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Abstract

We consider discrete enriched abstract clones and provide two constructions investigating their
representation as discrete enriched clones of operations on objects in concrete enriched cate-
gories over the enriching category. Our first construction embeds a discrete enriched abstract
clone into the concrete discrete enriched clone of operations on an object in the enriching cate-
gory. Our second construction refines the given embedding by introducing a monoid action and
restricting attention to the concrete discrete enriched clone of its equivariant operations. As in
the classical theory of abstract clones, our main focus is on discrete enriched abstract clones
with finite arities. However, we also consider discrete enriched abstract clones with countable
arities to show that the representation theory of the former is conceptually explained by that
of the latter.
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1 Introduction

We are concerned with research themes pioneered by Bill Lawvere and Peter Freyd in the categorical
theories of algebra [9, 6], representation [7], and enrichment [10]; specifically investigated here in
connection with the theory of abstract clones.

The multi-sorted equational theory of abstract clones AbC, introduced by Philip Hall (see, for
instance, Cohn [3, Section III.3]), is sorted by the set of natural numbers N and has operators

vni : n (0 ≤ i < n ∈ N) , sm,n : m,n, . . . , n︸ ︷︷ ︸
m times

// n (m,n ∈ N)

that respectively axiomatize the notions of variable (or projection) and substitution (or composi-
tion). An algebra (or model) of AbC

C = {Cn ∈ Set}n∈N , ν = {νni ∈ Cn}0≤i<n∈N , ς = {ςm,n : Cm × Cnm // Cn}m,n∈N
in the category Set of sets and functions is called an abstract clone. A main class of examples arises
from every object X that admits finite powers πni : Xn → X (0 ≤ i < n ∈ N) in a category C : the
clone of operations C 〈X〉 has structure given by

{C (Xn, X) ∈ Set}n∈N , {πni : Xn // X}0≤i<n∈N ,

{C (Xm, X)× C (Xn, X)m ∼= C (Xm, X)× C (Xn, Xm)
◦Xn,Xm,X

// C (Xn, X)}m,n∈N .
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Every abstract clone can be represented as a clone of operations. This is a consequence of
the deeper fact that there is an isomorphism between the category of abstract clones and the
category of Lawvere theories. Recall that a Lawvere theory consists of an underlying category T
together with an identity-on-objects strict-cartesian functor Fop → T , for F the category of finite
cardinals

(
[n] = {i ∈ N | i < n}, n ∈ N

)
and functions between them equipped with its standard

strict-cocartesian structure. The abstract clone associated to a Lawvere theory with underlying
category T is the clone of operations T

〈
[1]
〉
. Conversely, an abstract clone (C, ν, ς) corresponds to

the Lawvere theory with underlying category TC given by

hom-sets: TC
(
[m], [n]

)
= Cm

n (m,n ∈ N) , identities: νn = (νni )0≤i<n ∈ Cnn (n ∈ N) ,

composition: Cm
` × Cnm

〈π`
i×Cn

m〉0≤i<`
// (Cm × Cnm)`

ςm,n
`

// Cn
` .

Every abstract clone C is then isomorphic to the clone of operations TC
〈
[1]
〉
. There are, however,

more concrete such representations.
The original notion of clone (or closed set) of operators used in universal algebra was given as

a subclone of the clone of operations on a set. These clones typically arise as concrete clones of
operations, by which we shall mean clones of operations in concrete categories with finite powers. A
concrete category with finite powers is a category with finite powers equipped with a faithful functor
to the category of sets that preserves them. Main examples are categories of algebras equipped
with their forgetful functor. The clone of operations A 〈A〉 on an object A in a concrete category
with finite powers (A , U : A // Set) is then a subclone of the clone of operations Set〈UA〉 on the
set UA by means of the injections

A 〈A〉n = A (An, A) //
UAn,A

// Set(U(An), UA) ∼= Set
(
(UA)n, UA

)
.

The question arises as to whether every abstract clone may be represented as a concrete clone of
operations. To discuss the answer we need address a technicality of the theory of abstract clones.

The literature on universal algebra often considers two different notions of abstract clone: the one
given above, which in virtue of its correspondence with Lawvere theories we regard as fundamental,
and a restricted one arising from the multi-sorted equational theory of positive abstract clones AbC+

defined as the restriction of AbC to the set of sorts N+ of positive natural numbers. Thus, the
signature of AbC is that of AbC+ extended with the sort 0 and the operators s0,n : 0 // n (n ∈ N).
From the perspective of Lawvere theories, positive abstract clones exclude the direct consideration
of nullary operators, which are typically justified indirectly as constant unary operators. This
amounts, from the perspective of mono-sorted equational presentations, to introducing constants e
as unary operators subject to the equation e(x) = e(y) (cf. the early categorical axiomatization of
the theory of groups by Peter Freyd in [6]).

Coming back to the concrete representation of abstract clones, it is a folklore theorem of the
theory of abstract clones, for which see e.g. Sangalli [17] and Taylor [20, Lecture III] that further
refer to [16, 18, 19], that every positive abstract clone is isomorphic to a positive clone of operators
in a category of unary algebras. It is this result that we investigate here for suitable enriching
categories other than Set . The need for restricting attention to positive abstract clones will become
apparent in our development.

Let us discuss the categorical setting in which we shall be working. As in the classical theory
of abstract clones, we wish to consider abstract clones with discrete finite arities enriched in a
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category S, henceforth referred to as df-abstract S-clones, and also to internalize the clone of
discrete finitary operations on an object S in S as a discrete finitary S-clone of operations S〈S〉.
The former requires S to be monoidal with finite powers, while the latter that it also be closed.
This is the minimal categorical structure needed on the enriching category. In this setting, as a
stepping stone to the concrete-representation problem, we shall consider the following.

Embedding problem. For a monoidal closed category with finite powers S and a
df-abstract S-clone C, construct an object C in S and an embedding from the df-abstract
S-clone C to the concrete discrete finitary S-clone of operations S〈C〉.

As we will show elsewhere, the embedding problem has no solution for the topos of finite sets and
functions. Infinitary structure is thus necessary and, in Section 3, we present a solution to the
embedding problem for biclosed enriching categories with colimits of ω-chains of sections that are
preserved by finite powers.

Next we investigate concrete representations. We define a concrete cartesian S-category with
finite powers A to be an S-category with finite powers together with a faithful S-functor A → S
that preserves finite powers, and in this context consider the following.

Concrete-representation problem. For a monoidal closed category with finite powers S
and a df-abstract S-clone C, construct a concrete S-category with finite powers A and an
object A in it together with an isomorphism from the df-abstract S-clone C to the concrete
discrete finitary S-clone of operations A 〈A〉 on A.

In Section 4, building upon the embedding construction of Section 3 and in the vein of the afore-
mentioned concrete representation of abstract clones in universal algebra, we present an action-
representation construction addressing the following.

Action-representation problem. For a monoidal closed category with finite powers and
equalizers S and a df-abstract S-clone C, construct a monoid M(C) and an M(C)-action
A(C) in S together with an isomorphism from the df-abstract S-clone C to the discrete

finitary S-clone of operations SM(C)
〈
A(C)

〉
on A(C) in the concrete S-category with finite

powers SM(C) of M(C)-actions.

Specifically, we solve this problem for positive df-abstract S-clones under the further assumptions
on the enriching category S that it is biclosed, has colimits of ω-chains of sections that are preserved
by finite powers, and also has countable powers.

Section 5 develops a conceptual framework for the embedding and representation theorems of
the previous two sections. This necessitates the consideration of enriched clones with operators of
discrete countable arity, henceforth referred to as dc-abstract enriched clones. For them, Cayley-
style embedding and representation theorems are established, and it is shown that the representation
of a df-abstract enriched clone arises from that of the free dc-abstract enriched clone on it.

The investigation of the category-theoretic enrichment of universal algebra
(
see e.g. [4, 2, 14,

15, 13, 8, 11]
)

has lead to several variations and generalizations of the notion of Lawvere the-
ory. In particular, Dubuc [4] introduced enriched theories with arbitrary arities; Borceux and
Day [2] considered enriched theories with discrete finite arities; Power [14] generalized the classi-
cal category-theoretic approach to universal algebra by means of enriched Lawvere theories with
finitely presentable arities; Power [15] studied discrete countable enriched Lawvere theories; and
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Lucyshyn-Wright [11] introduced a general notion of enriched theory with respect to a system of
arities. As for an associated notion of enriched abstract clone, we are not aware of it being made
explicit and, in this respect, present the following.

