
Symmetric Circuits for Rank Logic
Anuj Dawar
Department of Computer Science and Technology, University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

https://orcid.org/0000-0003-4014-8248

Gregory Wilsenach1

Department of Computer Science and Technology, University of Cambridge, UK
gregory.wilsenach@cl.cam.ac.uk

Abstract
Fixed-point logic with rank (FPR) is an extension of fixed-point logic with counting (FPC) with
operators for computing the rank of a matrix over a finite field. The expressive power of FPR
properly extends that of FPC and is contained in P, but it is not known if that containment is
proper. We give a circuit characterization for FPR in terms of families of symmetric circuits with
rank gates, along the lines of that for FPC given by [Anderson and Dawar 2017]. This requires
the development of a broad framework of circuits in which the individual gates compute functions
that are not symmetric (i.e., invariant under all permutations of their inputs). This framework
also necessitates the development of novel techniques to prove the equivalence of circuits and
logic. Both the framework and the techniques are of greater generality than the main result.

2012 ACM Subject Classification Theory of computation → Circuit complexity, Theory of
computation → Finite Model Theory, Theory of computation → Complexity theory and logic

Keywords and phrases fixed-point logic with rank, circuits, symmetric circuits, uniform families
of circuits, circuit characterization, circuit framework, finite model theory, descriptive complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.20

Related Version A full version of this paper is available at [7], https://arxiv.org/abs/1804.
02939.

1 Introduction

The study of extensions of fixed-point logics plays an important role in the field of descriptive
complexity theory. In particular, fixed-point logic with counting (FPC) has become a reference
logic in the search for a logic for polynomial-time (see [2]). In this context, Anderson and
Dawar [1] provide an interesting characterization of the expressive power of FPC in terms
of circuit complexity. They show that the properties expressible in this logic are exactly
those that can be decided by polynomially-uniform families of circuits (with threshold gates)
satisfying a natural symmetry condition. Not only does this illustrate the robustness of FPC
as a complexity class within P by giving a distinct and natural characterization of it, it
also demonstrates that the techniques for proving inexpressibility in the field of finite model
theory can be understood as lower-bound methods against a natural circuit complexity class.
This raises an obvious question (explicitly posed in the concluding section of [1]) of how
to obtain circuit characterizations of logics more expressive than FPC, such as choiceless
polynomial time (CPT) and fixed-point logic with rank (FPR). It is this last question that
we address in this paper.

1 Funding provided by the Gates Cambridge Scholarship.

© Anuj Dawar and Gregory Wilsenach;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162917007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0003-4014-8248
mailto:gregory.wilsenach@cl.cam.ac.uk
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.20
https://arxiv.org/abs/1804.02939
https://arxiv.org/abs/1804.02939
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Symmetric Circuits for Rank Logic

Fixed-point logic with rank extends the expressive power of FPC by means of operators
that allow us to define the rank of a matrix over a finite field. Such operators are natural
extensions of counting – counting the dimension of a definable vector space rather than just
the size of a definable set. At the same time they make the logic rich enough to express many
of the known examples that separate FPC from P. Rank logics were first introduced in [5].
The version FPR we consider here is that defined by Grädel and Pakusa [9] where the prime
characteristic is a parameter to the rank operator, and we do not have a distinct operator
for each prime number. Formal definitions of these logics are given in Section 2. We give a
circuit characterization, in terms of symmetric circuits, of FPR. One might think, at first
sight, that this is a simple matter of extending the circuit model with gates for computing
the rank of a matrix. It turns out, however, that the matter is not so simple as the symmetry
requirement interacts in surprising ways with such rank gates. It requires a new framework
for defining classes of such circuits, which yields remarkable new insights.

The word symmetry is used in more than one sense in the context of circuits (and also in
this paper). We say that a Boolean function f : {0, 1}n → {0, 1} is symmetric if the value
of the function on a string s is determined by the number of 1s in s. In other words, f
is invariant under all permutations of its input. In contrast, when we consider the input
to a Boolean function to be the adjacency matrix of an n-vertex graph, for example, and
f : {0, 1}(

n
2) → {0, 1} decides a graph property, then f is invariant under all permutations of

its input induced by permutations of the n vertices of the graph. We call such a function
graph-invariant. More generally, for a relational vocabulary τ and a standard encoding of
n-element τ -structures as strings over {0, 1}, we can say that function taking such strings
as input is τ -invariant if it is invariant under permutations induced by the n elements. A
circuit C computing such an invariant function is said to be symmetric if every permutation
of the n elements extends to an automorphism of C. It is families of symmetric circuits in
this sense that characterize FPC in [1]. The restriction to symmetric circuits arises naturally
in the study of logics and has appeared previously under the names of generic circuits in the
work of [8] and explicitly order-invariant circuits in the work of Otto [15]. In this paper, we
use the word “symmetric”, and context is used to distinguish the meaning of the word as
applied to circuits from its meaning as applied to Boolean functions.

The main result of [1] says that the properties of τ -structures definable in FPC are exactly
those that can be decided by P-uniform families of symmetric circuits using AND, OR, NOT
and majority gates. Note that each of these gates itself computes a Boolean function that is
symmetric in the strong sense identified above. On the other hand, a gate for computing a
rank threshold function, e.g. one that takes as input a n×n matrix and outputs 1 if the rank
of the matrix is greater than a threshold t, is not symmetric. In our circuit characterization
of FPR we necessarily have to consider such non-symmetric gates. Indeed, we can show
that P-uniform families of symmetric circuits using gates for any symmetric functions do
not take us beyond the power of FPC. This is a further illustration of the robustness of
FPC. In order to go beyond it, we need to introduce gates for Boolean functions that are
not symmetric. We construct a systematic framework for including functions computing
τ -invariant functions for arbitrary multi-sorted relational vocabularies τ in Section 3. We
also explore what it means for such circuits to be symmetric.

The proof of the circuit characterization of FPC relies on the support theorem proved
in [1]. This establishes that for any P-uniform family of circuits using AND, OR, NOT and
majority gates there is a constant k such that every gate has a support of size at most k.
That is to say that we can associate with every gate g in the circuit Cn (the circuit in the
family that works on n-element structures) a subset X of [n] of size at most k such that any

A. Dawar and G. Wilsenach 20:3

permutation of [n] fixing X pointwise extends to an automorphism of Cn that fixes g. This
theorem is crucial to the translation of the family of circuits into a formula of FPC, which
is the difficult (and novel) direction of the equivalence. In attempting to do the same with
circuits that now use rank-threshold gates we are faced with the difficulty that the proof of
the support theorem in [1] relies in an essential way on the fact that the Boolean function
computed at each gate is symmetric. We are able to overcome this difficulty and prove a
support theorem for circuits with rank gates but this requires substantial, novel technical
machinery.

