View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Apollo

A Concurrency Semantics for Relaxed Atomics that
Permits Optimisation and Avoids Thin-Air Executions

Jean Pichon-Pharabod

Peter Sewell

University of Cambridge, United Kingdom

first.last@cl.cam.ac.uk

Abstract

Despite much research on concurrent programming languages, es-
pecially for Java and C/C++, we still do not have a satisfactory defi-
nition of their semantics, one that admits all common optimisations
without also admitting undesired behaviour. Especially problematic
are the “thin-air” examples involving high-performance concurrent
accesses, such as C/C++11 relaxed atomics. The C/C++11 model
is in a per-candidate-execution style, and previous work has identi-
fied a tension between that and the fact that compiler optimisations
do not operate over single candidate executions in isolation; rather,
they operate over syntactic representations that represent all execu-
tions.

In this paper we propose a novel approach that circumvents this
difficulty. We define a concurrency semantics for a core calculus,
including relaxed-atomic and non-atomic accesses, and locks, that
admits a wide range of optimisation while still forbidding the
classic thin-air examples. It also addresses other problems relating
to undefined behaviour.

The basic idea is to use an event-structure representation of the
current state of each thread, capturing all of its potential execu-
tions, and to permit interleaving of execution and transformation
steps over that to reflect optimisation (possibly dynamic) of the
code. These are combined with a non-multi-copy-atomic storage
subsystem, to reflect common hardware behaviour.

The semantics is defined in a mechanised and executable form,
and designed to be implementable above current relaxed hard-
ware and strong enough to support the programming idioms that
C/C++11 does for this fragment. It offers a potential way forward
for concurrent programming language semantics, beyond the cur-
rent C/C++11 and Java models.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Concurrency; Relaxed memory models; C/C++

1. Introduction
Batty et al. [6] note that:

Disturbingly, 40+ years after the first relaxed-memory
hardware was introduced (the IBM 370/158MP), the field
still does not have a credible proposal for the concur-
rency semantics of any general-purpose high-level lan-
guage that includes high-performance shared-memory con-
currency primitives. This is a major open problem for pro-
gramming language semantics.

The basic problem is how we can define semantics for such
languages (including C, C++, and Java) that provides useful guar-
antees for programmers while permitting optimisation. Classically,
one might imagine having a fixed language semantics and adopting
only optimisations that are sound with respect to it. The situation
here is inverted: mainstream compiler and hardware implementa-
tions have accumulated a range of optimisations, that are sound
with respect to conventional sequential execution models but which
have observable effects in concurrent contexts, and it seems im-
practical to significantly limit the commonly accepted optimisa-
tions. Instead, we have to identify an envelope around them that
is tight enough to support concurrent programming.

Neither of the main previous attempts succeeds in this. The Java
Memory Model [17]] is unsound with respect to standard compiler
optimisations 23]). The C/C++11 model [} 3L [7, 8] is arguably
the current state of the art, and gives the “right” behaviour in many
cases, but it permits too much behaviour in others. At the heart
of the problem are the “thin-air” examples for concurrent high-
performance accesses, recalled in §|E in which values appear out
of nowhere [6} O} (17, 23]

Those thin-air executions are not thought to occur in practice,
with any combination of current compiler and hardware optimisa-
tions, but excluding them without also excluding important optimi-
sations has not been previously been achieved.

A further concern for C and C++, also highlighted by Batty et
al. [[6]], is the interaction between undefined behaviour and relaxed
memory, which we recall in §2.2]

Contribution We propose a new approach to the definition of
concurrent shared-memory programming language semantics that
addresses both of these problems. We develop it in the simplest
possible setting: a core calculus featuring relaxed and non-atomic
accesses and locks. Our semantics forbids the classic thin-air ex-
amples and gives the desired behaviour on the relevant Java causal-
ity test cases [21]]. It is designed to be weak enough to form an
envelope around all reasonable behaviour induced by hardware
and compiler optimisations, so that implementing relaxed accesses
above the ARM or IBM Power architectures (the most relaxed cur-
rent mainstream hardware) does not require any memory barriers
or other synchronisation, while being strong enough to support

https://core.ac.uk/display/162916932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C/C++11-style programming. It moreover handles undefined be-
haviour in concurrent contexts.

