b), we find a diffraction peak at 2q = 9.9o that we tentatively 

ascribe either to the rubidium-based perovskite RbPb(I0.85Br0.15)318 or to the yellow δ-phase of 

Cs-rich (Cs,FA,MA)(I0.85Br0.15)340 (as for the TC sample). During humidity exposure, this 

feature remains stable but after 24 hours we also see the emergence of two new peaks at 2q = 

11.4o and 2q = 12.3o that we attribute to a segregated RbPb2I4Br phase18. In Figure 5c, it is 

evident that similar PbI2 and CsPb2I4Br reflections are present in the XRD data for the K-

passivated TC albeit at much weaker intensities compare to the TC. The XRD pattern 

corresponding to the K-passivated samples exposed for 24 hours also contains a weak 

reflection at 2q = 8.9o that may correspond to a hydrated lead-passivated potassium bromide 

compound (e.g., KPbBr3.H20)41, with the SEM-EDX showing the presence of K- and Br-rich 

needle-like crystals on the sample surface (Figure 5c); a precise chemical identification is not 

possible at this stage42. 
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Figure 5. XRD patterns of (a) TC, (b) Rb-passivated TC and (c) K-passivated TC perovskite 

thin films on glass exposed to humid nitrogen (50% RH) for the stated times. The features are 

assigned as stated; we assign the feature marked * to be the yellow δ-phase of Cs-rich 

(Cs,FA,MA)(I0.85Br0.15)3. (d) Peak position, (e) FWHM and (f) peak area for the perovskite thin 

films over time.  

 

In Figure 5d-f, we analyse the changes in the primary perovskite peak at 2q ~ 14.1o (Figure 

5d), full-width at half-maximum (FWHM) (Figure 5e) and peak area (Figure 5f) for the films 

at different exposure times. We observe that for both Rb- and K-passivated TC films, the 

perovskite peak is shifted towards lower angles relative to the peak from the TC sample, which 

indicates an expansion of the perovskite lattice and is in agreement with previous reports18,25. 

This could be due to the partial extraction of bromide from the perovskite lattice by the 

passivating additives or due to the passivating species occupying interstitial sites. We note that 

we have not seen any significant trend on the perovskite peak position upon humidity treatment 

suggesting these effects are not further affected by humidity exposure. We find that the FWHM 

drops significantly and the peak intensity (area) increases upon the humidity treatment for the 

TC and K-passivated TC perovskite films, which is in agreement with the grain coalescence 

that we reported earlier (Figure 4). By contrast, these parameters remain similar for the Rb-

passivated TC after the humidity exposure in which the grain sizes remain similar.  

In conclusion, we investigated the optoelectronic properties and chemical stability of state-of-

the art triple cation (TC) perovskite films passivated with potassium and rubidium halides. We 

find that the luminescence efficiency increases to higher levels with potassium than with 

rubidium owing to the tolerance of the TC perovskites for higher loadings of potassium than 

rubidium. We find that potassium selectively binds to bromide and rubidium to iodide, and the 

increased tolerance of the perovskites to K over Rb is dictated by the enhanced solubility of 
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KBr over Rb-halides in the precursor solvents (i.e. DMF/DMSO)31,32. At loadings above 5% 

Rb, large Rb-halide-rich crystals form which negatively impact the performance, while K-

based films retain their optimal performance even at 10% loading. We also observe that this 

unwanted crystal formation is exaggerated when exposed to humidity. At low humidity levels 

(~30%) the rubidium-rich phases form while the pristine and potassium-passivated TC 

perovskite films remain unaffected; this is attributed to the greater solubility of Rb-halides in 

water over KBr and PbI2. Under higher humidity conditions (~50%) we detect the appearance 

of PbI2 at the grain boundaries and Cs-rich crystals for the TC films, segregation of Rb-rich 

phases in Rb-passivated TC films, and formation of a potassium-bromide phase in the K-

passivated TC films. Interestingly, we find a significant grain coalescence in the TC and K-

passivated TC upon the humidity treatment that further enhances the radiative efficiency of the 

perovskite thin films.  

These results represent an important advance in understanding the local chemistry and the 

structural stability of the state-of-the-art perovskite thin films to push optoelectronic devices to 

their efficiency limits. Our work highlights the benefits but also the deficiencies of these 

passivation approaches. We speculate that the primary role of these additives is to manage 

halides and vacancies, but the resulting potassium- or rubidium-rich species that immobilize 

the unwanted excess halide yet are redundant after processing (albeit electrically-benign) may 

even compromise humidity stability. Future efforts should consider facile post-treatment 

processes to remove the additives after their role in film formation and passivation is complete, 

as well as novel approaches to exploit the grain coalescence to maximise optoelectronic 

properties such as luminescence and charge collection in full device structures. 
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