Definition 1.1. Let (S, I,⊗) be a monoidal category and let A = { â ∈ S }a∈A be an indexed
family of objects such that S has powers [ â,−] for all a ∈ A.

An A-abstract S-clone (Z, ν, ς) is a structure

Z = {Za ∈ S }a∈A , ν =
{
νa : I // [ â, Za] in S

}
a∈A ,

ς = { ςa,b : Za ⊗ [ â, Zb] // Zb in S }a,b∈A
satisfying the following laws

I ⊗ [ â, Zb]
νa⊗[ â,Zb]

//

∼=
//

[ â, Za]⊗ [ â, Zb]
st //

[
â, Za ⊗ [ â, Zb]

]
[ â,ςa,b]

��

[ â, Zb]

Za ⊗ I
Za⊗νa

//

∼=
,,

Za ⊗ [ â, Za]

ςa,a

��

Za

Za ⊗ [ â, Zb]⊗ [ b̂, Zc]

ςa,b⊗[ b̂,Zc]

��

Za⊗st
// Za ⊗

[
â, Zb ⊗ [ b̂, Zc]

] Za⊗[ â,ςb,c]
// Za ⊗ [ â, Zc]

ςa,c

��

Zb ⊗ [ b̂, Zc] ςb,c
// Zc

where stX,Y,Z stands for the standard tensorial strength [X,Y ]⊗ Z → [X,Y ⊗ Z].

Remark 1.2. Enriched abstract clones may be seen in the context of the enriched version of
relative monads over a functor, introduced in the unenriched setting in [1] and considered in the
bicategorical setting in [5]. Indeed, in the setting of enrichment with respect to a monoidal left
closed category S, an A-relative S-monad for an S-functor A : A → S is essentially an A-abstract
S-clone for the indexed family A determined by the object mapping of A.

The notion of A-abstract S-clone essentially corresponds to: (i) Dubuc’s enriched theories [4]
for A the objects of S; (ii) Borceux and Day’s enriched theories [2] for A the finite coproducts of
the unit of S; (iii) Power’s enriched Lawvere theories [14] for A the finitely presentable objects of
S; (iv) Power’s discrete countable Lawvere theories [15] for A the countable coproducts of the unit
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of S; and (v) Lucyshyn-Wright’s enriched algebraic theories with arities [11] for A the system of
arities.

Our work provides concrete representations of discrete finitary and discrete countable enriched
abstract clones, respectively corresponding to Borceux and Day’s enriched theories [2] and to
Power’s discrete countable enriched Lawvere theories [15]. It would be interesting to extend our
results to a wider class of enriched abstract clones also encompassing non-discrete arities.

2 Enriched abstract clones with discrete finite arities

This section introduces the necessary background of the paper. We provide basic definitions and
examples of enriched abstract clones with discrete finite arities, and make explicit some of their
structure.

The classical concept of abstract clone can be enriched in monoidal categories with finite powers.
We therefore adopt the following situation.

Assumption 2.1. Henceforth, we work with an enriching monoidal category S (with unit and
tensor product respectively denoted by I and ⊗) with finite powers (denoted (−)n for n ∈ N).

Notation 2.2. Recall that, for n ∈ N, we write [n] for the finite cardinal {i ∈ N | i < n}.

Definition 2.3 (Discrete finitary enriched abstract clones). A df-abstract S-clone (C, ν, ς) is a
structure

C = {Cn ∈ S}n∈N , ν =
{
〈νni 〉i∈[n] : I // Cn

n in S
}
n∈N ,

ς = { ςm,n : Cm ⊗ Cnm // Cn in S }m,n∈N
satisfying the following laws

I ⊗ Cnm
〈νm

i 〉i∈[m]⊗Cn
m

//

∼=
//

Cm
m ⊗ Cnm

〈πm
i ⊗Cn

m〉i∈[m]
// (Cm ⊗ Cnm)m

ςm,n
m

��

Cn
m

Cn ⊗ I
Cn⊗〈νn

i 〉i∈[n]
//

∼=
,,

Cn ⊗ Cnn

ςn,n

��

Cn

C` ⊗ Cm` ⊗ Cnm

ς`,m⊗Cn
m

��

C`⊗〈π`
i⊗Cn

m〉i∈[`]
// C` ⊗ (Cm ⊗ Cnm)`

C`⊗ςm,n
`

// C` ⊗ Cn`

ς`,n

��

Cm ⊗ Cnm ςm,n

// Cn
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Remark 2.4. The notion of discrete finitary enriched abstract clone above is essentially a rewording
of Borceux and Day’s notion of enriched theory (see [2, Definition 2.1.1], and also consult [11]) in
the language of abstract clones.

For a df-abstract S-clone (C, ν, ς), one typically refers to C as the carrier and to the structures ν
and ς respectively as the variables and substitution.

Main examples of df-abstract S-clones are given by clones of operations on objects in S-categories
with finite powers. To introduce them, let us recall the notion of finite product in the enriched
setting. The product of {Ai}i∈[n] (n ∈ N) in an S-category A is specified by isomorphisms∏

i∈[n] A (X,Ai) ∼= A (X,
∏
i∈[n]Ai) (X ∈ A )

that are S-natural.

Example 2.5 (Discrete finitary enriched clone of operations). Let A be an S-category with finite
powers. The discrete finitary S-clone of operations A 〈X〉 on an object X ∈ A is given by the
family A 〈X〉n = A (Xn, X) (n ∈ N) with variables given by the composite

I
idXn

// A (Xn, Xn) ∼= A (Xn, X)n
πn
i // A (Xn, X)

(
i ∈ [n]

)
and substitution by the composite

A (Xm, X)⊗A (Xn, X)m ∼= A (Xm, X)⊗A (Xn, Xm)
◦Xn,Xm,X

// A (Xn, X) .

The rest of the section identifies functorial structure that is implicit in the algebraic structure of
df-abstract clones and is important to reveal further structure imposed by variables and substitution
on the carrier.

Notation 2.6. Recall that we write F for the category of finite cardinals and functions.

Definition 2.7. Let C be a df-abstract S-clone. For n,m ∈ N and f : [n] // [m] in F, define the
action Cf : Cn // Cm in S as the composite

Cn ∼= Cn ⊗ I
Cn⊗〈νm

fi〉i∈[n]
// Cn ⊗ Cmn

ςn,m
// Cm .

Proposition 2.8. Let C be a df-abstract S-clone. For all n,m, ` ∈ N, and [n]
f
// [m]

g
// [`] in F,

we have the following identities.

Cid[n]
= idCn , C(g f) = Cg Cf : Cn // C` (1)

Cn

Cf

��

I

νn
i

77

νm
fi ''

Cm

(
i ∈ [n]

)
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C` ⊗ Cn`
ς`,n
//

C`⊗Cf
`

��

Cn

Cf

��

C` ⊗ Cm` ς`,m
// Cm

Cm ⊗ C`m
ςm,`

((
Cn ⊗ C`m

Cf⊗C`
m 55

Cn⊗C`
f ))

C`

Cn ⊗ C`n
ςn,`

66 (2)

The corollary below recasts (1) and (2) above in categorical form.

Corollary 2.9. Let C be a df-abstract S-clone.

1. The mappings

[n] ∈ F � // Cn ∈ S (n ∈ N) , f : [n] // [m] in F � // Cf : Cn // Cm in S

define a functor C : F // S.

2. For all ` ∈ N, the family
ς`,− = { ς`,k : C` ⊗ Ck` // Ck }k∈F

defines a natural transformation C` ⊗ C`(−)
. // C(−) : F // S.

3. For all ` ∈ N, the family
ς−,` = { ςk,` : Ck ⊗ C`k // C` }k∈F

defines a dinatural transformation C(=) ⊗ C`(−) .. // C` : Fop × F // S.

Homomorphisms of df-abstract enriched clones are structure-preserving maps between their
underlying carriers. We record the definition and note that they are natural with respect to the
functorial action of df-abstract enriched clones.