After recalling the problems in more detail (§2), we begin
with an informal introduction to our semantics (§3), before ex-
plaining it more precisely (§4] and §5). Our definitions are mech-
anised in Lem [19] and available online (http://www.cl.cam.
ac.uk/~pes20/popll6-thinair), and we use Lem to generate
executable OCaml code to make a tool allowing one to explore
the semantics on small examples. We discuss how the seman-
tics prevents out-of-thin-air executions (§6)), how it deals with un-
defined behaviour (§7), the reasons why it should be efficiently
implementable above ARM/Power (§8), and its relationship to
C/C++11 (§9). Finally we discuss related work and conclude
(YIOUTT).

2. Recalling the Problems
2.1 The Thin-Air Problem

As acknowledged by the C++ standard [7, 23.9p9], in trying to
define an envelope around all reasonable optimisations, the C/C++
memory model also admits undesirable executions where values
seem to appear out of thin air:

[Note: The requirements do allow rl == r2 == 42 in the
following example, with x and y initially zero:

// Thread 1:

rl = x.load(memory_order_relaxed);

if (rl == 42) y.store(rl, memory_order_relaxed);
// Thread 2:

r2 = y.load(memory_order_relaxed);

if (r2 == 42) x.store(42, memory_order_relaxed);

However, implementations should not allow such behavior.
— end note]

Similar issues arose in the first Java Memory Model design, in a
slightly different form [17]. C11 and C++11 have nonatomic and
relaxed accesses, both of which are intended to be implementable
without memory barriers or other synchronisation; concurrent re-
laxed access to the same location is permitted while concurrent
nonatomic access gives wholly undefined behaviour (to let optimis-
ers assume the latter does not occur). Java normal (non-volatile)
accesses are similarly intended to be implementable with just the
underlying hardware plain loads and stores; programmers are not
supposed to make non-synchronised concurrent use of these, but,
to provide safety guarantees even in the presence of arbitrary code,
the semantics must forbid the forging of pointers.

There is no precise definition of what thin-air behaviour is—if
there were, it could simply be forbidden by fiat, and the problem
would be solved. Rather, there are a few known litmus tests (like
the one above) where certain outcomes are undesirable and do
not appear in practice (as the result of hardware and compiler
optimisations). The problem is to draw a fine line between those
undesirable outcomes and other very similar litmus tests which
important optimisations do exhibit and which therefore must be
admitted.

Per-candidate-execution semantics does not suffice A common
approach to relaxed-memory semantics, and that followed by
C/C++11, is to define what is called an axiomatic memory model.
One defines a notion of candidate execution, each consisting of a
set of memory actions and basic relations over them (such as pro-
gram order, reads-from, coherence, etc.), and a consistency predi-
cate that picks out the candidate executions that are allowed by the
semantics (e.g. including a check that some happens-before rela-
tion, derived from the basic relations, is acyclic). The semantics of

a program is taken to be the set of all consistent executions that are
compatible with some control-flow unfolding of the program, or, in
some semantics, that set modulo the existence of data races.

However, as observed by Batty et al. [6], there are programs
which share a particular candidate execution where that execution
should be allowed for one but not for the other. Consider the
following (the second is just the example above in a more concise
syntax):

Example 1
rl = loadnx(x); || r2 = loadnx(y);
if (rl == 42) if (r2 == 42)
storeqx(y,rl) storerx(x,42)
else

storerx(x,42)

Example 2
rl = loadnx(x); || r2 = loadrx(y);
if (rl == 42) 1f (r2 == 42)

storerix(x,42)

storeqx(y,rl)

As there is a write to x in both branches of the second thread of Ex-
ample 1, the conditional can be collapsed by compiler optimisation
to yield

Example 3
rl = loadnx(x);
if (rl == 42)

storenx(y,rl)

r2 = loadx(y);
storenix(x,42)

in which both threads can read 42, because the read and the write
of the second thread can be reordered (by compiler or hardware),
either thread-locally or when propagating between the threads. This
happens in practice and so should be allowed by the semantics.

On the other hand, for Example 2, this outcome does not ap-
pear in practice, and is highly undesirable, as it breaks elementary
programming and reasoning principles [9} 27].

In the C/C++11 semantics, the two share the candidate execu-
tion below (here “sb” stands for “sequenced-before”, that is, pro-
gram order, “cd” stands for (syntactic) control dependency, “dd”
stands for (syntactic) data dependency, and “rf” indicates where
the reads read from).

a:Ryixx 42 ‘ b:Ryixy 42
sbucd,d% b || cd
c:Wiixy 42 ! d:Wpx 42

Dependencies As the example above shows, syntactic data and
control dependencies do not provide enough information to draw
the distinction between desirable and undesirable outcomes. In ret-
rospect, this is not surprising: programmers expect to be able to
interchange control flow and dependencies without changing pro-
gram outcome, and compilers do that freely, sometimes removing
syntactic dependencies.

