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Summary

A standard idealised step-wedge design satisfies the requirements, in terms of the
structure of the observation units, to be considered a balanced design and can be
labelled as a criss-cross design (time crossed with cluster) with replication. As such
Nelder’s theory of general balance can be used to decompose the analysis of variance
into independent strata (grand mean, cluster, time, cluster:time, residuals). If time is
considered as a fixed effect then the treatment effect of interest is estimated solely
within the cluster and time:cluster strata; the time effects are estimated solely within
the time stratum. This separation leads directly to scalar, rather than matrix, algebraic
manipulations to provide closed-form expressions for standard errors of the treatment
effect estimate. We use the tools provided by the theory of general balance to obtain
an expression for the standard error of the estimated treatment effect in a general
case where the assumed covariance structure includes random-effects at the time and
time:cluster levels. This provides insights that are helpful for experimental design
regarding the assumed correlation within clusters over time, sample size in terms of
numbers of clusters and replication within cluster, and components of the standard
error for estimated treatment effect.
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1 BACKGROUND AND MOTIVATION

The theory of general balance is presented within two papers by Nelder1,2 and is expounded upon, in particular using Hasse
diagrams to perform calculations, in Bailey.3 The theory applies to experimental designs that meet the condition that the structure
of observation units be represented by an arbitrary degree of nesting and crossing of blocks, but that the level of replication
within any level is constant. As such an idealized step-wedge (SW) design is an example of time crossed with cluster.
The first of the two papers, focused on the structure of observational units, to the exclusion of treatment structure. It pro-

vides a calculus to decompose the implied covariance structure into orthogonal strata, with three different parametrisations that
correspond to expected sums of squares, variance parameters of random effects, interpretable correlation coefficients; along
with corresponding degrees of freedom. The use of Hasse diagrams adds some clarity to this calculus,3 although stops short of
providing all three versions of the parametrisation.
The second of the papers,2 considers how to proceed with estimation of fixed treatment effects. Each fixed effect to be

estimated may have information contained within any of the strata. Estimates from different strata have the useful property of
mutual independence, conditional on the true values, and the covariance decomposition immediately provides expressions for
the variance of each estimate within a stratum.
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In the canonical SW setting, aside from the universal level, sometimes referred to as the grand mean, there are four possible
strata levels: cluster;time; cluster:time; and residual error. The adjustment for time as a fixed, rather than random, effect is the
default as assumed in Hussey & Hughes4 and has the simplification that estimation of time effects is contained entirely within
the time stratum. Hence the multi-dimensional information matrix that would need to be algebraically inverted in a modern
analysis (see Pinheiro & Bates5) of a linear mixed model with fixed effects for intercept, time and treatment, is conveniently
avoided. When the information matrix is decomposed by strata, in the cluster and cluster-time strata there are zeroes for all
elements aside from diagonal element corresponding to the treatment effect. Hence the generalised inverse of the information
matrix, which is needed to express the standard error of the strata-specific treatment effect estimate, is trivial to express in terms
of a scalar inverse.
This paper is focused on applying the methods of general balance in the setting of a SW designs. The Hussey & Hughes4

assumptions will be used predominantly as an exemplar and a subsequent generalisation provided to show how the methods
can be used in an alternative setting. There are a numerous variations on these assumptions: fixed or random effects at any
stratum; taking repeated observations within the same participant, rather than new participants within the same cluster, which
adds in a new cluster-participant stratum. The methods demonstrated within this paper can be easily applied by the reader
across different combinations of assumptions. At the study design stage a statistician typically has assumed numerical values for
standard deviation, treatment effect size of interest, and within-cluster correlation values. The result of applying methods from
this paper is to provide a clear exposition in terms of simple closed-form expressions for the standard error of treatment effect
estimates at each stratum and overall and thus the statistical power. In contrast to the alternative of numerical calculations we
gain an understanding of the implications of the assumptions, uncertainty around parameter values, and the interplay between
the number of clusters, participants, and replications.

2 NOTATION

We assume the same notation as Hussey & Hughes4 and will resolve this with Nelder,1,2 providing explanation as needed.
Let Yijk be the response for individual k at time j from cluster i (i in 1,… , I ; j in 1,… , J ; k in 1,… , N). We assume that

Yijk = �ij + eijk,
�ij = ai + �j + xij�,
ai ∼ N(0, �2),
eijk ∼ N(0, �2e ).