Another crucial ingredient in the proof of Anderson and Dawar is that we can eliminate
redundancy in the circuit Cn by making it rigid. That is, we can ensure that the only
automorphisms of Cn are those that are induced by permutations of [n]. Here we face
the difficulty that identifying the symmetries and eliminating redundancy in a circuit that
involves gates computing τ -invariant functions requires us to solve the isomorphism problem
for τ -structures. This is a hard problem (or, at least, one that we do not know how to
solve efficiently) even when the τ -structures are 0-1-matrices. We overcome this difficulty by
placing a further restriction on circuits that we call transparency. Circuits satisfying this
condition have the property that their lack of redundancy is transparent.

In the characterization of FPC, the translation from formulas into families of circuits is
easy and, indeed, standard. In our case, we have to show that formulas of FPR translate into
uniform families of circuits using rank-threshold gates that are symmetric and transparent.
This is somewhat more involved technically and presented in Section 5. Finally, with all
these tools in place, the translation of such P-uniform families of circuits into formulas of
FPR given in Section 6 completes the characterization. This still requires substantial new
techniques. The translation of circuits to formulas in [1] relies on the fact that in order to
evaluate a gate computing a symmetric Boolean function, it suffices to count the number
of inputs that evaluate to true and there is a bijection between the orbits of a gate and
tuple assignments to its support. When counting is no longer sufficient, this bijection has to
preserve more structure and demonstrating this in the case of matrices requires new insight.

Space limitations prevent us from giving details of proofs. These and much more detail
can be found in the full version of this paper [7].

2 Background

We write SymX to denote the group of all permutations of the set X. Let G be a group
and X be a set on which a group action is defined and let S ⊆ X. Let StabG(S) := {π ∈
G : ∀s ∈ S, π(s) = s}. For n ∈ N we write Symn to abbreviate Sym[n] and write Stabn(S)
to abbreviate StabSymn

(S). In the event that the group is obvious from context we omit
the subscript entirely. We let AB denote the set of injections from the set B to the set A.

2.1 Logic
A vocabulary is a finite sequence of relation symbols (R1, . . . , Rk), each of which has a fixed
arity. We let ri ∈ N denote the arity of the relation symbol Ri. A many-sorted vocabulary is
a tuple of the form (R,S, ν), where R is a relational vocabulary, S is a finite sequence of
sort symbols, and ν is a function that assigns to each Ri ∈ R a tuple ν(Ri) := (s1, . . . , sri),
where for each j ∈ [ri], sj ∈ S. We call ν(Ri) the type of Ri. A τ -structure A is a tuple
(U,RA1 , . . . , RAk) where U =]s∈SUs is a disjoint union of non-empty sets and is called the
universe of A, and for all i ∈ [k], RAi ⊆ Us1 × . . .× Usri , where (s1, . . . , sri) = ν(Ri). The
size of A, denoted by |A|, is the cardinality of its universe. All structures in this paper are
finite.

CSL 2018

20:4 Symmetric Circuits for Rank Logic

We assume the reader is familiar with first-order logic (FO), inflationary fixed-point logic
(FP), fixed-point logic with counting (FPC), and first-order logic with counting quantifiers
(FOC). For details on these logics please see [10, 13].

2.2 Rank Logic
Let FPR[τ] denote fixed-point logic with rank over the vocabulary τ . FPR extends FP with
an operator that denotes the rank of a definable matrix over a finite field, as well as other
mechanisms for reasoning about quantity. Each variable in a formula of FPR is either a
number or vertex variable, with vertex variables interpreted by elements of the universe
and number variables interpreted by natural numbers. All atomic formulas in FP[τ] are
atomic formulas in FPR[τ]. We say that t is a number term if t is a number variable or if t
is an application of the rank operator, i.e. t := [rk(~x, ~ν ≤ ~t, ~y, ~µ ≤ ~s, π ≤ η).φ], where φ is
a number term or formula, ~t and ~s are tuples of number terms bounding the sequences of
number variables ~µ and ~ν, and η is a number term bounding the number variable π. If t1
and t2 are number terms then t1 ≤ t2 and t1 = t2 are atomic formulas. The formulas of FPR
are formed by closing the set of atomic formulas under the usual Boolean connectives, the
first-order quantifiers, and the fixed-point operator. When quantifying over number variables
we only allow bounded quantification. Second-order variables, such as those that appear in a
fixed-point application, may have mixed-type. For more detail on the syntax and semantics
of FPR please see [9].

Let FOR[τ] be the set of formulas in FPR[τ] without an application of the fixed-point
operator. We define for each prime p, and natural number r, a rank quantifier rkrp, such that
rkrp~x~y.φ is interpreted as [rk(~x, ~y, π).φ] ≥ tr, where π is assigned to p and tr is a number
term that evaluates to r. Let R be the set of all such quantifiers and FO+rk[τ] be the closure
of FO[τ] under R. For more details on rank quantifiers see [5].

3 Generalizing Symmetric Circuits

A Boolean basis is a set of Boolean functions. We always use B to denote a basis. Let Bstd
denote the standard basis containing the Boolean functions computing AND, OR and NOT
for each arity. Let Bmaj denote the majority basis, i.e. the extension of Bstd with functions
computing majority for each arity.

A Boolean circuit C over a basis B is a directed acyclic graph in which each internal gate
g is labelled with a function fg : {0, 1}q → {0, 1} ∈ B where q is the fan-in of g. Notice that
if fg were allowed to be arbitrary then an order would need to be imposed on the children
of g to ensure unambiguous evaluation. As such, the usual notion of a circuit as a directed
acyclic graph with no structure on the children of any gate g implicitly assumes that fg is
invariant under all permutations of its inputs – i.e. fg is a symmetric function. It is easy to
see that the standard basis and majority basis contain only symmetric functions.

Anderson and Dawar [1] characterize the expressive power of FPC in terms of symmetric
circuits over the majority basis. This circuit model cannot be strengthened by extending the
basis by symmetric functions (see [7]). As our ultimate aim is a circuit characterisation of
FPR, which is strictly more expressive than than FPC, we would like to consider circuits
defined over bases containing non-symmetric Boolean functions. In particular, we are
interested in bases containing rank-threshold functions – i.e. functions that take in a matrix
and decide if the matrix understood as having entries in some prime field has rank less
than some threshold. While these functions are not symmetric in the full sense, they are
symmetric in the sense of being invariant under row-column permutations.

A. Dawar and G. Wilsenach 20:5

To lead up to this we first develop a general framework of structured Boolean functions.
These are functions whose inputs naturally encode τ -structures, rather than just matrices or
strings, and where the output is invariant under the natural symmetries of such structures.
We therefore define symmetric circuits in a general form where gates can be labelled by
isomorphism-invariant structured functions.

3.1 Structured Functions
Let X be a finite set and F : {0, 1}X → {0, 1}. It is common to consider Boolean functions
that take strings as input, which would correspond to taking X = [n] for some n ∈ N. The
natural notion of symmetry for such functions is invariance under arbitrary permutations
of X, i.e. the usual notion of a symmetric (Boolean) function. Alternatively, we might
want to consider Boolean functions that take in more complex algebraic structures as input,
which would involve selecting an index set X such that the input to the function encodes
an appropriate structure. For example, if we are interested in functions that take directed
graphs as inputs we would let X = V 2 for some vertex set V . We notice that in this case
the natural symmetry condition would not be invariance under arbitrary permutation, but
rather invariance under the action of a permutation of V .