Merging Moreover, programming languages allow memory ac-
tions to be merged. For example, for the non-atomic version of the
below, compilers can and do merge the reads of y. The same op-
timisation for relaxed atomics, turning it into the second thread of
Example 1, has been proposed [2]:

http://www.cl.cam.ac.uk/~pes20/popl16-thinair
http://www.cl.cam.ac.uk/~pes20/popl16-thinair

Example 4

r2 = loadrx(y);

if (r2 == 42) {
r3 = loadrix(y);
storeqix(x,r3)

} else {
storeqix(x,42)

}

2.2 The Concurrent Undefined Behaviour Problem

If a language features undefined behaviour, as C and C++ do, then
its memory model needs to be able to express it, to determine
whether it is triggered. As previously pointed out [6l §7], there
is a mismatch in the C/C++ standard: the thread-local semantics,
which is described operationally, assumes that there is some form
of execution order that makes it possible to tell whether a point of
the program has been reached, and therefore undefined behaviour
is triggered (though if undefined behaviour is triggered, it makes
the whole program undefined, not merely the execution from that
point). However, the candidate executions of the axiomatic memory
model do not have such a notion, and because they are candidate
complete executions, rather than being built incrementally, it is far
from obvious how it could be included. We illustrate the problem
and explain how our memory model accounts for it in Section[7}

3. Our Approach, Informally
3.1 Thread State

As we have seen, candidate executions, taken individually, fail to
capture the difference between Example 1 and Example 2. Look-
ing at the compiler optimisation that collapses the conditional on
the second thread of Example 1, we can see that it is important
for the compiler to know that the write of x = 42 occurs in both
control-flow paths of the conditional, or, more accurately, that it
occurs irrespective of the value of the preceding read of y. This
is not a per-candidate-execution property. However, a set of can-
didate executions almosts contain the relevant information, that is,
whether certain actions have a semantic dependency upon others.
The missing ingredient is a way to indicate how the different can-
didate executions relate to each other, and the points at which they
diverge into incompatible actions.

This structure, of a set of “events” equipped with some causal
order (C/C++11 “sequence-before”) and a conflict relationship,
obeying certain sanity conditions, is called an event structure [20].
Event structures were introduced as 1979 as a foundational frame-
work for “true concurrency” (that is, non-interleaving concur-
rency), with conflict-free subsets of the event structure correspond-
ing to global states of a concurrent program. We use event struc-
tures in a different way, to describe “true” concurrency, in the sense
of that found in mainstream relaxed-shared-memory programming
languages. Here the current state and potential future executions of
each individual thread will be represented by an event structure, the
thread can take transitions that mutate that, and the whole system
has a state and transitions that are the composition of those for each
thread with a storage subsystem.

The event structure of the second thread of Example 3, below,
has one read event for each value that the read of y might read, and
all these read events are in conflict with each other (represented by
the wavy red line), as only one of them can happen. Below each
of these read events, there is the subsequent write event of 42 to y
(program order is represented by black arrows):

erxyo e erxyl AN s AN erxy42 A

I L

Wr|XX 42 Wr|xX 42 WHXX 42

Intuitively, it is the presence of the W,xx 42 in all the branches of
thisﬂ that means it can be reordered before the read of y, as it is
semantically independent of the value read.

Note that by moving to an event structure representation we
abstract over the details of how the control flow is expressed, and
the event structure of the second thread of Example 1 is the same
as that above.

Looking at the event structure of the second thread of Example 2
(below), the difference with Example 1, namely that the write
occurs only when 42 is read, is immediate:

Ry 42 A -

l

Wr|XX 42

erxyo e erxyl I

The difference with the second thread of Example 1 (below),
namely that the value to write semantically depends on the value
read, is also immediate.

Rexy 0 ~— Ry 1~ -+ an~ Rygy 42 ~n - - -

! L

W,x 0 Wiex 1 Wiixx 42

The similarity with Example 4 below is also clear: we have to
coalesce the two reads of 42, and discard the greyed out events,
to make them the same:

erxyo — erxyl - s AANANNANNANNAN erxy42 ANNANNS - e e

I — |

erxX4’2 erxX42 U erxyo ~oe s erxy42 T

L

W,1xx 0 Wiixx 42

By using event structures to represent the states of the threads,
we make the relevant differences manifest in a way the dynamic
semantics can easily exploit.

3.2 Dynamics

The goal of the memory model is to define an envelope around all
“reasonable” optimisations, taking those done by current compilers
to be a de facto lower bound on what should be deemed reasonable.