Definition 2.10. An homomorphism h : (C, ν, ς) // (C ′, ν′, ς ′) of df-abstract S-clones is a family

hn : Cn // C ′n in S (n ∈ N)

such that the diagrams

I
〈νn

i 〉i∈[n]

~~

〈ν′ni 〉i∈[n]

  

Cn
n

hn
n

// C ′n
n

Cm ⊗ Cnm
hm⊗hn

m

//

ςm,n

��

C ′m ⊗ C ′n
m

ς′m,n

��

Cn
hn

// C ′n

commute for all m,n ∈ N.

Definition 2.11. For a monoidal category with finite powers S, we let AbC(S) be the category of
df-abstract S-clones and their homomorphisms.

Proposition 2.12. An homomorphism C // C ′ of df-abstract S-clones C and C ′ yields a natural
transformation C

. // C ′ : F // S.

Definition 2.13. A (positive) embedding of df-abstract enriched clones is an homomorphism for
which every (positive) component is a monomorphism.
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2.1 Nullary operations as multi-ary ones

Every injection with non-empty domain in F is a section and hence preserved by the functor C :
F → S induced by a df-abstract S-clone C. We proceed to provide conditions under which the
action C([0]

� � // [n]) : C0 → Cn (n ∈ N) associated to the inclusion [0] �
�
// [n] in F is also monomorphic.

For this and subsequent developments, the following definition will be convenient.

Definition 2.14. For every pair k, ` ∈ N with k = 0 whenever ` = 0, we let k _ ` denote the
function [k] // [`] in F given by the mapping i ∈ [k]

� // min(i, ` ·− 1) ∈ [`].

Inspecting the definition, one sees that, for k ≤ ` ∈ N, the function k _ ` is the inclusion [k] �
�
// [`],

while the function ` _ k is its unique order-preserving retraction.

2.1.1 Monoidal enrichment

When the object of nullary operations is inhabited, it is a section of the multi-ary ones.

Definition 2.15. An object X in a monoidal category with unit I is said to be inhabited whenever
it has a generalized element of the form I → X.

Proposition 2.16. For every df-abstract S-clone C with C0 inhabited and n ∈ N, the action C(0_n) :
C0 → Cn is a section.

Proof. Let C be a df-abstract S-clone with substitution structure ς. For every generalized element
c : I → C0 and n ∈ N, we have the following commutative diagram

C0

C0

  

C(0_n)
//

∼=
$$

Cn

∼=
&&

C0 ⊗ I
C0⊗〈c〉i∈[n]

&&

C0⊗〈 〉

��

C(0_n)⊗I
// Cn ⊗ I

Cn⊗〈c〉i∈[n]

��

C0 ⊗ C0
n

C(0_n)⊗C0
n

&&

C0⊗〈 〉

xx

C0 ⊗ C0
0

ς0,0

��

Cn ⊗ C0
n

ςn,0

ssC0

q.e.d.

Corollary 2.17. The functor C : F // S induced by a df-abstract S-clone C with C0 inhabited
preserves monomorphisms.

2.1.2 Cartesian enrichment

Assumption 2.18. For the rest of this section, we restrict attention to the case in which the
enriching category S is cartesian monoidal.
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In the cartesian enriched setting, for a df-abstract S-clone C, the action C(0_n) (n ∈ N) and
the substitution map ς0,n are interdefinable.

Proposition 2.19. Let C be a df-abstract S-clone. For all n ∈ N, the diagram

C0

C(0_n)
��

∼= // C0 × Cn0

ς0,n
~~

Cn

commutes.

Let us now consider the extent to which the action maps C(0_n) (n ∈ N) of a df-abstract
S-clone C may be considered parametrized sections. To this end we introduce the following notion.

Definition 2.20. A map s : X // Y in a cartesian category is said to be an n-section, for n ∈ N,
if there exists r : Y ×Xn // X such that the diagram

X ×Xn

π1

((

s×Xn

// Y ×Xn

r

��

X

commutes.

Proposition 2.21. 1. The notions of section and 0-section are equivalent.

2. In every cartesian category, n-sections are monomorphisms for all n ∈ N.

3. If s : X // Y is an n-section for some 1 ≤ n ∈ N and X has a global section then s is a
section.

It follows that the insertion of nullary operators into multi-ary ones is monomorphic.

Proposition 2.22. Let C be a df-abstract S-clone. The maps C(0_n) : C0
// Cn (n ∈ N) are

n-sections.

Proof. Using Proposition 2.19, one has that the diagram

C0 × C0
n

π1

**

C(0_n)×C0
n

// Cn × C0
n

ςn,0

��

C0

commutes. q.e.d.

Corollary 2.23. For a cartesian monoidal enriching category S, the functor F // S induced by a
df-abstract S-clone preserves monomorphisms.

Proof. Follows from Proposition 2.22 and the fact that every monomorphism with non-empty do-
main in F is a section. q.e.d.
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3 Embedding theorem

The aim of this section is to give a solution to the embedding problem presented in the introduction.
As mentioned there, besides being monoidal (right) closed and having finite powers, the enriching
category need support further structure. We will motivate the structure we will be requiring by
explaining the basic idea behind our construction.

Assumption 3.1. Henceforth, we work with an enriching monoidal closed category S with finite
powers.

Notation 3.2. The category S enriched over itself will be denoted S. Accordingly, S(X,Y ) ∈ S is
the internal hom from X to Y in S, and we write εX,Y : S(X,Y )⊗X // Y for its evaluation map.

In view of the following proposition, one may consider discrete finitary S-clones of operations
on objects of S.

Proposition 3.3. The S-category S has finite powers.

A unitary Menger algebra of rank n ∈ N (see e.g. [12, 18] for this notion) is a model of the
equational theory of abstract clones restricted to the single sort n, with operators

vni : n
(
i ∈ [n]

)
, sn,n : n, n, . . . , n︸ ︷︷ ︸

n times

// n .

Every df-abstract S-clone (C, ν, ς) induces two unitary Menger algebras of rank n ∈ N in S:

Cn ∈ S , 〈νni 〉i∈[n] : I → Cn
n in S ,

ςn,n : Cn ⊗ Cnn → Cn in S (3)

and
S(Cn

n, Cn) ∈ S , I → S(Cn
n, Cn)n in S ,

S(Cn
n, Cn)⊗ S(Cn

n, Cn)n → S(Cn
n, Cn)

with the former admitting a Cayley-style embedding into the latter as follows

σn : Cn // // S(Cn
n, Cn) (4)

and obtained by right transposing the substitution structure (3). We shall proceed to construct an
object C ∈ S and a positive embedding of S-clones

ρ : C − // S〈C〉

with positive components
ρn : Cn − // S(Cn, C) (5)
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that restrict to the embeddings (4). This we will achieve by assembling all the positive n-ary
operators

C1

C(1_2)
// C2 → · · · → Cn

C(n_n+1)
// Cn+1 → · · · (1 ≤ n ∈ N)

by means of a colimit construction.

Assumption 3.4. Henceforth, we will work with an enriching monoidal biclosed category S as-
sumed to have colimits of ω-chains of sections and finite powers that preserve them.

Definition 3.5. For a df-abstract S-clone C, we let { ın : Cn // C }1≤n∈N be a colimit of the
ω-chain {C(k_k+1) : Ck // // Ck+1 }1≤k∈N and define ı0 : C0 → C as the composite ı1 C(0_1).

We remark that the above construction is functorial, and proceed to analyze the structure of the
colimiting cone.

Proposition 3.6. The mapping C
� // C extends to a functor AbC(S) → S from the category of

df-abstract S-clones to S.

Definition 3.7. Let C be a df-abstract S-clone. For 1 ≤ n ∈ N, we have that the family
{C(k_n) : Ck // Cn }1≤k∈N is a cone for the ω-chain {C(k_k+1) : Ck // // Ck+1 }1≤k∈N and we
define n : C // Cn as the unique mediating map such that n ık = C(k_n) for all 1 ≤ k ∈ N.

Proposition 3.8. Let C be a df-abstract S-clone. For all 1 ≤ n ∈ N, the map ın : Cn // C is a
section with retraction n : C // Cn.

Having set the scene, the rest of the section establishes an embedding theorem in three steps:
(i) we define a family of maps ρ = {ρn}n∈N as in (5) above; (ii) we verify that ρ is an S-clone
homomorphism C → S〈C〉; and (iii) we show that every positive component of ρ is monomorphic.