The random elements ai and eijk are assumed to be mutually independent. We also define �2 = �2e + �
2, the overall variation

(Hussey & Hughes4 attach a different definition to �2 with no indices).
The correlation within clusters is captured by the random effects, ai; the fixed time effects are �j ; the treatment indicator

xij is constant within cluster-time. The SW design imposes a condition on this covariate xij to ensure that only uni-directional
switching happens, so xij = 1 ⇐⇒ xij′ = 1 for all j′ > j, however the results presented here apply to any choice of treatment
mapping; the treatment effect size is �. As is common practice in study design, we assume that the values of the covariance
parameters �2, �2e , are known.

3 EXPERIMENTAL UNITS

We can classify the experimental units as criss-cross (of time and cluster) with split plot (replications).1 Under the assumptions
of balance this is condensed into: (I × J )→ N. The equivalent Hasse diagram is given in figure 1 .
Expressing the degrees of freedom identity under the calculus is the first step, which in this case gives terms for intercept,

cluster, time, time-cluster, residual respectively:

IJN = 1 + (I − 1) + (J − 1) + (I − 1)(J − 1) + IJ (N − 1). (1)

The individual terms can be obtained by working down the Hasse diagram where duniversal = 1 and dF = nF −
∑

G≻F dG,
where nF is the number of levels within stratum F . The notation G ≻ F is defined precisely in Bailey3 but simply means strata
G that are above stratum F .
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Averaging matrices are defined to transform the vector Yijk to a vector of averages repeated over the index that has been
dropped, for example Yijk → Y i,⋅,⋅ =

∑

j,k Yijk∕JN , the ijkth component of BclusterY, where

Bcluster = (1∕JN) Icluster ⊗ Jtime ⊗ Jindividual.

Here bold font is used to indicate a matrix where J is a square matrix of 1s and I the identity matrix, both with dimensions
equal to the number of levels within the stratum given in the suffix. The Kronecker product is indicated by⊗. Generalisation of
this example to other combinations of indices is trivial.
Next, we map each term in the degrees of freedom equation (1) to a set of orthogonal matrices that are used to calculate the

sums of squares within each stratum: Cuniversal,Ccluster,Ctime,Ccluster∶time,Cindividual. For example,

Ccluster∶time = Bcluster∶time − Bcluster − Btime + Buniversal,

is obtained by

• starting with the term (I − 1)(J − 1), the fourth term on the right hand side of equation (1)

• replacing I with cluster, J with time, and 1 with universal.

• symbolically expanding to obtain the expression cluster:time - cluster - time + universal

• mapping each term to the index of an averaging matrix and preserving the coefficients.

Alternatively we work down the Hasse diagram apply the equation CF = BF −
∑

G≻F CG. It is shown that these form a set of
orthogonal matrices1 and that the sums of squares are thus independent and defined as Y′CFY.

4 COVARIANCE DECOMPOSITION

The covariance matrix of the Y can be written in three different parametrisations

V = �2
∑

F
�FWF = �2

∑

F
fFUF = �2

∑

F
�FCF , (2)

where the F is used to index the strata.
The first of these parametrisations is the easiest to conceptualise, and propose suitable values for in study design stages; �F

represents the correlation between two observations that are within the same level of F , but not common to any strata below F .
Following Hussey & Hughes,4 we are assuming that

• �universal = 0 the universal or grand mean,

• �cluster = �2∕�2, cluster level,

• �time = 0, as per the assumption of fixed time effects,

• �cluster∶time = �cluster, patients within the same cluster-period are no more correlated than those in the same cluster, but
different periods,

• �residual = 1, a mathematical formality that a random variable is perfectly correlated with itself.