But compiler optimisations as they are normally considered are
highly complex syntactic transformations, typically over some in-
termediate representations, relying on various static analysis prop-
erties, and changing over time, and there are hundreds of passes in
current compilers. A semantics should not (and cannot) describe all
that explicitly. Instead, we define an envelope based on steps that
account for the elementary changes of memory actions that syn-
tactic optimisation passes induce, broadly following Sevéik [29]:
reordering (in fact, deordering) and merging pairs of read and write
memory actions.

Deordering Optimisations that involve code motion rely on the
fact that although the source program has a syntactic order, this
order is in these cases semantically irrelevant. To account for this,

! More precisely: in the descendants of each member of the set of incom-
patible read events.

we include deordering steps. For example, as there is a write of
42 in each “branch” of the read in the first diagram above, there is
no dependency between the read and the write. The event structure
makes this immediate, while it can be obscured by control flow in
the syntax. Because the write does not depend on the read, and the
two are at different locations, the order between the two can be
removed to yield a new event structure, in a thread-local transition
as below:

Rixy 0 ~~ Ryy 1 A oo ans Rypy 42 ~an - -

I Lo

Wr|XX 42 WHXX 42 W,,|XX 42

erxX 42 erxyo ~ erxy]- DS A erxy 42 ~r e

The reasoning underpinning this deordering is a semantic counter-
part of what a compiler has to approximate by abstract interpreta-
tion on the syntax.

Merging Optimisations that involve removing memory instruc-
tions, like common subexpression elimination, rely on determining
that the effect of one instruction can be subsumed by that of an-
other. For example, in Example 4, the effect of the second read is
subsumed by that of the first, so the second can be eliminated and
replaced by r3 = r2.

To account for this, the memory model includes merging steps
in which a single event is merged into subsuming events. For
example, the event structure of the second thread of Example 4 can
be turned into that of the second thread of Example 1, by merging
the second Ryixy 42 into the first:

Rr|xy0 - R,.|Xy1 S s AAANANANANANANN erxy42 ANAAAA- - e

[— |

Wiex 42 Wix42 - -+ Rpxy0 ~ -+ - Ryxy 42 - - -+

L

Wr|XX 0 W,|XX 42

¢

Rixy 0 ~~ Ryy 1 A oo ans Ryy 42 A -

I L

Wixx 42 Wix 42 Wixx 42

Execution Steps The event structure for a thread can be mutated
by optimisation steps, but it can also take execution steps, to ac-
tually perform memory actions, for any of its events that are not
program-order-after any other events (the possible read values will
be constrained further by the overall state, as we describe in @
but for now we speak of the thread in isolation). For example, in the
initial state of the second thread of Example 1 or Example 3, any
of the reads can be executed, e.g. with transitions like that below:

Rixy 0 "= Ryy 1 A oo ans Ry y 42 ~ans - o

I L

Wr|XX 42 WHXX 42 W,,|XX 42

ierxy7
Wipxx 42

Value-range speculation steps Optimisations are complemented
by analyses which extend their applicability. For example, if anal-
ysis shows that in the program below, the read of x always reads
a value different from 42, then the conditional can be collapsed to
just storerx(y,42).

rl = loadrix(X);
if (rl !'= 42)
storenx(y,42)

This allows more behaviour, as the write to y can then execute out
of order with the read. However, the collapse of the conditional is
only valid if that extra behaviour does not invalidate the result of the
analysis. For example, if the rest of the program were the second
thread of Example 2, this speculation would be incorrect.

To account for the effect of these analyses, the memory model
includes value-range speculation steps, in which a read of a certain
value is speculated to be impossible, and marked by a t; the other
steps of the memory model ignore reads that have been speculated
to be impossible. This speculation can be done only if the program
then cannot actually execute the read of that value (this depends on
the behaviour of the program as a whole, as defined below, not just
the thread-local transition system that we have focussed on so far).

For the example program above, speculating that the read can-
not read 42 allows deordering the write.

erxyo e erxyl AN s AN erxy42 A

I I

Wr|XX 42 Wr|xX 42

¢

erxy0 e erxyl I

l !

Wr|XX 42 Wr|XX 42

e TRixy 42 A -

¢

erxyo ~ erxyl S

Wi x 42 ~ TRy 42 ~ - - -

This mechanism allows the memory model to account for the extra
optimisations enabled by inter-thread analyses, like alias analysis.
But it does come at a combinatorial price, creating a large num-
ber of potential executions even for small programs; it would be
desirable to limit it if possible.