In this subsection we formalise this notion and define a class of functions that take in many-
sorted structures and define a natural symmetry notion for such functions. Let τ := (R,S, ν)
be a many-sorted vocabulary and let D :=

⊎
s∈S Ds = {(s, d) : d ∈ Ds}, be a disjoint union of

non-empty sets. Let str(τ,D) be the τ -structure with universe D and such that every relation
is full (i.e. contains all possible tuples). We let ind(τ,D) be the disjoint union of all the
relations in str(τ,D), i.e. ind(τ,D) =

⊎
Ri∈RR

str(τ,D)
i := {(~a,Ri) : ~a ∈ Rstr(τ,D)

i , Ri ∈ R}.
We often abbreviate (~a,Ri) ∈ ind(τ,D) by ~aRi . We call ind(τ,D) the index defined by (τ,D).

We think of ind(τ,D) as containing all those tuples that may appear in a relation in a
τ -structure or, equivalently, the collection of ground atoms in the vocabulary τ with elements
from the domain D. In this way each element of {0, 1}ind(τ,D) encodes a τ -structure with
universe D. We call a function F : {0, 1}ind(τ,D) → {0, 1} a (τ,D)-structured function, or
just a structured function, and we call τ and D the vocabulary and universe of F , and
denote them by voc(F) and unv(F) respectively. We call ind(τ,D) the index of F , and
denote it by ind(F). We see that F defines a class of τ -structures with universe D. We are
especially interested in structured functions that are symmetric in some sense, and hence
decide properties of τ -structures, i.e. isomorphism-closed classes of structures.

LetH be a set. We think of a function f : ind(τ,D)→ H as defining a labelling of str(τ,D)
by H and we identify f with this labelled instance of str(τ,D). Let f : ind(τ,D) → H

and g : ind(τ,D′) → H. We say that f and g are isomorphic if there is an isomorphism
π : str(τ,D)→ str(τ,D′) such that f(~aR) = g((π~a)R) for all ~aR ∈ ind(τ,D). In other words,
f and g are isomorphic if, and only if, they are isomorphic as (labelled) structures. Notice
that if H = {0, 1} then f and g define τ -structures and f and g are isomorphic if, and only
if, the τ -structures they define are isomorphic.

We say that F : {0, 1}ind(τ,D) → {0, 1} is isomorphism-invariant if for all f, g : ind(τ,D)
→ {0, 1} whenever f and g are isomorphic then F (f) = F (g).

3.2 Symmetric Circuits
We now generalise the circuit model in [1] in order to allow for circuits to be defined over
bases that include non-symmetric (structured) functions. In this model each gate g is not
only associated with an element of the basis, but also with a labelling function. This labelling

CSL 2018

20:6 Symmetric Circuits for Rank Logic

function maps an appropriate set of labels (i.e. the index of the structured function associated
with g) to the input gates of g. In concord with this generalisation, we also update the
circuit-related notions from [1], e.g. circuit automorphisms, symmetry, etc. Moreover, we
briefly discuss some of the important complications introduced by our generalisation, and
introduce some of the important tools we use to address these complications.

I Definition 1 (Circuits on Structures). Let B be a basis of structured functions and ρ be a
relational vocabulary, we define a (B, ρ)-circuit C of order n computing a q-ary query Q as a
structure 〈G,Ω,Σ,Λ, L〉.

G is called the set of gates of C.
Ω is an injective function from [n]q to G. The gates in the image of Ω are called the
output gates. When q = 0, Ω is a constant function mapping to a single output gate.
Σ is a function from G to B] ρ] {0, 1} such that |Σ−1(0)| ≤ 1 and |Σ−1(1)| ≤ 1. Those
gates mapped to ρ]{0, 1} are called input gates, with those mapped to ρ called relational
gates and those mapped to {0, 1} called constant gates. Those gates mapped to B are
called internal gates.
Λ is a sequence of injective functions (ΛRi)Ri∈R such that ΛRi maps each relational gate
g with Σ(g) = Ri to the tuple ΛRi(g) ∈ [n]ri . When no ambiguity arises we write Λ(g)
for ΛRi(g).
L associates with each internal gate g a function L(g) : ind(Σ(g))→ G such that if we
define a relation W ⊆ G2 by W (h1, h2) iff h2 is an internal gate and h1 is in the image
of L(h2), then (G,W) is a directed acyclic graph.

The definition requires some explanation. Each gate in G computes a function of its
inputs and the relation W on G is the set of “wires”. That is, W (h, g) indicates that the
value computed at h is an input to g. However, since the functions are structured, we
need more information on the set of inputs to g and this is provided by the labelling L.
Σ(g) tells us what the function computed at g is, and thus ind(Σ(g)) tells us the structure
on the inputs and L(g) maps this to the set of gates that form the inputs to g. We let
Hg = {h ∈ G : W (h, g)} denote the set of inputs to the gate g. We let unv(g) denote the
universe of Σ(g). We call a gate g a symmetric gate if Σ(g) is a symmetric function and g a
non-symmetric gate otherwise.

Let ρ be a relational vocabulary, A be a ρ-structure with universe U of size n, and
γ ∈ [n]U . Let γA be the structure with universe [n] formed by mapping the elements of U in
accordance with γ. The evaluation of a (B, ρ)-circuit C of order n computing a q-ary query
Q proceeds by recursively evaluating the gates in the circuit. The evaluation of the gate g
for the bijection γ and input structure A is denoted by C[γA](g), and is given as follows:

if g is a constant gate then it evaluates to the bit given by Σ(g),
if g is a relational gate then g evaluates to true iff γA |= Σ(g)(Λ(g)), and
if g is an internal gate let LγA(g) : ind(g) → {0, 1} be defined by LγA(g)(x) =
C[γA](L(g)(x)), for all x ∈ ind(g). Then g evaluates to true if, and only if, Σ(g)(LγA(g))
= 1.

We say that C defines the q-ary query Q ⊆ Uq under γ where ~a ∈ Q if, and only if,
C[γA](Ω(γ~a)) = 1.

We now define a circuit automorphism for a circuit.

I Definition 2 (Automorphism). Let C = 〈G,Ω,Σ,Λ, L〉 be a (B, τ)-circuit of order n
computing a q-ary query, and where B is a basis of isomorphism-invariant structured functions.
Let σ ∈ Symn and π : G→ G be a bijection such that

A. Dawar and G. Wilsenach 20:7

for all output tuples x ∈ [n]q, πΩ(x) = Ω(σx),
for all gates g ∈ G, Σ(g) = Σ(πg),
for each relational gate g ∈ G, σΛ(g) = Λ(πg), and
For each pair of gates g, h ∈ G, we have W (h, g) if, and only if, W (πh, πg) and for each
internal gate g we have that L(πg) and π · L(g) are isomorphic.