Definition 3.9. For a df-abstract S-clone C with substitution structure ς, define

α = {αn : Cn ⊗ Cn // C }n∈N

with components given by the composite

Cn ⊗ Cn ∼= colim1≤m∈NCn ⊗ Cmn
colim1≤m∈N ςn,m

// colim1≤m∈NCm = C .

Further, let
ρ = { ρn : Cn // S(Cn, C) }n∈N

be given by right transposing each component of α.

Note that the definition of α relies on the enriching category being left closed and on Corol-
lary 2.9 (2).

Proposition 3.10. For a df-abstract S-clone C, the family α defines a dinatural transforma-
tion C(=) ⊗ C

(−) .. // C : Fop × F // S.
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Proof. Follows from Proposition 2.9 (3). q.e.d.

The relationship between (4) and (5) is as follows.

Proposition 3.11. For every df-abstract S-clone, ρ0 = S
(
〈 〉, ı0

)
σ0 and, for all 1 ≤ n ∈ N,

σn = S(ın
n, n) ρn.

Proposition 3.12. Let (C, ν, ς) be a df-abstract S-clone. The family ρ is an S-clone homomor-
phism C // S〈C〉.

Proof. See Appendix A. q.e.d.

We are left with showing that each positive component of ρ is monomorphic. We require the
following.

Definition 3.13. Let C be a df-abstract S-clone with variables ν. For i ∈ N, let νi : I // C be
given by the composites

I
νi+1
i //

νn
i

��

Ci+1

C(i+1_n)

}}

ıi+1

��

Cn
ın // C

(0 ≤ i < n ∈ N)

and, for n ∈ N, set
ηn = 〈νi〉i∈[n] : I // Cn .

Proposition 3.14. Let C be a df-abstract S-clone. For n ∈ N,

ın = (Cn ∼= Cn ⊗ I
Cn⊗ηn // Cn ⊗ Cn

αn // C) .

Proof. By the commutativity of the following diagram:

Cn ⊗ I

∼=

++

Cn⊗〈νn
i 〉i∈[n]

&&

Cn⊗ηn // Cn ⊗ Cn

αn

��

Cn ⊗ Cnn
Cn⊗ınn

77

ςn,n

��

Cn ın
// C

q.e.d.

Proposition 3.15. Let C be a df-abstract S-clone. The map ρn : Cn // S(Cn, C) is a section for
all 1 ≤ n ∈ N.
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Proof. Follows from Propositions 3.8 and 3.14 because, for 1 ≤ n ∈ N, the diagram

Cn

Cn

44
ın 00

∼=
((

ρn // S(Cn, C)
S(ηn,n)

// S(I, Cn)

∼=

��

Cn ⊗ I
Cn⊗ηn

// Cn ⊗ Cn

αn
��

C
n

// Cn

commutes. q.e.d.

Our development summarizes as follows.

Theorem 3.16 (Embedding theorem). Let S be a monoidal biclosed category with colimits of
ω-chains of sections and finite powers that preserve them. For every df-abstract S-clone C, the
family ρ provides a positive embedding of C into the concrete discrete finitary S-clone of opera-
tions S〈C〉 on C in S. Moreover, this is an embedding whenever C0 is inhabited.

Proof. The first part follows from Propositions 3.12 and 3.15. In addition, the second part uses
Proposition 2.16. q.e.d.

3.1 Cartesian enrichment

Assumption 3.17. For the rest of this section, we restrict attention to the case in which the
enriching category S is cartesian monoidal.

Proposition 3.18. Let C be a df-abstract S-clone. The map ı0 : C0
// C is a 1-section.

Proof. Write ς for the substitution structure. For 1 ≤ k ∈ N, we have

Ck × C0
1

Ck×C0
(k_1)

��

C(k_k+1)×C0
1

// Ck+1 × C0
1

Ck+1×C0
(k+1_1)

��

Ck × C0
k

ςk,0

%%

Ck×C0
k

**

C(k_k+1)×C0
k

// Ck+1 × C0
k Ck+1×C0

(k+1_k)

//

C(k+1_k)×C0
k

��

Ck+1 × C0
k+1

ςk+1,0

xx

Ck × C0
k

ςk,0

��

C0

so that the family {Ck × C0
1 Ck×C0

(k_1)

// Ck × C0
k ςk,0

// C0 }1≤k∈N is a cone for the ω-chain
{C(k_k+1) × C0

1 : Ck × C0
1 // Ck+1 × C0

1 }1≤k∈N. Then, the unique mediating map 0 : C ×
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C0
1 // C0 is such that

C0 × C0
1

π1

00

C(0_1)×C0
1

&&

ı0×C0
1

// C × C0
1

0

��

C1 × C0
1

ı1×C0
1

99

ς1,0

&&
C0

q.e.d.

Corollary 3.19. Let C be a df-abstract S-clone. The map ρ0 : C0
// S(C0, C) is a 1-section.

Proof. Follows from Proposition 3.18, because the composite C0
ρ0 // S(C0, C) ∼= C equals the

map ı0. q.e.d.

Corollary 3.20. Let C be a df-abstract S-clone. For all n ∈ N, the map ın : Cn // C is a
monomorphism.

Theorem 3.21 (Embedding theorem). Let S be a cartesian closed category with colimits of
ω-chains of sections. For every df-abstract S-clone C, the family ρ provides an embedding of
C into the concrete discrete finitary S-clone of operations S〈C〉 on C in S.

4 Representation theorem

We turn attention to the representation problem. Building on the embedding theorem of the
previous section, for a given df-abstract S-clone C, we seek a concrete S-category with finite powers
(A C , UC : A C → S) and an object AC ∈ A C together with an isomorphism UC(AC) ∼= C so that
the S-clone embedding

C // // S〈C〉

factors through the sub S-clone
A C〈AC〉 // // S〈C〉

yielding an S-clone representation

C
∼= // A C〈AC〉 .

Notation 4.1. For an object X in an enriched category E , we let EndoE (X) denote the monoid
of endomaps E (X,X) on X.

The specific construction that we will provide is somewhat analogous to the construction of the
Cayley representation of a monoid M , say with multiplication m : M ⊗M → M , in a monoidal
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closed category with equalizers E into the monoid EndoE (M)

M // //

∼=

&&

EndoE (M)

EndoE M (M,m)
66

66

and the characterization of its image as the submonoid EndoE M (M,m), for EM the E -category
of (right) M -actions, of the equivariant endomaps on M acting on itself with m. Indeed, for
a df-abstract S-clone C in an enriching category S with appropriate structure to be presented
shortly, we shall construct a monoid M(C) in S together with a (right) M(C)-action A(C) on C

and consider the concrete S-category with finite powers SM(C) of M(C)-actions, establishing the
following situation

C
ρ

//

ρ′

$$

S〈C〉

SM(C)
〈
A(C)

〉99

99

(6)

for ρ′ a positive S-clone representation, in the sense of having all its positive components invertible.

Notation 4.2. The internal hom of a monoidal left-closed category from an object X to another
one Y will be denoted [X,Y ], and we write εX,Y : X ⊗ [X,Y ] // Y for its evaluation map.

The monoid M(C) will be a submonoid of the endo-hom monoid [C,C] and its carrier

C∞ // // [C,C] (7)

is to be thought of as consisting of assignments for variables. This will provide us with an action

C ⊗ C∞ → C (8)

that, intuitively, substitutes in an operator according to a variable assignment. Variable assignments
for operators of arbitrary arity need be of arbitrary length. To internalize such infinitary data in
the enriching category we will be further requiring the following categorical structure.

Definition 4.3. A category C is said to have N-powers whenever the functor

Set
(
N,C (−, X)

)
: C op // Set (9)

is representable for all X ∈ C .
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In a category with N-powers, we write {π∞i : X∞ → X}i∈N for a family representing (9). If the
category has finite powers, we note the fact to be used later that the ωop-chain of projections

{X(k_k+1) = 〈πk+1
i 〉i∈[k] : Xk+1 → Xk }k∈N

has as limit the cone κ = {κk = 〈π∞i 〉i∈[k] : X∞ // Xk }k∈N.

Assumption 4.4. Henceforth, we work with an enriching monoidal biclosed category S assumed
to have colimits of ω-chains of sections and finite powers that preserve them, and also assumed to
have N-powers.