Interleaving of optimisation and execution Some optimisations
only become possible when particular values become known or
constrained: if a read event (recalling that this is a dynamic oc-
currence of a read, not a source-language syntactic occurrence) is
guaranteed not to read certain values, the corresponding branches
of the program do not need to be considered, and this can enable
more deordering or merging steps.

This means that we cannot separate an initial optimisation phase
from program execution, and instead we allow arbitrary interleav-
ing of execution and optimisation steps. This also accomodates
implementations that actually do that in practice, for example JIT
compilation steps that are aware of the current value environment.

We also cannot eagerly normalise threads to “fully optimised”
forms. For example, Example 4 can have two radically different
executions: either the two reads are merged, which allows the write
can be reordered and executed before the read, or the two reads can
read different values.

Relaxed atomics and non-atomics Relaxed atomics and non-
atomic accesses are deordered in the same way. However, non-

atomic accesses are treated more aggressively by mergings than
relaxed atomic accesses. For example, if the accesses in the pro-
gram below were atomic, it would be unsound with respect to the
expected behaviour of locks to remove the first write. Indeed, the
write of 1 could be hiding a previous write, and removing it would
make that previous write visible. However, as there is a non-atomic
access to the same location outside of the critical section ended by
unlock 1, no race-free program can observe the write of 1 hap-
pening. Therefore, this transformation is sound for non-atomic ac-
cesses.

storen(x,1);
unlock 1;
storena(x,2)

Some steps are accounted for implicitly Not all the computation
and optimisation steps that runtimes and compilers do need to be
accounted for explicitly. Some do not change the event structure
of a thread at all, e.g. replacing 2 + 2 by 4. Others may radically
change its memory accesses, e.g. simplifying a thread-local com-
putation, but, if this involves only variables that (during this part
of the computation) are private to the thread, it should not affect
whether other optimisations across that computation are permitted.

Undefined behaviour Undefined behaviour represents partiality
of the language specification. When a program point exhibits unde-
fined behaviour (which we represent with a *-labelled event), the
semantics of the language does not have to consider what happens
at that point. For example, when deordering the write in

rl = loadrix(X);
if (rl == 0)
undef
else
storenix(y,42)
the branch that contains undefined behaviour does not have to be

considered (in the same way that a compiler can assume that the
program being compiled does not exhibit undefined behaviour):

erxyo e erxyl DAS e AN erxy42 DN

[S

* Wr|XX 42 WHXX 42

erxx 42 erxy0 ~ erxy 1~

N

*

AV erxy‘]'2 A

When a x-labelled event is executed, it means that the undefined
behaviour can be triggered, so the whole program has undefined
behaviour.

Storage subsystem Communication between threads is mediated
by a storage subsystem (as below) that takes care of propagation
effects. The storage subsystem interacts with threads by synchro-
nising on read, write, lock, and unlock actions.

thread 1 ... thread n
A1 A

|| ||
I¥ storage subsystem ¥

The storage subsystem is based on the operational Power storage
subsystem of Sarkar et al. [23], providing a non-multi-copy-atomic
memory that guarantees coherence but little more. Threads can

send writes to it, which it then propagates to each thread individu-
ally (this is non-multi-copy-atomicity). Writes at different locations
can overtake each other, but writes at the same location remain in
order. When a thread requests a read from the storage subsystem,
the read is satisfied by the writes that have propagated to the thread
but are not hidden by other writes. This is the point where read val-
ues are constrained in our memory model. Moreover, the storage
subsystem maintains “coherence”, a total order over writes at the
same location that is respected by reads.

Steps of the semantics Summarising the steps of the semantics,
given in more detail in §3] we have:

e thread execution, synchronising with the storage subsystem to
do a read, write, lock, or unlock
e thread-local deordering:
= of non-reads
= of reads
e thread-local merging:
= forwards: Read after Read, Read after Write, Write after
Read, and Write after Write
= backwards: Overwritten Write
e value-range speculation

4. Formal Setup
4.1 Language

We consider a minimal calculus featuring relaxed-atomic and non-
atomic reads and writes, locks, and a thread-local undefined be-
haviour trigger.

p = program
|ss || ... || ss parallel threads
s u= statement
| r = loadno (x) read
storem (X, e) write
if (r == v) ss else ss conditional
r=e register assignment
lock 1 lock
unlock 1 unlock
undef undefined behaviour
ss = statements
S; .. s sequential composition
{ ss} block
mo ::= memory orders
| na non-atomic
| rix relaxed
e u= pure expressions
| v constant
| r register
e + e sum

Variables x, vy, ..., are shared memory locations, and actions on
them induce memory actions, whereas rl, r2, ..., are thread-local
register variables which have no effect on memory. This distinction
is convenient for examples, allowing some computation without
excessive numbers of events.