We call π an automorphism of C, and we say that σ extends to an automorphism π. The
group of automorphisms of C is called Aut(C).

We are particularly interested in circuits that have the property that every permutation
in Symn extends to an automorphism of the circuit.

I Definition 3 (Symmetry). A circuit C on structures of size n is called symmetric if every
σ ∈ Symn extends to an automorphism on C.

Suppose C does not contain a relational gate labelled by a relation symbol with non-zero
arity. In that case C computes a constant function. For this reason, we always assume a
circuit contains at least one relational gate with non-zero arity. Now, by assumption there
exists a relational gate in C such that some element of [n] appears in the tuple labelling
that gate. By symmetry it follows that every element of [n] appears in a tuple labelling a
relational gate in C. It follows that no two distinct elements of Symn agree on all input
gates and so we can associate with each π ∈ Aut(C) a unique h(π) ∈ Symn that it extends
and it is easily seen that h : Aut(C)→ Symn is a surjective group homomorphism. If h is
also injective then we have that each element of σ extends uniquely to an automorphism of
the circuit. In this case we say that a circuit has unique extensions.

I Definition 4. We say that a circuit C of order n has unique extensions if for every
σ ∈ Symn there is at most one πσ ∈ Aut(C) such that πσ extends σ.

Many important technical tools, e.g. the support theorem, are only applicable to circuits
with unique extensions. It is for this reason that a notion of a rigid circuit is introduced
in [1]. Such circuits have unique extensions and it is shown that a symmetric circuit over the
basis Bmaj can be converted in polynomial-time to an equivalent rigid one.

We should like to develop a property analogous to rigidity for our framework, as well
as a similar polynomial-time translation. However, in our framework the value a gate g
computes depends not just on the set of gates input to g but also on the structure of
this set. This structure must be preserved by the action of an automorphism, and so we
require that if π is an automorphism that maps g to g′ then πL(g) and L(g′) are isomorphic.
Following from this observation, it can be shown that deciding if a function on the circuit is
an automorphism, and indeed deciding almost any symmetry-related property, for circuits
with non-symmetric gates is at least as hard as the graph-isomorphism problem. As such,
constructing an argument analogous to [1], as well as establishing the numerous other crucial
results whose proofs rely on the polynomial-time decidability of various circuit properties,
would require the development of a polynomial-time algorithm for graph-isomorphism.

In order to proceed we explicitly restrict our attention to transparent circuits. We will
define this term below, but before we do we need to define a notion of ‘structural similarity’
between gates that we call syntactic-equivalence.

I Definition 5. Let C := 〈G,Ω,Σ,Λ, L〉 be a (B, ρ)-circuit of order n. We recursively define
the equivalence relation syntactic-equivalence, which we denote using the symbol ‘≡’, on G
as follows. If g and h are both input gates or both output gates then g ≡ h if, and only
if, g = h. Suppose g and h are both non-output internal gates and we have defined the

CSL 2018

20:8 Symmetric Circuits for Rank Logic

syntactic-equivalence relation for all gates of depth less than the depth of either g or h.
Then g ≡ h if, and only if, Σ(g) = Σ(h) and L(g)/≡ and L(h)/≡ are isomorphic (as labelled
structures).

The intuition is that two gates are syntactically-equivalent if the circuits underneath
these two gates are structurally equivalent. The important point is that if two gates are
mapped to one another by an automorphism that extends the trivial permutation, then these
gates are syntactically-equivalent. In fact, we prove a slightly stronger result.

I Lemma 6. Let C be a circuit of order n and σ ∈ Symn. Let π, π′ ∈ Aut(C) be auto-
morphisms extending σ. For every gate g in C we have π(g) ≡ π′(g).

In this way syntactic-equivalence constrains the automorphism group. We use syntactic-
equivalence to establish sufficient conditions for a circuit to have unique extensions and,
moreover, for various circuit-properties that reference automorphism to be polynomial-time
decidable. With these two ideas in mind we define the following classes of circuits.

I Definition 7. Let C be a circuit and g be an internal gate in C. We say g has injective
labels if L(g) is an injection. We say g has unique labels if g has injective labels and no two
gates in W (g, ·) are syntactically-equivalent. We say C has injective labels (resp. unique
labels) if every gate in C has injective labels (resp. unique labels). We say C is transparent if
every non-symmetric gate in C has unique labels.

We can translate transparent circuits into circuits with unique labels in polynomial-time.
We prove this by first showing that syntactic-equivalence can be computed for transparent
circuits in polynomial-time. This follows from a straightforward inductive on depth, starting
from the input gates and noting that the syntactic-equivalence classes of the next layer can
be computed so long as you can solve the isomorphism problem for the gates in this next
layer. This is easy to do for symmetric gates, as we can check set-equivalence easily, and in
the case the gate is non-symmetric then this gate has unique labels, and so there is at most
one candidate isomorphism, and it is easy to check if a given function is an isomorphism.

I Lemma 8. There is an algorithm that takes as input a transparent circuit C and outputs
the syntactic-equivalence relation on the gates of C. The algorithm runs in time polynomial
in the size of C.

The translation from transparent circuits to circuits with unique labels is defined as follows.
We define a circuit by collapsing the gates of the input circuit into its syntactic-equivalence
classes, i.e. taking a quotient of the circuit by syntactic-equivalence. The resultant circuit
almost has unique labels, but for the fact that certain gates computing symmetric functions
might not have injective labels. For each offending gate g and each h ∈W (·, g) that has t
wires to g we add in a sequence of t− 1 single-input AND-gates and replace t− 1 wires from
h to g with wires from each of these AND-gates to g. This construction gives the following
result.

I Lemma 9. There is an algorithm that takes as input a (B, ρ)-transparent circuit C and
outputs a (B ∪ Bstd, ρ)-circuit C ′ such that C and C ′ compute the same function, C ′ has
unique labels, and if C is symmetric then C ′ is symmetric. Moreover, this algorithm runs in
time polynomial in the size of the input circuit.

We have that transparent circuits can be transformed into circuits with unique labels.
We should like to show that circuits with unique labels are analogous to rigid circuits in that

A. Dawar and G. Wilsenach 20:9

(i) circuits with unique labels have unique extensions and (ii) we can compute the action of
an automorphism on a circuit with unique labels in polynomial-time.

Let C be a circuit of order n with unique labels of order n and let σ ∈ Symn. We
can define π ∈ Aut(C) as follows. If g is an output or input gate then the image of g is
entirely determined by σ. Suppose g is an internal gate, and suppose we have constructed
π for all gates h of depth greater than g. We start from the input gates and inductively
construct a gate g′ that, from Lemma 6, must be syntactically-equivalent to the image of
g under π. We notice that, since C has unique-labels, there is at most one child of π(h)
syntactically-equivalent to g′. We can compute which child using Lemma 8, and we assign
π(g) to be this child. The above construction can be implemented as a polynomial-time
algorithm, with the additional requirement that we halt and output that no automorphism
exists if at any stage the construction fails. It is also important to note that at each point in
this inductive definition there is always a unique extension of the automorphism to the next
layer of gates. We thus have the following two results.