The next series of definitions construct the data (7) and (8). Proposition 4.8 and Corollary 4.13
show that they have the required structure.

Definition 4.5. For a df-abstract S-clone C, let

λ =
{
λn : Cn // [Cn, C]

}
n∈N

be given by left transposing each component of α in Definition 3.9.

By Proposition 3.10, the family λ is a natural transformation C(−) . // [C(−), C] : Fop // S allowing
us to proceed as follows.

Definition 4.6. For a df-abstract S-clone C, we define

~λ : C∞ // [C,C]

as the composite

C∞ = limn∈ωop Cn
limn∈ωop λn

// limn∈ωop [Cn, C] = [colimn∈ωCn, C] = [C,C] ,

and let
~α : C ⊗ C∞ // C

be the left transpose of ~λ.

Hence, we have the following situation:

Cn ⊗ C∞

Cn⊗κn

��

ın⊗C∞
// C ⊗ C∞

~α
((

C⊗~λ
// C ⊗ [C,C]

εC,C

��

Cn ⊗ Cn αn

// C

(n ∈ N) (10)

Definition 4.7. For a df-abstract S-clone C, let

η : I // C∞
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be the internalisation of the family

{ ηn : I // Cn }n∈N

introduced in Definition 3.13 and let

µ : C∞ ⊗ C∞ // C∞

be given by the composite

C∞ ⊗ C∞
〈π∞i ⊗C

∞〉i∈N
// (C ⊗ C∞)

∞ ~α∞ // C∞ .

Proposition 4.8. For a df-abstract S-clone C, the structure M(C) = (C∞, η, µ) is a monoid in S
and the structure A(C) = (C, ~α) is an M(C)-action.

Proof. Follows from Proposition B.1 in Appendix B. q.e.d.

Remark 4.9. We note that our construction is related to the one introduced by Sangalli [17] for
the purpose of clone representation in the category of sets. The main point of difference between
the two approaches is in the construction of the monoid on which to take actions. Whereas Sangalli
takes it to be freely generated by some basic elements within a certain monoid of endomaps, I
have explicitly constructed a different one. Specifically, for an abstract clone C, the monoid MC of
Sangalli embeds in our monoid M(C) as the submonoid consisting of the sequences 〈ci〉i∈N ∈ C∞
such that the set of indices

{
i ∈ N | ci 6= ıi+1

(
νi+1
i

) }
is finite.

Our construction is functorial.

Definition 4.10. For a monoidal category (S, I,⊗), we let Act(S) be the category of S-actions
and their homomorphisms, with objects

(
M, (A,α)

)
given by a monoid M = (M, e : I →M,m :

M ⊗M → M) together with an M-action (A,α : A ⊗M → A) in S and with morphisms (h, f) :(
M, (A,α)

)
→
(
M′, (A′, α′)

)
consisting of a monoid homomorphism h : M → M′ and an M-action

homomorphism f : (A,α)→
(
A′, α′ ◦ (A′ ⊗ h)

)
.

Proposition 4.11. The mapping C � //
(
M(C),A(C)

)
extends to a functor AbC(S) → Act(S)

from the category of df-abstract S-clones to the category of S-actions.

Proposition 4.12. For a df-abstract S-clone C, the map ~λ : C∞ // [C,C] in Definition 4.6 is a
section.

Proof. See Appendix B. q.e.d.

Corollary 4.13. For a df-abstract S-clone C, the map ~λ is a monoid homomorphism from M(C)
to the endo-hom monoid [C,C]. Thus, M(C) is a submonoid of [C,C].

Let us now recall some background on actions in the enriched context. For a monoid M in a
monoidal (right) closed category with equalizers S, the S-category SM has objects given by (right)
M -actions (A, a : A⊗M → A) and hom-objects given by the equalizer

SM
(
(X,x), (Y, y)

)
// // S(X,Y )

//

// S(X ⊗M,Y ) (11)
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where the parallel pair consists of the right transposes of

S(X,Y )⊗X ⊗M
εX,Y ⊗M

// Y ⊗M
y
// Y

and

S(X,Y )⊗X ⊗M
S(X,Y )⊗x

// S(X,Y )⊗X
εX,Y

// Y . (12)

Identities and composition in SM are restrictions of those of S. Furthemore, if S has finite powers,
then so does the S-category SM ; and, for n ∈ N, these are given by

(X,x)n =
(
Xn , Xn ⊗M

〈πn
i ⊗M〉i∈[n]

// (X ⊗M)n
xn
// Xn

)
.

For an M -action A = (X,x) in S, the family of equalizers

e =
{
en : SM (An, A) // // S(Xn, X)

}
n∈N

is an embedding SM 〈A〉 // // S〈X〉 of concrete discrete finitary S-clones of operations.

Assumption 4.14. Henceforth, we work with an enriching monoidal biclosed category S assumed
to have colimits of ω-chains of sections and finite powers that preserve them, and also assumed to
have N-powers and equalizers.

We establish (6).

Proposition 4.15. Let C be an S-clone. For n ∈ N, the morphism ρn : Cn → S(Cn, C) restricts,

along the monomorphism en : SM(C)
(
A(C)n,A(C)

)
// // S(Cn, C), to a morphism

ρ′n : Cn → SM(C)
(
A(C)n,A(C)

)
. (13)

Proof. See Appendix C. q.e.d.

Note that, by Proposition 3.15, the morphism ρ′n, for all 1 ≤ n ∈ N, is a section with retraction

SM(C)
(
A(C)n,A(C)

)
//
en // S(Cn, C)

S(ηn,n)
// S(I, Cn) ∼= Cn .

The family (13) provides a positive S-clone embedding

ρ′ : C − // SM(C)
〈
A(C)

〉
that yields our representation theorem. Its proof is technical and deferred to Appendix C.

Definition 4.16. A (positive) representation of df-abstract enriched clones is an homomorphism
for which every (positive) component is an isomorphism.
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Theorem 4.17 (Representation theorem). Let S be a monoidal biclosed category with colimits of
ω-chains of sections and finite powers that preserve them, and with N-powers and equalizers. For
every df-abstract S-clone C the family ρ′ is a positive representation of C as the concrete discrete
finitary S-clone of operations SM(C)

〈
A(C)

〉
on the M(C)-action A(C) in SM(C).

Remark 4.18. Note that the positive representation ρ′ is a representation iff the commuting
diagram

S
(
1,S(C∞, C)

)
∼= ,,

C0
ρ0 // S(C0, C) ∼= S(1, C)

S(1,a) 22

S(〈 〉,C)
// S(1⊗ C∞, C) ,

where a : C → S(C∞, C) denotes the right transpose of ~α : C ⊗ C∞ → C, is an equalizer.

Corollary 4.19. For every object X of an S-category E with finite powers,

EndoE (Xn) ∼= EndoSM(E〈X〉)
(
A
(
E 〈X〉

)n)
for all n ∈ N.

5 Enriched abstract clones with discrete countable arities

We conclude the paper outlining a conceptual framework for the constructions and associated
calculations involved in the embedding and representation theorems. This requires extending the
notion of discrete finitary enriched abstract clone to also include operators of infinite countable
arity.

Assumption 5.1. Henceforth, we work with an enriching monoidal category S with countable
powers.

Notation 5.2. We let N = N ∪ {∞}, with n <∞ for all n ∈ N, and set [∞] = N.

Definition 5.3 (Discrete countable enriched abstract clones). Let S be a monoidal category with
countable powers.

A dc-abstract S-clone (D, ν, ς) is a structure

D = {Dn ∈ S}n∈N , ν =
{
〈νni 〉i∈[n] : I // Dn

n in S
}
n∈N ,

ς = { ςm,n : Dm ⊗Dn
m // Dn in S }m,n∈N

satisfying the laws of Definition 2.3.
An homomorphism h : (D, ν, ς) // (D′, ν′, ς ′) of dc-abstract S-clones is a family

hn : Dn
// D′n in S (n ∈ N)
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satisfying the laws of Definition 2.10.
We let AbC∞(S) be the category of dc-abstract S-clones and their homomorphisms.

Remark 5.4. The notion of dc-abstract enriched clone above is essentially a rewording of Power’s
notion of discrete countable enriched Lawvere theory

(
see [15, Definition 4]

)
in the language of

abstract clones.