Undefined behaviour In C/C++11, in addition to memory errors,
undefined behaviour can be induced by some operations, for exam-
ple division by zero. In our calculus, for clarity, we separate thread-
local undefined behaviour from other operations, with an undef
statement that signals undefined behaviour.

Location typing As in the formalised C/C++ memory model, for
simplicity we assume a location typing into atomic and non-atomic
locations.

Finite domains and loops We restrict variables and registers to fi-
nite domains, both to match normal implementations and because,
with infinite domains, deordering might be possible only after an
infinite number of elementary steps. Lifting this limitation could
be delicate: we want “horizontal” infinity (applying a transforma-
tion in the infinitely many branches of a read), but not “vertical”
infinity (unreachable code at the end of an infinite loop becoming
reachable). We also omit loops. This is not for any fundamental rea-
son, but rather to keep the semantics straightforwardly executable.

4.2 Memory Actions

The memory actions of our language, used to label events in the
threadwise event structures and for synchronisation with the stor-
age subsystem, are as expected for the language, with the addition
of “dead reads”, marked with a ‘{’, as explained in Section[5.8}

a:=
| Rmo XV read
| Wimoxv write

| LI lock

|UI unlock

| % undefined behaviour
| fRmoxv dead read

4.3 Construction of the Initial Event Structure

The construction of the initial event structure of a thread is a
straightforward compositional function (the natural adaptation of
the calculation of the set of C/C++11 pre-executions of a thread to
the event structure setting).

Definition Given a current state y of the register variables (ini-
tially 0), the event structure of the memory actions of a list of state-
ments ss, [ss],, is defined by induction on ss:

e case []: the empty event structure;
® case storem, (X,e); ss’: an event labelled Wmo x v, where e

evaluates to v in p, before all the events of [[ss’],:

Wo XV

!

[ss'].

case r = loadn, (x); ss': for each v in the domain of x, an
event labelled Rmo x v, before all the events of [[ss’]jy/r,, and
all these read events in conflict:

RchO ANNAN- RmoX]- ANNANAN~ - o e

! |

[ss'Tio/an [ss'/an

case (if (r == v) ssl else ss2); ss’:if u(r) = v, then
[ss1 4+ ss’],; otherwise, [ss2 ++ ss'],;

case r = e; ss’: [ss’]/ru, Where e evaluates to v in y;

case lock: similar to write;

case unlock: similar to write;

case undef; ss’: an event labelled *.

5. The Semantics in More Detail

The memory model is formalised in the executable fragment of
Lem. It can thus be exported to OCaml to build a tool which allows
to explore small examples, though the value speculation rule means
that running it exhaustively is often not possible.

In this section we describe the rules in conventional non-
mechanised mathematics, manually transcribed from the Lem def-
inition.

5.1 State

Thread state The state of a thread is a confusion-free prime
labelled event structure [20]], that is

e An underlying set E, the events.

e A labelling function A from E to an alphabet, here the set of all
memory actions.

e A partial order < on E that represents “program order”, pos-
sibly after some transformations. To express that threads have
finite histories, Ve € E, {e’ € E'| ¢/ < e} is finite.

¢ An irreflexive, symmetric, binary “immediate conflict” relation
~ between events. At most one of a set of events in immediate
conflict will be executed.

* Immediate conflict is “almost transitive’:
Ve,e',e" € Eie~e Nel ~e' = e~e'Ve=¢".

» Immediate conflict is the first point of divergence:
Vei,eo € Eie1 ~es = {e€ E|e<eiANeFel} =
{e€ Ele<esNe##e}.

» Immediate conflict respects program order: Ve;, ez, e3 €
FEei~exNex < ez = —\(61 < 63).

Moreover, all events in immediate conflict are labelled with reads
of different values at the same location.

Definition Let # be the smallest superset of ~ such that
Ve,e',e" € E,e#e Ne < e’ = efte”.

Drawing convention We do not show transitively induced < or
~ edges. From now on, we will elide some of the branches of the
event structures in the pictures.

Program state The state of a program is a tuple containing
e a finite map from thread ids to thread states;
® a storage subsystem state;
e atrace of the memory actions, and the associated thread ids, for
race tracking.
5.2 Outcome
The outcome of the memory model is one of:
e a set of traces
¢ undefined behaviour:
= caused by a race
= caused by thread-local undefined behaviour

If one of the execution paths triggers undefined behaviour, the
whole program has undefined behaviour.