I Lemma 10. If C is a circuit with unique labels then C has unique extensions.

I Lemma 11. There is an algorithm takes as input a (B, ρ)-circuit C of order n with unique
labels and σ ∈ Symn and outputs for each gate g the image of g under the action of the
unique automorphism extending σ (if it exists). This algorithm runs in time polynomial in
the combined size of the input circuit and the encoding of the permutation.

It remains to use our framework to define a class of circuits with gates that can com-
pute rank. Let a, b, r, p ∈ N, with p prime. Let RANKrp[a, b] : {0, 1}[a]×[b] → {0, 1} be
the (isomorphism-invariant) structured function with universe [a]] [b], and such that
RANKrp[a, b](M) = 1 if, and only if, the matrix M ∈ {0, 1}[a]×[b] has rank at least r over
Fp when the entries of M are interpreted as elements of Fp. Let RANK = {RANKrp[a, b] :
a, b, r, p ∈ N, p prime} and let the rank basis be Brk := Bmaj ∪ RANK. We call a circuit
defined over the rank basis a rank-circuit.

We are now ready to state the main theorem of this paper.

I Theorem 12 (Main Theorem). A graph property is decidable by a P-uniform family of
transparent symmetric rank-circuits if, and only if, it is definable by an FPR sentence.

4 Symmetry and Supports

In this section we introduce the definition of a support and supporting partition from [1] and
extend the results about supports to our framework.

I Definition 13. Let G ≤ Symn and let S ⊆ [n]. Then S is a support for G if Stabn(S) ≤ G.

An important generalisation of the notion of a support is a supporting partition.

I Definition 14. Let G ≤ Symn and P be a partition of [n]. Then P is a supporting
partition for G if Stabn(P) ≤ G.

Let P and P ′ be supporting partitions for G. We say that P ′ is as coarse as P, denoted
by P ′ � P, if every part in P is contained in a part in P ′. Every group G ≤ Symn has
a unique coarsest supporting partition [1]. We call this partition the canonical supporting
partition, and denote it by SP(G).

It is easy to show that if P is a supporting partition for G ≤ Symn and P is the largest
part of P then [n] \ P is a support for G. We say that G has small support if there exists

CSL 2018

20:10 Symmetric Circuits for Rank Logic

P ∈ SP(G) such that |P | > n
2 , and if G has small support then we call sp(G) := [n] \ P the

canonical support for G.
We apply the language of supports to circuits. Let C be a symmetric circuit of order n

with unique extensions and let g be a gate in C. There is a group action of Symn on the
gates of C, given by the isomorphism from Symn to Aut(C). We say that a partition P of
[n] (resp. a set S ⊆ [n]) is a supporting partition (resp. support) for g if P is a supporting
partition for Stab(g) (resp. S is a support for Stab(g)). We abuse notation and write SP(g)
and sp(g) for the canonical supporting partition and canonical support for g. Let ‖SP(g)‖
denote the smallest value of |[n] \ P | for P ∈ SP(g). Let SP(C) denote the largest value of
‖SP(g)‖ for g a gate in C. We now state the support theorem and then discuss its proof.

I Theorem 15. For any ε and n such that 2
3 ≤ ε ≤ 1 and n ≥ 128

ε2 , if C is a symmetric circuit
of order n with unique labels and s := maxg∈C |Orb(g)| ≤ 2n1−ε , then SP(C) ≤ 33

ε
log s
logn .

The proof follows a strategy broadly similar to the one used in [1], and makes use of two
lemmas from there. The first lemma gives us that if the index of a group G ≤ Symn is small
then SP(G) either has very few or very many parts. The second lemma gives us that for
G ≤ Symn, if SP(G) has very few parts then it must have a single very large part (and
hence a small canonical support). These two results allow us to conclude that every gate
g in C has a small canonical support if it has a canonical supporting partition with very
few parts. We then prove by structural induction that the canonical supporting partition of
every gate has few parts. To be precise, we show that if g is the topologically first gate in
the circuit with a canonical supporting partition with too many parts then |Orb(g)| > 2n1−ε ,
i.e. the orbit is larger than the given bound.

We do this by establishing the existence of a large set H of permutations that each take
g to a different gate. To construct H we define a set of triples of the form (σ, h, h′) where
σ ∈ Symn and h, h′ ∈ Hg. Each of these triples is useful in a sense that it guarantees that σ
moves g. Moreover, the triples are pairwise independent which means that we can compose
them in arbitrary combinations to generate new permutations moving g, while guaranteeing
that each such combination gives us a different element in the orbit of g. We have the
following as an immediate consequence of the support theorem.

I Lemma 16. Let C := (Cn)n∈N be a polynomial-size family of symmetric circuits with
unique labels. There exists k ∈ N such that SP(Cn) ≤ k for all n ∈ N.

Supports of Indexes
In our analysis we not only need to consider supports for gates but also for elements of the
universe of a gate. Let C be a circuit with unique extensions and g be a gate in C. We
define an action of Stab(g) on unv(g) such that σ · a := (L(g)−1σL(g)(~aR))(~a−1

R (a)), for
σ ∈ Stab(g) and a ∈ unv(g), and where ~aR ∈ ind(g) contains the element a.

Since we have a group action of Stab(g) on unv(g), but not Symn on unv(g), we must
speak of the support of a ∈ unv(g) relative to Stab(g). In fact, we are often interested in the
action of the subgroup Stab(sp(g)). We let Stabspg(a) and Orbspg(a) denote the orbit and
stabiliser of a under the action of Stab(sp(g)). We let spsp(g)(a) and SPsp(g)(a) denote the
canonical support and canonical supporting partition of Stabsp(g)(a). In all cases when the
choice of g is obvious from context we omit the subscript. The following lemma is a direct
consequence of the support theorem and extends the support theorem to the elements of the
universe of a gate.

A. Dawar and G. Wilsenach 20:11

I Lemma 17. Let (Cn)n∈N be a polynomial-size family of symmetric circuits with unique
labels. There exists n0, k ∈ N such that for all n > n0, g a gate Cn and a ∈ unv(g) we
have that (i) Stabsp(g)(a) and Stabn(g) have small support, (ii) if h ∈ Hg and a appears in
L(g)−1(h) then spsp(g)(a) ⊆ sp(g) ∪ sp(h), and (iii) |sp(g)| ≤ k and |spsp(g)(a)| ≤ 2k.

5 The Translation from Formulas into Circuits

The standard translation from formulas to families of symmetric circuits does not result in a
family of transparent circuits. We must thus define a novel translation. We do this in two
parts. We first define a translation from P-uniform families of bounded-width FO+rk-formulas
to equivalent P-uniform families of transparent symmetric rank-circuits. We then define a
translation from formulas of FPR to P-uniform families of bounded-width FO+rk-formulas.
The first of these translations is given by the following lemma.