For a dc-abstract S-clone (D, ν, ς), the structure

( D∞ , 〈ν∞i 〉i∈N : I → D∞
∞ , ς∞,∞ : D∞ ⊗D∞∞ → D∞ )

is a unitary Menger algebra of infinite countable rank and thus has an associated monoid action as
follows.

Proposition 5.5. For a dc-abstract S-clone (D, ν, ς), the structure

M∞(D) = ( D∞
∞ , η : I → D∞

∞ , µ : D∞
∞ ⊗D∞∞ → D∞

∞ )

where

η = 〈ν∞i 〉i∈N , µ = ( D∞
∞ ⊗D∞∞

〈π∞i ⊗D∞
∞〉i∈N

// (D∞ ⊗D∞∞)∞
ς∞,∞

∞
// D∞ )

is a monoid and the structure

A∞(D) = ( D∞ , ς∞,∞ : D∞ ⊗D∞∞ → D∞ )

an M∞(D)-action.

Proposition 5.6. The mapping D � //
(
M∞(D),A∞(D)

)
extends to a functor AbC∞(S) →

Act(S) from the category of dc-abstract S-clones to the category of S-actions.

Assumption 5.7. Henceforth, we work with an enriching monoidal closed category S with count-
able powers.

For a dc-abstract S-clone (D, ν, ς), we have a discrete countable S-clone of operations S〈D∞〉
with carrier

{
S(D∞

n, D∞)
}
n∈N, and the right transposes

ρn : Dn → S(D∞
n, D∞)

(
n ∈ N

)
of the substitution maps

ςn,∞ : Dn ⊗D∞n → D∞
(
n ∈ N

)
are the components of an homomorphism of dc-abstract S-clones

ρ : D → S〈D∞〉 .

Every positive component of ρ is a section and an embedding theorem follows.
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Theorem 5.8 (Embedding theorem). Let S be a monoidal closed category with countable powers.
For every dc-abstract S-clone D, the family ρ provides a positive embedding of D into the concrete
discrete countable S-clone of operations S〈D∞〉 on D∞ in S. Moreover, this is an embedding
whenever D0 is inhabited.

Analogously to the development of the previous section, the embedding may be refined to provide
a representation.

Assumption 5.9. Henceforth, we work with an enriching monoidal closed category S with count-
able powers and equalizers.

For a dc-abstract S-clone D, we have a factorization as follows

Dn
ρn //

ρ′n ((

S(D∞
n, D∞)

SM∞(D)
(
A∞(D)

n
,A∞(D)

)55
en

55 (
n ∈ N

)

that yields a positive Cayley-style representation.

Theorem 5.10 (Representation theorem). Let S be a monoidal closed category with countable
powers and equalizers. For every dc-abstract S-clone D the family ρ′ is a positive representation
of D as the concrete discrete countable S-clone of operations SM∞(D)

〈
A∞(D)

〉
on the M∞(D)-

action A∞(D) in SM∞(D).

Finally, we show how the representation theorem for df-abstract enriched clones may be recov-
ered from that for dc-abstract ones

Assumption 5.11. Henceforth, we work with an enriching monoidal biclosed category S with
countable powers and colimits of ω-chains of sections that are preserved by finite powers.

Every df-abstract S-clone C can be extended to a dc-abstract one, which we shall denote C#,
with object of operators of infinite arity given by C (Definition 3.5), and associated variables

〈νi〉i∈N : I → C∞ (Definition 3.13)

and substitution maps, for n ∈ N, as follows

αn : Cn ⊗ Cn → C (Definition 3.9) ,

~α : C ⊗ C∞ → C (Definition 4.6) ,

ς∞,n : C ⊗ Cn∞ → Cn
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where the last map is the unique such that the diagram

Ck ⊗ Cn∞
Ck⊗κk //

ık⊗Cn
∞

��

Ck ⊗ Cnk

ςk,n

��

C ⊗ Cn∞ ς∞,n

// Cn

commutes for all k ∈ N. This construction is universal.

Proposition 5.12. The forgetful functor AbC∞(S) → AbC(S) has a left adjoint, with the free
dc-abstract S-clone on a df-abstract S-clone C given by C#.

For a df-abstract S-clone C, we have that

M∞
(
C#
)

= M(C) , A∞
(
C#
)

= A(C)

and that the representation of C# provides the representation of C.

Appendix

A Homomorphism property of ρ

Assume the context of Section 3.

Proposition A.1. Let C be a df-abstract S-clone with variables ν. For n ∈ N and i ∈ [n], the
diagram

Cn

πn
i

**

∼= I ⊗ Cn
νn
i ⊗C

n

// Cn ⊗ Cn

αn

��

C

commutes.

Proof. Because the diagram

I ⊗ Cn
νn
i ⊗C

n

// Cn ⊗ Cn

αn

��

I ⊗ Ckn

I⊗ıkn

��

∼=
''

I⊗ıkn 77

νn
i ⊗Ck

n

// Cn ⊗ Ckn
Cn⊗ıkn

66

ςn,k

��

Ck
n

ık
n

''

πn
i

// Ck
ık // C

I ⊗ Cn ∼= // Cn
πn
i

66

is commutative for all k ∈ N. q.e.d.
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Lemma A.2. Let C be a df-abstract S-clone. For m,n ∈ N, the diagram

Cm ⊗ Cnm ⊗ Cn

ςm,n⊗Cn

��

Cm⊗〈πm
i ⊗C

n〉i∈[m]
// Cm ⊗ (Cn ⊗ Cn)m

Cm⊗αn
m

// Cm ⊗ Cm

αm

��

Cn ⊗ Cn αn

// C

commutes.

Proof. Because the diagrams

Cm ⊗ Cnm ⊗ Cn
Cm⊗〈πm

i ⊗C
n〉i∈[m]

// Cm ⊗ (Cn ⊗ Cn)m

Cm⊗αn
m

uu

Cm ⊗ Cnm ⊗ C`n
Cm⊗Cn

m⊗ı`n

44

Cm⊗Cn
m⊗ı`n

��

ςm,n⊗C`
n

��

Cm⊗〈πm
i ⊗C`

n〉i∈[m]

// Cm ⊗
(
Cn ⊗ C`n

)m Cm⊗(Cn⊗ı`n)m

33

Cm⊗(ςn,`)m

��

Cm⊗(ρn⊗ı`n)m
// Cm ⊗

(
S(Cn, C)⊗ Cn

)m
Cm⊗(εCn,C)m

��

Cm ⊗ C`m
Cm⊗ı`m //

ςm,`

��

Cm ⊗ Cm

αm

��

Cn ⊗ C`n

Cn⊗ı`n

**

ςn,`

// C` ı`
// C

Cm ⊗ Cnm ⊗ Cn
ςm,n⊗Cn

// Cn ⊗ Cn
αn

33

are commutative for all ` ∈ N. q.e.d.

Proof of Proposition 3.12. The variables $n
i : I // S(Cn, C)

(
n ∈ N, i ∈ [n]

)
are given by the right

transpose of the composite I ⊗ Cn ∼= Cn
πn
i // C, and the diagram

Cn

ρn

��

I
$n

i
))

νn
i

55

S(Cn, C)

commutes by Proposition A.1.
For m,n ∈ N, the diagram

Cm ⊗ Cnm

ςm,n

��

ρm⊗ρnm

// S(Cm, C)⊗ S(Cn, C)m

∼=
��

S(Cm, C)⊗ S(Cn, Cm)

◦Cn,Cm,C
��

Cn ρn
// S(Cn, C)
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commutes iff so does

Cm ⊗ Cnm ⊗ Cn
Cm ⊗ 〈πm

i ⊗ C
n〉i∈[m]

//

ςm,n⊗Cn

��

Cm ⊗ (Cn ⊗ Cn)m

Cm⊗αn
m

��

ρm⊗(ρn⊗Cn)m
// S(Cm, C)⊗

(
S(Cn, C)⊗ Cn

)m
S(Cm,C)⊗(εCn,C)n

��

Cm ⊗ Cm
ρm⊗Cm

//

αm

++

S(Cm, C)⊗ Cm

εCm,C

��

Cn ⊗ Cn αn

// C

and this is the case by Lemma A.2. q.e.d.

B Monoid and action structures of M(C) and A(C)

Assume the contexts of Sections 3 and 4.

Proposition B.1. For a df-abstract S-clone C, the following diagrams commute.