5.3 Storage Subsystem

The storage subsystem is a non-multiple-copy-atomic storage sub-
system (writes propagate independently to different threads) that
preserves “coherence” (C/C++11 “modification order”), based on
the Power storage subsystem of Sarkar et al. [23]. While this might
seem arbitrary, this storage subsystem model is relatively simple,
and is broadly the “minimal” non-multiple-copy-atomic storage
subsystem that enforces coherence. Moreover, we want to expose
as much of the strength of Power as possible, as C/C++11 did, and
Power is the weakest target to which C/C++11 is supposed to be
mapped without barriers for relaxed atomics.

Locks Lock and unlock steps are modelled using a read imme-
diately followed by a successful write conditional, and a write im-
mediately followed by a Iwsync, respectively, as per the standard
Power lock implementation [14] as analysed by Sarkar et al. [24]
§5.1]. Because the memory model works directly on the storage
subsystem state, there is no need to surround the lock with a loop:
the test of whether the right value can be read can be done in the
memory model, and the lock action is performed only if the right
value is available.

Races The storage subsystem keeps a trace of the executed ac-
tions to be able to detect races during execution steps.

5.4 Execution

A thread and the storage subsystem can synchronise to execute a
memory action if it is ready to be executed by not being program-
order-after anything. The storage subsystem constrains reads by
only synchronising on values that can be read at the location of the
read, and locks by only synchronising if the location is currently
unlocked.

Definition b is a strict descendant of a, a < b, whena < bAa #
b.

Definition The sub-event structure from e (excluded) of an event
structure (B, <,~,\)is (B, <NE? ~NE? {(z,y) €\ |z €
E'}),where B' ={e' € F|e<¢€'}.

Execution step An event e can be executed if:

e ¢ is minimal with respect to <;

e the storage subsystem accepts the action labelling e (see Sec-
tion[5.3).

Action: restrict E to its sub-event structure from e.
For example,

RHXXO NN R,,|XX 42

| l -

o I3 «@

if the storage subsystem accepts the request to read O for x in that
state (where o and (3 are just placeholders to make the transforma-
tion clearer).

Special events Executing an event labelled x or TRmo xVv has
special consequences, see §5.7]and §5.8]

Data races If the last two transitions are execution transitions,
where at least one of them is a write, they are both reads or writes,
and they are at a non-atomic location, then there is a data race, and
the program has undefined behaviour.

5.5 Deordering

We want our semantics to abstract over syntactic ordering and
dependencies, and respect only semantic order and dependencies.
To do so, we allow threads to remove order when this order does not
matter, i.e., where the same action occurs in all the branches. The
fact that the same action occurs in all the branches is represented
by a set of events B below a set of incompatible events above, A,
or a single event above, a.

Definition b is a child of a, a <1 b, when a < b A (—3c.a <
che<bAc#aNhc#D).

Non-read deordering step A thread can take a non-read deorder-
ing step of B with respect to A if:

e cach event a; of a maximal set A of events in immediate conflict
has exactly one child b; in B with the same label (or see and

$.3);
e that label is not a read;
e the memory actions of a; and b; are not at the same location;
e the memory action of b; is not an unlock;
e the memory action of a; is not a lock;

e all events of B are children of events of A.
Action:

e remove all but of one the b;, b;
e remove order from A to b;
e add order from b to the descendants of the b;;

e restrict <, ~, and \.

For example,

| erxX 0

/N

B

) €
can transition to

/ o \
erxy 42 RrIxX 0 erxX 42

N7 S\

Rixx42] A

/B\’Y

0
Deordering also applies with respect to non-reads (where A is a
singleton), for example
e e
erxx \ ~ erxX \4 erxy v’
erxy v’ 5

|

B

Read deordering step A thread can take a read deordering step of
a set of events B with respect to a if:

e B is a maximal set of reads in immediate conflict;
® ¢ is a single event;
® ¢ is not a lock;

e g and events of B are not labelled with actions at the same
location.

Action: remove order from a to B.

For example,

a Rpyxx0 ~~ore Ryx 42

LN |

B | Riixy 0 ~~n Rexy 42 | v

J

«

can transition to

erxy 0 NN~ erxy 42

« 153 Y

Roach motel deordering The rules for deordering allow “roach
motel” deordering, that is, extending critical sections by moving
locks up and unlocks down.