I Lemma 18. There is a function that takes as input an FO+rk-formula θ(~x) and n ∈ N and
outputs a transparent symmetric rank-circuit C of order n defined over the same vocabulary
as θ(~x) and that computes the query defined by θ(~x) for structures of size n. Moreover,
this function is computable and there is a polynomial p such that for an input (θ(~x), n) the
algorithm computing this function terminates in at most p(nwidth(θ)|cl(θ)|) many steps.

Proof Sketch. The proof follows easily once one understands why the usual translation
does not produce a transparent circuit. Consider the following example. Suppose ψ(~y) is a
subformula of θ(~x) of the form rkrp ~w~z.φ and suppose that φ := φ′(w1) ∧ φ′(w2). In this case
the syntactic structure of φ is fixed by any permutation of the variables that fixes {w1, w2}
setwise. The usual translation to circuits would preserve symmetries of this form, resulting
in many of the input gates of the rank gate being syntactically-equivalent.

In order to address this we first preprocess the formula θ(~x), defining a new formula
λ(~x) that decides the same query but is not invariant (in the sense alluded to above) under
permutations of the variables. We define λ(~x) as follows. Let R be a relation symbol in
the vocabulary of θ(~x) (if the vocabulary is empty the translation is trivial). For a variable
y let no-op(y) := (R(y, y) ∨ (¬R(y, y))). For a sequence of variables ~y = (y1, . . . , ym) let
tag(~y) := (no-op(y1)∧(no-op(y2)∧(no-op(y2)∧(. . .∧(no-op(ym)) . . .)))). Let λ(~x) be the
formula constructed from θ(~x) by replacing each sub-formula ψ(~y) of the form rkrp ~w~z.φ with
the formula rkrp ~w~z.((∀u.u = u) ∧ φ) ∧ tag(~w ∪ ~z). Since we always replace a subformula φ
with a logically equivalent formula, it follows that λ(~x) and θ(~x) are equivalent. The intuition
is that tag(~w ∪ ~z) appends a tower of conjunctions of tautologies, with each tautology
referencing a unique variable from ~w ∪ ~z. When we construct the circuit, this tower of
tautologies acts to ‘tag’ each input to the rank gate with a unique gadget.

We now construct C using the usual approach. For each subformula ψ(~y) of λ(~x) and
assignment ~a ∈ [n]|~y| to ~y we include a gate gψ,~a in C. We wire the circuit such that gφ,~a is
an input gate to gψ,~b iff φ is an immediate subformula of ψ and the two assignments never
assign the same variable to two different values. For a complete proof see [7]. J

The translation from FPR to P-uniform families of bounded-width FO+rk-formulas
is a concatenation of the following two translations. First, from [5], we can translate
θ(~x) ∈ FPR[τ] into an equivalent P-uniform family of FOR[τ]-formulas. Second, from [14],
we can translate FOR[τ]-formulas into equivalent P-uniform families of FO+rk[τ]-formulas.
Both of these translations increase the width by a constant factor, and so we may apply
Lemma 18 to prove the following.

CSL 2018

20:12 Symmetric Circuits for Rank Logic

I Theorem 19. For each FPR-formula θ(~x) there exists a P-uniform family of transparent
symmetric rank-circuits(Cn)n∈N that defines the same query as θ(~x).

6 The Translation from Circuits into Formulas

We leverage the support theorem and the various polynomial-time algorithms defined for
transparent circuits and circuits with unique labels in order to define a translation from
P-uniform families of symmetric rank-circuits to formulas of FPR. Let C = (Cn)n∈N denote
a P-uniform family of transparent symmetric (Brk, ρ)-circuits computing a q-ary query Q.

From the Immerman-Vardi theorem [12, 16] and Lemma 9, there is a t-width interpretation
Φ such that for each ρ-structure A of size n the interpretation of Φ in A defines a symmetric
rank-circuit with unique labels (in the number universe) equivalent to Cn. We aim to show
that there exists θQ ∈ FPR[ρ] that defines Q, i.e. such that A |= θQ[~a] if, and only if,
Cn[γA](Ω(γ~a)) = 1 for any bijection γ ∈ [n]U .

Let n0 and k be the constants in the statement of Lemma 17. Notice that for each n ≤ n0
there are only constantly many bijections from the universe of a structure to [n], and so we
can explicitly quantify over these constantly many bijections and evaluate the circuit. We
thus fix n > n0 and a ρ-structure A with universe U of size n and show how to evaluate Cn

It follows from Lemma 17 that each gate g has a support of size at most k and each
a ∈ unv(g) has a support of size at most 2k. We say that two injections f and g are compatible
if there is an injection on the union of their domains that agrees with both functions. If there
is such a function we denote it by (f |g). We use ∼ to denote compatibility. The following
result gives us that the evaluation of a gate g for a bijection γ ∈ [n]U depends only on those
elements γ maps to sp(g).

I Lemma 20. Let g be a gate in Cn. Let η ∈ U sp(g) and γ1, γ2 ∈ [n]U such that γ−1
1 ∼ η

and γ−1
2 ∼ η. Then Lγ1A(g) and Lγ2A(g) are isomorphic.

It follows from Lemma 20 that the evaluation of g is entirely determined by EVg := {η ∈
U sp(g) : ∃γ ∈ [n]U s.t. Cn[γA](g) = 1 and η ∼ γ−1}. Here we see how the support theorem
allows us to characterize the evaluation of a gate succinctly.

The query defined by Cn for A is Q = {~a ∈ Uq : ∃g ∈ G, η ∈ EVg s.t. Ω(η−1 ◦ ~a)) = g}.
In order to define Q it is thus sufficient to show that EVg is FPR-definable. In particular,
we show that there is an FPR-definable relation V ⊆ [nt]× Uk such that (g, ~x) ∈ V if, and
only if, the assignment that maps sp(g) to the first |sp(g)| elements of ~x is in EVg. We
do this by first describing a procedure for recursively defining EVg, i.e. defining EVg given
{EVh : h ∈ Hg}, and then arguing that this definition can be implemented in FPR. This
suffices as we may then use the fixed-point operator to complete the definition of V . The
gate g is either a symmetric gate or a rank gate. If g is a symmetric gate then we have a
FPC-definable recursive construction of EVg from [1]. As such, we assume g is a rank gate.

As an aside, we note that the recursive construction of EVg in [1] relies on the fact that
if g is symmetric then it can be evaluated by counting the number of its inputs that evaluate
to 1. Using this fact, along with a bijection between the orbit of a gate and the assignments
to the support of that gate, the problem of evaluating g reduces to a counting problem on
the assignments to the supports of the inputs to g. The results that underlie this counting
argument fail for non-symmetric gates, and so we are forced to use a very different approach
for rank gates.