C ⊗ I

(i)C⊗η
��

∼=

��

C ⊗ C∞
~α
// C

I ⊗ C∞

(ii)η⊗C∞

��

∼=

��

C∞ ⊗ C∞
µ
// C∞

C ⊗ C∞ ⊗ C∞

(iii)~α⊗C∞

��

C⊗µ
// C ⊗ C∞

~α

��

C ⊗ C∞
~α

// C

Proof. Diagram (i) commutes because, by Proposition 3.14 and Diagram (10), so do

C ⊗ I
C⊗η

// C ⊗ C∞

~α

&&
C` ⊗ I

∼=
--

C`⊗η`

55

ı`⊗I
77

C`⊗η // C` ⊗ C∞
ı`⊗C∞

77

C`⊗κ` // C` ⊗ C` α`

// C

C`
ı`

77

for all ` ∈ N.
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Diagram (ii) commutes because, by Definition 3.13, Proposition A.1 and Diagram (10), so do

C∞ ⊗ C∞
µ

//

π∞i ⊗C
∞

))

C∞

π∞i

((
I ⊗ C∞

∼=

''

I⊗κi+1

""

νi+1
i ⊗C∞

((

νi⊗C
∞

//

η⊗C∞
55

C ⊗ C∞ ~α // C

Ci+1 ⊗ C∞
ıi+1⊗C∞

55

Ci+1⊗κi+1

// Ci+1 ⊗ Ci+1

αi+1

66

I ⊗ Ci+1

νi+1
i ⊗Ci+1

55

∼= // Ci+1

πi+1
i

>>

C∞

π∞i

GG

for all i ∈ N.
We show that Diagram (iii) commutes in a series of steps. First, since by Diagram (10), we

have the commutativity of

C` ⊗ C∞ ⊗ C∞
ı`⊗C∞⊗C∞

//

C`⊗κ`⊗C∞

��

C ⊗ C∞ ⊗ C∞

~α⊗C∞

��

C` ⊗ C` ⊗ C∞
α`⊗C∞

// C ⊗ C∞
~α

// C

(14)

and

C` ⊗ C∞ ⊗ C∞

C`⊗〈π∞i ⊗C
∞〉i∈[`]

&&

C`⊗κ`⊗C∞

��

C`⊗µ
**

ı`⊗C∞⊗C∞
// C ⊗ C∞ ⊗ C∞

C⊗µ
// C ⊗ C∞

~α

  

C` ⊗ C∞
ı`⊗C∞

44

C`⊗κ`
**

C` ⊗ C` ⊗ C∞
C`⊗〈π`

i⊗C
∞〉i∈[`]

// C` ⊗ (C ⊗ C∞)`
C`⊗~α`

// C` ⊗ C` α`

// C

(15)

for all ` ∈ N, it is enough to show that the lower horizontal composites of (14) and (15) above are
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equal. Again, since by Diagram (10), we have that

C` ⊗ Ck` ⊗ C∞

ς`,k⊗C∞
**

C`⊗Ck
`⊗κk

��

C`⊗ık`⊗C∞
// C` ⊗ C` ⊗ C∞

α`⊗C∞
// C ⊗ C∞

~α

��

Ck ⊗ C∞
ık⊗C∞

55

Ck⊗κk

��

C` ⊗ Ck` ⊗ Ck
ς`,k⊗Ck

// Ck ⊗ Ck αk

// C

(16)

and that

C` ⊗ Ck` ⊗ C∞

C`⊗〈π`
i⊗C

∞〉i∈[`]
**

C`⊗Ck
`⊗κ`

��

C`⊗ık`⊗C∞
// C` ⊗ C` ⊗ C∞

C`⊗〈π`
i⊗C

∞〉i∈[`]

**

C` ⊗ (Ck ⊗ C∞)`

C`⊗(Ck⊗κk)`

��

C`⊗(ık⊗C∞)`
// C` ⊗ (C ⊗ C∞)`

C`⊗~α`

��

C` ⊗ Ck` ⊗ Ck
C`⊗〈π`

i⊗C
k〉i∈[`]

// C` ⊗ (Ck ⊗ Ck)`
C`⊗αk

`

// C` ⊗ C` α`

// C

(17)

for all k ∈ N, it is enough to show that the lower horizontal composites of (16) and (17) are equal.
This is the case by Lemma A.2. q.e.d.

Proof of Proposition 4.12. The composite

[C,C] ∼= I ⊗ [C,C]
〈νi⊗[C,C]〉i∈N

//
(
C ⊗ [C,C]

)∞ (εC,C)∞
// C∞

provides a retraction for ~λ.
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Indeed, for all i ∈ N, we have the following commutative diagram

I ⊗ [C,C]

νi⊗[C,C]

++

〈νi⊗[C,C]〉i∈N
//
(
C ⊗ [C,C]

)∞
π∞i
��

(εC,C)∞

''
[C,C]

∼=

77

I ⊗ C∞
I⊗~λ

OO

νi+1
i ⊗C∞

��

νi⊗C
∞
// C ⊗ C∞

C⊗~λ
// C ⊗ [C,C]

εC,C

''

C∞

π∞i

��

C∞

π∞i

>>

~λ

OO

∼=

77

κi+1

''

Ci+1 ⊗ C∞
ıi+1⊗C∞

77

Ci+1⊗κi+1
// Ci+1 ⊗ Ci+1

αi+1
// C

Ci+1 ∼= // I ⊗ Ci+1

νi+1
i ⊗Ci+1

66

∼= // Ci+1

πi+1
i

77

using Definition 3.13, Diagram (10), and Proposition A.1. q.e.d.

C Positive representation structure of ρ′

Assume the contexts of Sections 3 and 4.

Proof of Proposition 4.15. Let n ∈ N. We show that ρn equalizes the parallel pair

S(Cn, C) ⇒ S(Cn ⊗ C∞, C)

given by the right transposes of

S(Cn, C)⊗ Cn ⊗ C∞
εCn,C⊗C∞

// C ⊗ C∞ ~α // C

and

S(Cn, C)⊗ Cn ⊗ C∞
S(Cn, C)⊗ 〈πn

i ⊗ C
∞〉i∈[n]

// S(Cn, C)⊗ (C ⊗ C∞)n
S(Cn, C)⊗ ~αn

// S(Cn, C)⊗ Cn
εCn,C

// C .
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To see this, note first that, for all ` ∈ N, we have that

S(Cn, C)⊗ Cn ⊗ C∞
εCn,C⊗C∞

**

Cn ⊗ C`n ⊗ C∞
Cn⊗ı`n⊗C∞

//

ςn,`⊗C∞

**
Cn⊗C`

n⊗κ`

��

Cn ⊗ Cn ⊗ C∞
ρn⊗Cn⊗C∞

OO

αn⊗C∞
// C ⊗ C∞

~α

��

C` ⊗ C∞
ı`⊗C∞

44

C`⊗κ`

��

Cn ⊗ C`n ⊗ C`
ςn,`⊗C`

// C` ⊗ C` α`

// C

and that

S(Cn, C)⊗ (C ⊗ C∞)n

S(Cn,C)⊗~αn

))

S(Cn, C)⊗ Cn ⊗ C∞

S(Cn,C)⊗〈πn
i ⊗C

∞〉i∈[n]

44

Cn ⊗ (C ⊗ C∞)n

Cn⊗~αn

��

ρn⊗(C⊗C∞)n

OO

S(Cn, C)⊗ Cn

εCn,C

��

Cn ⊗ C`n ⊗ C∞
Cn ⊗ ı`n ⊗ C∞

//

Cn⊗C`
n⊗κ`

��

Cn⊗〈πn
i ⊗C

∞〉i∈[n]

))

Cn ⊗ Cn ⊗ C∞

ρn⊗Cn⊗C∞
OO

Cn ⊗ 〈πn
i ⊗ C

∞〉i∈[n]

44

Cn ⊗ (C` ⊗ C∞)n

Cn⊗(ı`⊗C∞)n

99

Cn⊗(C`⊗κ`)n

��

Cn ⊗ C`n ⊗ C`
Cn ⊗ 〈πn

i ⊗ C
`〉i∈[n]

// Cn ⊗ (C` ⊗ C`)n
Cn⊗α`

n
// Cn ⊗ Cn αn

//

ρn⊗Cn

@@

C

Then, since by Lemma A.2 the above two lower horizontal composites are equal, we are done. q.e.d.