The third assumption may be less plausible in some contexts.
The second parametrisation in (2) corresponds to expressing the model as a mixed effect model, as in section 2 where the fF

is the assumed variance parameter (or zero in its absence) of an independent random intercept scaled by the overall variance, at
the corresponding stratum level.
The third parametrisation in (2) is the expected mean sum-of-squares under the null hypothesis and provides the covariance

matrix for estimates obtained in each stratum. The core of this paper lies in showing how to derive expressions for �F . These
values are of importance as they readily lead to expressions for the stratum-specific and overall information, and standard error
of the treatment effects (4), which in turn can be used in standard formulae for power and significance level.
Nelder1 derives these relationship, gives precise definitions toWF ,UF and a calculus to obtain fF and �F from �F . Note that

we have scaled the � by �2. The detailed steps of the calculations and results are given in table 1 . The equivalent obtained by
working up and down the Hasse diagram using the rules descried in Bailey3 and stated below is in figure 1 .
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• dF = nF −
∑

G≻F dG

• fF = �F −
∑

G≻F fG

• �F =
∑

G⪯F nresidual∕nGfG

If observations at distinct time points are taken on different participants then the assumption of a constant correlation within
a cluster appears plausible as a consequence of time-invariant characteristics unique to each cluster. A variant of the SW design
repeatedly observes participants longitudinally over time. Including an additional stratum for each patient, nested below the
cluster level and above the residual level, may account for this. The methods described herein allow the reader to easily derive
equivalent formulae. However an extra stratum makes no provision to potentially allow the correlation to decrease for within-
participant observations that are further apart in time. Varying correlation falls outside the scope of this paper.

Universal
1,
1,

0, 0, JNτ2 + σ2
eCluster

I,
I − 1,

τ2, τ2, JNτ2 + σ2
e

Time
J,

J − 1,
0, 0, σ2

e

Cluster:Time
IJ,

IJ − I − J + 1,
τ2, 0, σ2

e

Residual
IJN,

IJN − IJ,
1, σ2

e , σ
2
e

FIGURE 1 Hasse Diagram: Number of levels, degrees of freedom, ��2, f�2, ��2

5 ESTIMATION

The second of Nelder’s papers2 covers how to estimate treatment effects and provide standard errors, moving away from the
null hypothesis.
It assumes that there is a general design matrix X, with IJN rows and columns for all fixed effects including intercept,

treatment effect, and time effects. We define the vector of coefficients � to satisfy EY = X�. The response vector is projected
within each stratum’s subspace, and a stratum-specific estimate is provided

�̂F =
(

X′CFX
)−1X′CFY (3)

Var �̂F = �2�F
(

X′CFX
)−1 (4)

Define the basis Xtime = {e1,… , eJ}, where ej is a vector length IJN, where the rows corresponding to time j are 1, and 0
otherwise. Thus Xtime can be used as the columns of the design matrix for time. Consider the mapping BF ej . Each cluster level
average of ej is 1∕J , which also equates to the universal average of ej . The cluster-time, and time level the average is either
1 or 0, indicating if the time point at which to average equals the j suffix in ej . The projection matrices CF are differences of
averages (section 3), which cancel out for cluster and cluster-time and thus the columns for times, in X are orthogonal to Ccluster
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and Ccluster∶time. Hence the time fixed effects are entirely contained within the remaining time stratum. Similarly the intercept is
entirely contained in the Universal stratum level.
The matrix inversion denoted in (3) and (4) will thus involve singular matrices with rows and columns of zeroes corresponding

to the columns of X that are orthogonal to the CF . So the stratum-specific equations (3) and (4) are modified to drop such
columns from X. The equations now reduce to scalar equations in terms of �, the treatment effect, for the cluster and cluster-
time strata, which greatly simplifies the algebraic inversion. We can replace the general design matrixX,with the column vector
x = {xijk}, as defined in section 2 where the right-most index varies the fastest. Note the assumption that xijk = xij is constant
for all k, which is true for a SW design.
We must obtain expressions for the variances of the treatment effect estimates in each stratum using the specific case of the

x associated with the specific SW design and the specific values of Ccluster,Ccluster∶time. The explicit calculation of individual
terms x′BF x is trivial to evaluate by summing xijk over the indexes that correspond to a J in the Kronecker matrix products that
define BF (section 3). We also note that xij = x2ij as xij ∈ {0, 1}.

x′Buniversalx = 1∕(IJN)x′(Jcluster ⊗ Jtime ⊗ Jindividual)x = 1∕(IJN)
∑

ijk
xijk

∑

i′j′k′
xi′j′k′

= N∕(IJ )