We instead show that for each gate g and η ∈ U sp(g) there is an FPR-definable matrix M
that has the same rank as LγA(g) for any γ ∈ [n]U such that γ−1 ∼ η. We can then check if
η ∈ EVg by applying the rank operator to M and testing against the threshold.

A. Dawar and G. Wilsenach 20:13

We introduce some notation. Let A×B := ind(g). For h ∈ Hg let row(h) := L(g)−1(h)(1)
and col(h) := L(g)−1(h)(2). Let Ah := {~x ∈ U sp(h) : η ∼ ~x} and for all a ∈ unv(g) let
Aa = {~x ∈ U sp(a) : η ∼ ~x}.

We first define the index sets for the matrix M . Let Rmin := {min(Orb(row(h))) : h ∈
Hg} and Cmin := {min(Orb(col(h))) : h ∈ Hg}. Let I := {(i, ~x) : i ∈ Rmin, ~x ∈ Ai} and
J := {(j, ~y) : j ∈ Cmin, ~y ∈ Aj}. We think of Rmin and Cmin as indexing the orbits of the
row and column elements under the action of Stab(sp(g)), with each orbit indexed by the
minimal element in A (or B, respectively) that appears in it. We think of I and J as indexing
the elements within an orbit instead by elements of Ai and Aj , implicitly using the bijection
between these sets and the orbits of row(h) and col(h).

We associate with each index ((i, ~x), (j, ~y)) ∈ I × J a gate h and an assignment ~w to
the support of h as follows. It can be shown there is a function that maps a given index
to a permutation σ ∈ Stab(g) such that ~yσ is compatible with both η and ~x (see [7] for
details). Let h = L(g)(i, σj) and let ~w = (~x|~yσ). We define the matrix M : I × J → {0, 1}
by M((i, ~x), (j, ~y)) := ~w ∈ EVh.

Let x be a gate in Hg or an element of the universe of g. Let f ∈ U sp(x) and γ ∈ [n]U
such that γ−1 ∼ η. Let Πγ

f ∈ Stab(sp(g)) be such that Πγ
f (a) = γ(f(a)) for all a ∈ sp(x). It

is easy to see that Πγ
f (x) is well-defined. For a fixed h ∈ Hg, the mapping ~z 7→ Πγ

~z (h), for
~z ∈ Ah, establishes a correspondence between Ah and the orbit of h. A similar correspondence
exists for a fixed a ∈ unv(g). It follows that ~z ∈ EVh if, and only if, Cn[γA](Πγ

~z (h)) = 1. [7]
We use this correspondence to define a mapping from M to LγA(g). Let αγ : I → A and

βγ : J → B be defined by αγ(i, ~x) := Πγ
~x(i) and βγ(j, ~y) := Πγ

~y(j), respectively. It is possible
to show that (αγ , βγ) is a surjective homomorphism from M to LγA(g). It can be shown
that αγ(i, ~x) = αγ(i, ~x′) if, and only if, there exists π ∈ Stabsp(g)(i) such that ~x = ~x′π – and
a similar result holds for βγ . It follows that (αγ , βγ) is not, in general, injective.

We resolve this problem by quotienting. Let s ∈ unv(g) and ~x, ~x′ ∈ As. We say that
~x ≈ ~x′ if, and only if, there exists π ∈ Stab(s) such that ~x = ~x′π. For (i, ~x), (i′, ~x′) ∈ I we
say that (i, ~x) ≈ (i′, ~x′) if, and only if, i = i′ and ~x ≈ ~x′. We similarly define ≈ on J .

It is easy to see that αγ and βγ are constant on ≈-equivalence classes. As such, the
quotient functions αγ/≈ and βγ/≈ are well-defined. We can also show that M((i, ~x, (j, ~y))) =
M((i′, ~x′), (j′, ~y′)) if (i, ~x) ≈ (i′, ~x′) and (j, ~y) ≈ (j′, ~y′). Let M≈ : I/≈ × J/≈ → {0, 1} be
defined byM≈((i, [~x])≈, (j, [~y])≈) := M((i, ~x), (j, ~y)). It follows from the previous observation
that this function is well-defined.

Since (αγ , βγ) is a surjective homomorphism, (αγ/≈, βγ/≈) is a surjective homomorphism
from M≈ to LγA(g). Moreover, it follows from the previous comment on the failure of
injectivety that (αγ/≈, βγ/≈) is an injection. We thus have the following result.

I Theorem 21. Let γ ∈ [n]U such that γ−1 ∼ η. Then LγA(g) is isomorphic to M≡.

It is not hard to show that the rowsM((i, ~x), ·) andM((i′, ~x′), ·) are equal if (i, ~x) ≈ (i′~x′),
and so rkp(M) = rkp(M≡). From this and Theorem 21 we have the following result.

I Lemma 22. Let γ ∈ Un be such that γ−1 ∼ η and let p ∈ N be prime. Then rkp(M) =
rkp(M≡) = rkp(LγA(g)).

It remains to justify our assertion that the above recursive definition of EVg can be
implemented in FPR. It is sufficient to show that there is an FPR-formula that defines M
for a rank gate g and assignment η ∈ U sp(g). We first show that the sets {(g, sp(g)) : g ∈ G},
I, and J are FPR-definable. We have the following results as a consequence of Lemma 11.

CSL 2018

20:14 Symmetric Circuits for Rank Logic

I Lemma 23. There is an algorithm that takes in a circuit C with unique labels and outputs
if the circuit is symmetric. If it is symmetric then it outputs for each gate g and a ∈ unv(g)
the orbit Orb(g) and canonical supporting partition SP(g), as well as Orbsp(g)(a) and
SPsp(g)(a). This algorithm runs in time polynomial in the size of the circuit.

From Lemma 23 and the Immerman-Vardi theorem there are FPC-formulas that define
the canonical support and orbit for each gate g and each a ∈ unv(g). Moreover, it can be
shown that compatibility between assignments to supports is FPR-definable. It follows that
we can define Aa for each a ∈ unv(g) and Ah for each h ∈ Hg. Combining these results we
have that I and J are FPR-definable. We then define M using a relation symbol V ′ that
denotes the value of V at a given stage in the recursive construction. This completes the
FPR-definition of M and so EVg, and hence the proof of our main result.

7 Concluding Remarks and Future Work

FPR is one of the most expressive logics we know that is still contained in P and understanding
its expressive power is an important question. The main result of this paper establishes an
equivalence between the expressive power of FPR and the computational power of uniform
families of transparent symmetric rank-circuits. Not only does this establish an interesting
characterization of an important logic, it also deepens our understanding of the connection
between logic and circuit complexity and sheds new light on foundational aspects of the
circuit model.

The circuit characterisation helps emphasise certain important aspects of the logic. Given
that P-uniform families of invariant circuits (without the restriction to symmetry) express
all properties on P, we can understand the inability of FPC (and, conjecturally, FPR) to
express all such properties as essentially down to symmetry. As with other (machine) models
of computation, the translation to circuits exposes the inherent combinatorial structure of an
algorithm. In the case of logics, we find that a key property of this structure is its symmetry
and the translation to circuits provides us with the tools to study it.