Proposition C.1. Let C be a df-abstract S-clone. For i ∈ N,

π∞i =
(
C∞ ∼= I ⊗ C∞

νi⊗C
∞
// C ⊗ C∞ ~α // C

)
.
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Proof. Because the diagram

I ⊗ C∞

∼=

��

I⊗κi+1

��

νi+1
i ⊗C∞

))

νi⊗C
∞

// C ⊗ C∞

~α

��

I ⊗ Ci+1

∼=
��

νi+1
i ⊗Ci+1

))

Ci+1 ⊗ C∞
ıi+1⊗C∞

55

Ci+1⊗κi+1

��

C∞
κi+1

//

π∞i

55
Ci+1

πi+1
i

55Ci+1 ⊗ Ci+1
αi+1

// C

commutes for all i ∈ N. q.e.d.

Definition C.2. Let C be a df-abstract S-clone. For 1 ≤ n ∈ N, let γn : Cn // C∞ be the unique
mediating map from the cone {C(i_n) : Cn // Ci }i∈N of the ωop-chain {C(i_i+1) : Ci+1 → Ci }i∈N
to the limiting cone {κi : C∞ // Ci}i∈N.

Proposition C.3. Let C be a df-abstract S-clone. For 1 ≤ n ∈ N, the diagram

C ⊗ Cn

C⊗γn
��

n⊗Cn

// Cn ⊗ Cn

αn

��

C ⊗ C∞
~α

// C

commutes.

Proof. Because, using Proposition 3.10, we have that

C ⊗ Cn
n⊗Cn

&&

C` ⊗ Cn

ı`⊗Cn

""

C`⊗C(`_n)

&&

C`⊗γn
��

ı`⊗Cn
88

C(`_n)⊗Cn

// Cn ⊗ Cn

αn

��

C` ⊗ C∞

ı`⊗C∞

&&

C`⊗κ`

// C` ⊗ C`
α` // C

C ⊗ Cn
C⊗γn

// C ⊗ C∞
~α

99

for all ` ∈ N. q.e.d.
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Proposition C.4. For a df-abstract S-clone C, the embedding ρ′ : C // // SM(C)
〈
A(C)

〉
is a positive

representation.

Proof. For 1 ≤ n ∈ N, we show that, for τn the retraction S(Cn, C)
S(ηn,n)

// S(I, Cn) ∼= Cn of ρn
given in Proposition 3.15, we have ρn τn en = en : SM(C)

(
A(C)n,A(C)

)
// // S(Cn, C); so that, since

ρn = en ρ
′
n, it follows that ρ′n τn en is the identity and hence that the section ρ′n is also a retraction.

The calculation below shows that ρn τn en and en have the same transpose. It relies on the
definitions of ρn (Definition 3.9), en

(
see (11) and (12)

)
, ηn (Definition 3.13), γn (Definition C.2),

and on Propositions C.1 and C.3.

SM(C)
(
A(C)n,A(C)

)
⊗ Cn en⊗id

// S(Cn, C)⊗ Cn ∼= S(Cn, C)⊗ I ⊗ Cn

id⊗ηn⊗id
// S(Cn, C)⊗ Cn ⊗ Cn

εCn,C⊗id
// C ⊗ Cn

n⊗id
// Cn ⊗ Cn

ρn⊗id
// S(Cn, C)⊗ Cn

εCn,C
// C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn en⊗id

// S(Cn, C)⊗ Cn ∼= S(Cn, C)⊗ I ⊗ Cn

id⊗ηn⊗id
// S(Cn, C)⊗ Cn ⊗ Cn

εCn,C⊗id
// C ⊗ Cn

id⊗γn // C ⊗ C∞ ~α // C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn

id⊗γn // SM(C)
(
A(C)n,A(C)

)
⊗ C∞

∼= SM(C)
(
A(C)n,A(C)

)
⊗ I ⊗ C∞

id⊗ηn⊗id
// SM(C)

(
A(C)n,A(C)

)
⊗ Cn ⊗ C∞

en⊗id⊗id
// S(Cn, C)⊗ Cn ⊗ C∞

εCn,C⊗id
// C ⊗ C∞ ~α // C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn

id⊗γn // SM(C)
(
A(C)n,A(C)

)
⊗ C∞

∼= SM(C)
(
A(C)n,A(C)

)
⊗ I ⊗ C∞

id⊗ηn⊗id
// SM(C)

(
A(C)n,A(C)

)
⊗ Cn ⊗ C∞

en⊗id⊗id
// S(Cn, C)⊗ Cn ⊗ C∞

id⊗〈πn
i ⊗id〉i∈[n]

// S(Cn, C)⊗ (C ⊗ C∞)n

id×~αn

// S(Cn, C)⊗ Cn
εCn,C

// C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn en⊗id

// S(Cn, C)⊗ Cn
id⊗γn // S(Cn, C)⊗ C∞

∼= S(Cn, C)⊗ I ⊗ C∞
id⊗〈νi⊗id〉i∈[n]

// S(Cn, C)⊗ (C ⊗ C∞)n

id⊗~αn

// S(Cn, C)⊗ Cn
εCn,C

// C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn en⊗id

// S(Cn, C)⊗ Cn
id⊗γn // S(Cn, C)⊗ C∞

id⊗κn // S(Cn, C)⊗ Cn
εCn,C

// C

= SM(C)
(
A(C)n,A(C)

)
⊗ Cn en⊗id

// S(Cn, C)⊗ Cn
εCn,C

// C

q.e.d.
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[8] S. Lack and J. Rosický. Notions of Lawvere theory. Applied Categorical Structures, 19:363–391,
2011.

[9] F. W. Lawvere. Functorial semantics of algebraic theories and some algebraic problems in
the context of functorial semantics of algebraic theories. Reprints in Theory and Applications
of Categories, No. 5, pp 1–121. (Originally published as: Ph.D. thesis, Columbia University,
1963 and in Reports of the Midwest Category Seminar II, 1968, 41–61.).

[10] F. W. Lawvere. Metric spaces, generalized logic and closed categories. Reprints in Theory and
Applications of Categories, No. 1, pp 1–37. (Originally published as: Rendiconti del Seminario
Matematico e Fisico di Milano, XLIII (1973), 135–166.).

[11] R. Lucyshyn-Wright. Enriched algebraic theories and monads for a system of arities. Theory
and Applications of Categories, 31(5):101–137, 2016.

[12] K. Menger. On substitutive algebra and its syntax. Mathematical Logic Quarterly, 10(6–7):81–
104, 1964.

[13] K. Nishizawa and A. J. Power. Lawvere theories enriched over a general base. Journal of Pure
and Applied Algebra, 213(3):377–386, 2009.

[14] A. J. Power. Enriched Lawvere theories. Theory and Applications of Categories, 6(7):83–93,
1999.



328 M. Fiore

[15] A. J. Power. Discrete Lawvere theories. In Proceedings of the First International Conference
on Algebra and Coalgebra in Computer Science, CALCO 2005, volume 3629 of Lecture Notes
in Computer Science, pages 348–363, 2005.

[16] E. Redi. Representation of Menger systems by multiplace endomorphisms. Tartu Riikl. Ul.
Toimetised (Uchen. Zapinski Tartu Gos. Univ.), 277:47–51, 1971. (Russian).

[17] A. A. L. Sangalli. On the structure and representation of clones. Algebra Universalis, 25:101–
106, 1988.

[18] B. M. Schein and V. S. Trohimenko. Algebras of multiplace functions. Semigroup Forum,
17:1–64, 1979.

[19] W. Taylor. A question on representing algebraic theories. Unpublished manuscript, 1979.

[20] W. Taylor. Abstract clone theory. In I. Rosenberg and G. Sabidussi, editors, Algebras and
Orders, volume 389 of NATO ASI Series C: Mathematical and Physical Sciences, pages 507–
530, 1993.


	On the concrete representation of discrete enriched abstract clones Marcelo Fiore
	Introduction
	Enriched abstract clones with discrete finite arities
	Nullary operations as multi-ary ones

	Embedding theorem
	Cartesian enrichment

	Representation theorem
	Enriched abstract clones with discrete countable arities
	Homomorphism property of 
	Monoid and action structures of M(C) and A(C)
	Positive representation structure of '