{

∑

ij
xik

}2

x′Bclusterx = 1∕(JN)x′(Icluster ⊗ Jtime ⊗ Jindividual)x = 1∕(JN)
∑

ijk
xijk

∑

j′k′
xij′k′

= N∕J
∑

i

{

∑

j
xij

}2

x′Btimex = 1∕(IN)x′(Jcluster ⊗ Itime ⊗ Jindividual)x = 1∕(IN)
∑

ijk
xijk

∑

i′k′
xi′jk′

= N∕I
∑

j

{

∑

i
xij

}2

x′Bcluster∶timex = 1∕Nx′(Icluster ⊗ Itime ⊗ Jindividual)x = 1∕N
∑

ijk
xijk

∑

k′
xijk′

= N
∑

ij
x2ij = N

∑

ij
xij

Using the notation of Hussey & Hughes,4 U =
∑

ij xij , V =
∑

i(
∑

j xij)2,W =
∑

j(
∑

i xij)2, together with the expression for
� in table 1 we obtain the information values from the cluster, and cluster:time strata shown in table 2

Having obtained multiple estimates of the treatment effect at the different strata the analysis is not yet concluded; the statisti-
cian must use these to report a single treatment effect estimate and associated standard error that is optimal in some way. Given
that the estimates from the two strata are known to be independently distributed, the minimum variance linear combination is
shown in Scheffe6 to be the overall least squares estimate, assuming that the covariance parameters are known, and thus is also
the maximum likelihood estimate under normality assumptions. The optimal linear combination takes weights proportional to
the information values, formally the inverse variance, for each individual estimate and the resulting estimate has information
equal to the sum of the individual information values. Simple algebraic manipulation verifies the formula given, but not derived,
in Hussey & Hughes,4 as per table 2 .
At the analysis stage we could continue in the same manner of projecting the response vector Y and the design matrix X by

strata, using the C projections, and then fitting a standard linear regression model within each stratum as per Chambers et al.7 If
working by-hand, one would calculate the projections by iteratively working down the Hasse diagram taking the average for each
level of the stratum and subtracting off the projection from the matching level of any parent strata. The residual mean squares at
the strata provide estimates of �2� that, using the formula in table 3 for the general case, could be inverted to provide estimates
of the random effects variance parameters. In the case of the Hussey &Hughes assumptions, there are multiple estimates of �2e at



6 BOND

the residual, cluster-time, and time strata, which need to be combined as a sum with weights proportional to the residual degrees
of freedom at each stratum. A further complication is that these residual mean squares are calculated conditional on the fixed
effect parameters estimated within each stratum. Ultimately, we want to replace the individual-stratum fixed effect estimates
with pooled values, which are obtained using weights derived from covariance parameters. Hence an iterative calculation to
achieve convergence would be required. In practice at the analysis stage we would apply modern software5 using restricted
maximum likelihood estimation (REML) to estimate both the covariance parameters and fixed effects, using optimal weighting
of observations to account for any deviations from the assumption of exact balance for any missing clusters/times or unequal
replication. Supplementary material in the form of R code is provided to illustrate the calculations.
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TABLE 2 Information Levels by Stratum

Stratum Hussey & Hughes General Case

Cluster (NV ∕J −NU 2∕IJ )∕(JN�2 + �2e ) (NV ∕J −NU 2∕IJ )∕(JN�2cluster +NΔ
2 + �2e )

Time No Information (NW ∕I −NU 2∕IJ )∕(IN�2time +NΔ
2 + �2e )

Cluster:Time (NU −NV ∕J −NW ∕I +NU 2∕IJ )∕�2e (NU −NV ∕J −NW ∕I +NU 2∕IJ )∕(NΔ2 + �2e )
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6 GENERALISATION

Wecan relax the assumption ofHussey&Hughes4 in terms of two additional parameters.We can allow random, rather than fixed,
time effects, which requires an extra correlation parameter, �time, to quantify the degree of correlation between two participants
observed in the same time period but from distinct clusters. Theremay be further, super-additive, correlation between participants
in the same cluster-period, where �cluster∶time = Δ∕�2 + �cluster + �time, and we used Δ to represent the increment in correlation.
We modify table 1 to achieve table 3 . The equivalent Hasse diagram is figure 2 . The corresponding information values from
all three strata are given in table 2 .