Still, the most significant contribution of this paper is not in the main result but in the
techniques that are developed to establish it, and we highlight some of these now. The
conclusion of [1] says that the support theorem is “largely agnostic to the particular [. . .]
basis”, suggesting that it could be easily adapted to include other gates. This turns out
to have been a misjudgment. Attempting to prove the support theorem for a basis that
includes rank threshold gates showed us the extent to which both the proof of the theorem
and, more broadly, the definitions of circuit classes, rest heavily on the assumption that all
functions computed by gates are symmetric. Thus, in order to define what the “symmetry”
condition might mean for circuits that include rank threshold gates, we radically generalise
the circuit framework to allow for gates that take structured inputs (rather than sets of
0s and 1s) and are invariant under isomorphisms. This leads to a refined notion of circuit
automorphism, which allows us to formulate a notion of symmetry and prove a version of
the support theorem. Again, in that proof, substantial new methods are required.

The condition of transparency makes the translation of uniform circuit families into
formulas of logic (which is the difficult direction of our characterisation) possible, but it
complicates the other direction. Indeed, the natural translation of formulas of FPR into
uniform circuit families yields circuits which are symmetric, but not transparent. This
problem is addressed by introducing gadgets in the translation – which for ease of exposition,
we did in formulas of FO+rk which are then translated into circuits in the natural way. Thus,
the restriction to transparent circuits is sufficient to get both directions of the characterisation.

A. Dawar and G. Wilsenach 20:15

In short, we can represent the proof of our characterisation through the three equivalences
in this triangle.

FPR Uniform families of bounded-
width FO+rk formulas

Uniform families of transparent
symmetric rank-circuits

This highlights another interesting aspect of our result. The first translation, of FPR to
uniform families of FO+rk formulas was given in [5] and used there to establish arity lower
bounds. However, this was for a weaker version of the rank logic rather than the strictly
more expressive one defined by Grädel and Pakusa [9]. The fact that we can complete the
cycle of equivalences with the more powerful logic demonstrates that the definition of Grädel
and Pakusa is the “right” formulation of FPR.

Future Work
There are many directions of work suggested by the methods and results developed in this
paper. First of all, there is the question of transparency. We introduce it as a technical
device that enables our characterisation to go through. Could it be dispensed with? Or
are P-uniform families of transparent symmetric rank-circuits strictly weaker than families
without the restriction of transparency?

The framework we have developed for working with circuits with structured inputs is very
general and not specific to rank gates. It would be interesting to apply this framework to
other logics. It appears to be as general a way of extending the power of circuits as Lindström
quantifiers are in the context of logic. We would like to develop this link further, perhaps
for specific quantifiers such as FP extended by an operator that expresses the solubility of
systems of equations over rings as in [4]

At the moment, we have little by way of methods for proving inexpressibility results
for FPR, whether we look at it as a logic or in the circuit model. The logical formulation
lays emphasis on some parameters (the number of variables, the arity of the operators, etc.)
which we can treat as resources against which to prove lower bounds. On the other hand, the
circuit model brings to the fore other, more combinatorial, parameters. One such is the fan-in
of gates and a promising and novel approach is to try and prove lower bounds for symmetric
circuits with gates with bounded fan-in. We might ask if it is possible to compute AND[3]
using a symmetric circuit with gates that have fan-in two. Perhaps we could also combine
the circuit view with lower-bound methods from logic, such as pebble games. Dawar [3] has
shown how the bijection games of Hella [11] can be used directly to prove lower bounds for
symmetric circuits without reference to the logic. We also have pebble games for FPR [6],
and it would be interesting to know if we can use these on circuits and how the combinatorial
parameters of the circuit interact with the game.

Finally, we note that some of the interesting directions on the interplay between logic and
symmetric circuits raised in [1] remain relevant. Can we relax the symmetry condition to
something in between requiring invariance of the circuit under the full symmetric group (the
case of symmetric circuits) and requiring no invariance condition at all? Can such restricted
symmetries give rise to interesting logics in between FPR and P? It also remains a challenge
to find a circuit characterisation of CPTC. Could the general framework for non-symmetric
gates we have developed here help in this respect?

CSL 2018

20:16 Symmetric Circuits for Rank Logic

References
1 M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. Theory of

Computing Systems, 60(3):521–551, 2017.
2 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,

2(1):8–21, 2015.
3 A. Dawar. On symmetric and choiceless computation. In Mohammad Taghi Hajiaghayi and

Mohammad Reza Mousavi, editors, Topics in Theoretical Computer Science, pages 23–29,
Cham, 2016. Springer International Publishing.

4 A. Dawar, E. Grädel, B. Holm, E. Kopczynski, and W. Pakusa. Definability of linear
equation systems over groups and rings. Logical Methods in Computer Science, 9(4), 2013.

5 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In 2009 24th
Annual IEEE Symposium on Logic In Computer Science (LICS), pages 113–122, 2009.

6 A. Dawar and B. Holm. Pebble games with algebraic rules. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Pro-
gramming, pages 251–262, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

7 A. Dawar and G. Wilsenach. Symmetric circuits for rank logic. arXiv, 2018. arXiv:
1804.02939.

8 L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth polynomial-size
circuits. Information and Control, 70(2):216–240, 1986.

9 E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! In 2015 24th Annual
Conference on Computer Science Logic, (CSL), pages 390–404, 2015.

10 M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Lecture Notes in Logic. Cambridge University Press, 2017. URL: https://books.google.
co.uk/books?id=RLYrDwAAQBAJ.

11 L. Hella. Logical hierarchies in ptime. Information and Computation, 129(1):1–19, 1996.
12 N. Immerman. Relational queries computable in polynomial time. Information and Control,

68(1-3):86–104, 1986.
13 N. Immerman. Descriptive Complexity. Graduate texts in computer science. Springer New

York, 1999.
14 L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An

EATCS Series. Springer Berlin Heidelberg, 2004.
15 M. Otto. The logic of explicitly presentation-invariant circuits. In 1996 10th International

Workshop, Annual Conference on Computer Science Logic (CSL), pages 369–384. Springer,
Berlin, Heidelberg, 1997.

16 M. Vardi. The complexity of relational query languages (extended abstract). In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 137–146, New
York, NY, USA, 1982. ACM.

http://arxiv.org/abs/1804.02939
http://arxiv.org/abs/1804.02939
https://books.google.co.uk/books?id=RLYrDwAAQBAJ
https://books.google.co.uk/books?id=RLYrDwAAQBAJ

	Introduction
	Background
	Logic
	Rank Logic

	Generalizing Symmetric Circuits
	Structured Functions
	Symmetric Circuits

	Symmetry and Supports
	The Translation from Formulas into Circuits
	The Translation from Circuits into Formulas
	Concluding Remarks and Future Work