Universal
1,
1,

0, 0, JNτ2cluster + INτ2time +N∆ + σ2
eCluster

I,
I − 1,

τ2cluster , τ
2
cluster , JNτ

2
cluster +N∆ + σ2

e

Time
J,

J − 1,
τ2time , τ

2
time , INτ

2
time +N∆ + σ2

e

Cluster:Time
IJ,

IJ − I − J + 1,
τ2cluster :time ,∆, N∆ + σ2

e

Residual
IJN,

IJN − IJ,
1, σ2

e , σ
2
e

FIGURE 2 Hasse Diagram Generalised Structure

7 EFFICIENCY FACTOR

The evaluation of U, V , andW provide expressions for the variance of the treatment effect estimate for all values of the design
matrix X. The most efficient design, with smallest estimated treatment effect variance, is when individual-level randomisation
is used, blocked at the cluster-time level. Assuming equal and balanced randomisation within each cluster-time block, it is easily
shown that U = IJ∕2, V = IJ 2∕2,W = JI2∕2. Hence from table 2 , under either set of assumptions, the cluster and time
strata provide exactly zero information, and the numerator in the cluster-time stratum is NIJ∕4, thus leading to a well-known
expression for the variance under individual-level randomisation.
For any other design the efficiency factor is the ratio of the estimated treatment effect variance to the variance from the

individual-level randomisation design, assuming the same number of observations overall. Sample sizes may be calculated by
initially assuming individual-level randomisation and then scaling up the resulting sample size by the efficiency factor for the
actual design choice. The efficiency factor thus gives a simple summary to enable a fair comparison between design choices.
Beyond making detailed calculations for U, V ,W in specific cases, it is helpful to provide a rule-of-thumb for the efficiency

factor of the SW design. We consider an abstraction that approximates finite sums with continuous integrals (for example
∑n
x=0 f (x) ≈ ∫ n

0 f (x)dx), and for simplification we assume I = J and that the summand/integrand is the indicator function that
i ≤ j. This leads to U = J 2∕2, V = W = J 3∕3 and the numerators in table 2 are all equal to NJ 2∕12. Hence the efficiency



10 BOND

factor for the Hussey & Hughes design is approximated by
2 + (JN − 2)�cluster

3
{

1 + (JN − 1)�cluster
} ,

which goes from 2∕3 to 1∕3 as �cluster goes from 0 to 1.

8 DISCUSSION

In the set of assumptions used initially in Hussey & Hughes4 the information within the time-cluster stratum increased linearly
with N. Increasing the sample size overall will increase the power up to a maximum of 100%. The cluster term has a the JN�2
in the denominator and so increasingN will only increase the information at the cluster level to an asymptote. Mathematically it
can be seen that in the SW design J = O(I), U = O(I2), V = O(I3),W = O(I3), and so the information at the cluster stratum
is O(I).
Moving to the general parametrisation, unless Δ = 0 all the information expression across the strata are O(I). So with a fixed

number of clusters, the power can only increase to an asymptote strictly less than 100% as the overall sample size is increased.
This limitation is common to standard cluster-randomised designs.
The assumption Δ = 0 may be plausible if the setting is a treatment implemented by training a ward in a hospital thus any

correlation is due to a common set of staff within a ward, rather than any temporal preservation of correlation. In an educational
setting, where the clusters are defined by a teacher using a new teaching method and the time periods are year cohorts of pupils
in the teacher’s class, Δ = 0 is a more questionable assumption: pupils within the same year-class will interact and influence
each other more than pupils from different years who share the same teacher. The parametrisation considered above adds on a
point mass of extra correlation for observations in the same cluster and period. An alternative would be a parametric correlation
structure that allows the increment Δ(j1, j2) to be a function of the proximity of the periods within the same cluster |j1 − j2|, an
auto-regressive structure for example. However, that is beyond the scope of this article.
If it is assumed that �2time = 0 then we revert to fixed time effects, whilst still assuming Δ ≠ 0. In this case the time stratum

provides no information on the treatment effect. The random effects are a stronger assumption, which does rely on the parametric
assumption of normality, in contrast to the non-parametric assumption of the fixed effects; the extra strength of the assumption
does provide extra information on the treatment effects if it holds. In either case the smaller the value of �2cluster or �

2
time, the more

similar the observations between clusters or periods, compared to within, the stronger the information provided at the respective
strata.
In recent research8 the focus is on the coefficients of the linear combination of Y used in estimation of the treatment effect.

They demonstrate that the weighted sum of the individual stratum estimates that form the maximum likelihood estimate can also
be represented as a weighted sum from two simpler models. The first component, termed as verticalmodel is a fixed effect model
that ignores the cluster effect, only adjusting for time; in which case there is an equivalent Hasse diagram, and the resulting
orthogonal matrix is Bcluster∶time − Btime. The second component comes from a two-way fixed effect model adjusting for time
and cluster; the resulting orthogonal matrix coincides with Ccluster∶time derived in section 3. It is straightforward to show that
any linear combination of these two matrices can be expressed as an linear combination of the Ccluster∶time and Ccluster as used in
this paper. The two routes to deriving and interpreting the components of information that constitute the maximum likelihood
estimate are thus complimentary.

References

1. Nelder J. The Analysis of Randomized Experiments with Orthogonal Block Structure. I. Block Structure and the Null
Analysis of Variance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.
1965;283(1393):147–162.

2. Nelder J. The Analysis of Randomized Experiments with Orthogonal Block Structure. II. Treatment Structure and the Gen-
eral Analysis of Variance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.
1965;283(1393):163–178.

3. Bailey RA. Design of Comparative Experiments. Cambridge University Press; 2008.



BOND 11

4. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemporary clinical trials.
2007;28:182–191.

5. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer; 2000. chapter 2.

6. Scheffé H.. The Analysis of Variance. Wiley; 1959. pages 176-178.

7. Chambers JM, Freeny A, Heiberger RM. Analysis of Variance; Designed Experiments. In: Chambers JM, TJ Hastie, eds.
Statistical Models in S, Chapman & Hall / CRC 1992. chapter 5.

8. Matthews JNS, Forbes AB. Stepped wedge designs: insights from a design of experiments perspective. Statistics in Medicine.
2017;36(24):3772–3790. sim.7403.

How to cite this article: Bond S.J., Theory of General Balance Applied to Step Wedge Designs, Stats. Med., 2018;zz:yy.



12 BOND

TA
BL

E
3

G
en
er
al
Co

va
ria

nc
e
Pa
ra
m
et
ris

at
io
ns

St
ra
tu
m

�
f

�2
�

O
ve
ra
ll
M
ea
n

0
�
=
0

�2
(I
J
N
f
+
IN

f t
im
e
+
J
N
f c
lu
st
er
+
N
f c
lu
st
er
∶t
im
e
+
f i
nd
iv
id
ua
l)

=
J
N
�2 cl

us
te
r
+
IN

�2 tim
e
+
N
Δ
+
�2 e

Ti
m
e

�2 tim
e∕
�2

� t
im
e
−
�
=
�2 tim

e∕
�2

�2
(I
N
f t
im
e
+
N
f c
lu
st
er
∶t
im
e
+
f i
nd
iv
id
ua
l)
=
IN

�2 tim
e
+
N
Δ
+
�2 e

Cl
us
te
r

�2 cl
us
te
r∕
�2

� c
lu
st
er
−
�
=
�2
∕�

2
�2
(J
N
f c
lu
st
er
+
N
f c
lu
st
er
∶t
im
e
+
f i
nd
iv
id
ua
l)
=
J
N
�2 cl

us
te
r
+
N
Δ
+
�2 e

Cl
us
te
r:T

im
e

�2 cl
us
te
r∶
tim

e∕
�2

� c
lu
st
er
∶t
im
e
−
� c
lu
st
er
−
� t
im
e
+
�
=
Δ
∕�

2
�2
(N
f c
lu
st
er
∶t
im
e
+
f i
nd
iv
id
ua
l)
=
N
Δ
+
�2 e

re
sid

ua
l

1
� i
nd
iv
id
ua
l
−
� c
lu
st
er
∶t
im
e
=
�2 e∕

�2
�2
f i
nd
iv
id
ua
l
=
�2 e