5.6 Merging

Merging steps allow to merge an event into one or several others,
when the effect of the latter can subsume the effect of the former.
This is expressed on the event structure by doing a “partial commit-
ment” to the subsumed event, where its alternatives are removed to
express that they cannot be executed any more (as in Example 4 in
§3.1).

The exclusion of an event e, —e, is “what e excludes by itself”,
that is, events in immediate conflict with e, and their descendants:

Definition If (E, <, ~, \) is a confusion-free event structure, and
e an event of E, then the exclusion of eis —e = {¢’ € E | 3¢’ €
E,e~e' Ne' <¢'}

Definition If (E, <, ~, \) is a confusion-free event structure, and
e is an event of F, then the relativisation of F with respect to e is
relativise(e, (E,<,#,)\)) = (B, <N E? ~NE? {(x,y) €
Az €E'}),where E' ={e' € E|e ¢ ~ene#e'}.

For example,

O "N~

SIS

Yy €Q " €1 A €2

Il

€ ¢ n

f\/\./\/B

-

d

An event can be merged forward into a previous event when
they are at the same location and have the same value. This merg-
ing can take place at a distance, as long as there is not “too much”
interposing synchronisation: for an atomic location, an interposing
lock restricts the execution of the merged event; for a non-atomic
location, an interposing unlock followed by a lock allows for ac-
tions from other threads to be executed in between the two events.
Moreover, merging a Write into a Read is problematic [28, §7.1],
so it is only allowed for non-atomic locations.

Forward merging A thread can take a forward merging step of
e into eg if:

® ¢ and e; are two events of E of value v at location x;
® e <er;
e on the path between eg and e;

= there are no actions at location x;

= if x has an atomic type, there is no lock, and it is not the case
that e is a write and e, a read;

= otherwise, there is no unlock followed by a lock.

Action: replace E by relativise(r1, E).
These steps are referred to by the type of action of e; and eo: Read
after Read, Read after Write, Write after Read, or Write after Write.

For example, the second read of 42 in the initial event structure
of Example 4 (in Section [3.T) can be merged into the first, trans-
forming it into the second thread of Example 3.

Backward merging While the previous step is about an action be-
ing subsumed by a previous action, a write can be subsumed by a
subsequent write that exists in all executions. This presence of an
action in all executions is captured by the notion of a configura-
tion [20]].

Definition A configuration C' of a confusion-free event structure
(E,<,~,) is a “downwards-closed” (Ve € C,Ve' € E,e’ <
e = ¢’ € C) (downwards is upwards in our pictures), conflict-
free (Ve,e’ € C,e o €’) subset of E.

In the example below, the write of 1 to x can be merged into the
writes of 2 and 3 to x, because there is an overwriting write in both
configurations (in blue and red):

Overwritten write A thread can take an overwritten-write merg-
ing step of w into W if:

o w¢W;
e {w} U W is a set of write events of E at location x;

e each configuration of the sub-event structure rooted at w con-
tains exactly one write in W;

e all writes in W are in a configuration of the sub-event structure
rooted at w;

e on the path from w to any write in W;
= there is no action at location x;
* if x has an atomic type, there is no unlock;
= otherwise, there is no unlock followed by a lock.

Action: replace E by relativise(w, E).
5.7 Undefined Behaviour

* as a deordering joker If a branch triggers undefined behaviour,
then, in a sense, anything could happen in that branch. To reflect
this, the condition for the non-read deordering step is relaxed to
allow some branches to be labelled with * instead of the shared
label:

each event a; of a maximal set A of events in immediate
conflict

e has exactly one child b; in B with the same label,
e or has a child labelled % (not in B)
* single child Given the above, there is no need to keep the

siblings of a %-labelled event, so when deordering a x-labelled
event, its (new) siblings and their descendants are removed.

Triggering undefined behaviour 1If an event labelled * is exe-
cuted, it means that the potential for undefined behaviour can be
realised, so the program has undefined behaviour.

5.8 Value-Range Speculation

As a dead read is ignored by the steps of the memory model, there
is no need to keep the sub-event-structure from the read.

Value-range speculation step A thread can speculate that e is
impossible if:

e ¢ is labelled with a non-dead read;

e ¢ is never executed in any execution starting from the resulting
state.

Action:
e replace the label of e by the corresponding dead read label;

e remove the sub-event structure from e from the event structure.

Dead reads as deordering jokers Dead reads are not supposed
to be executed, so what takes place after them should not matter.
To reflect this, the condition for the non-read deordering step with
respect to a set of reads in minimal conflict is relaxed so that dead
reads are not considered in A by adding the following clause:

e oris a dead read

Merging Similarly, for overwritten write merging, configurations
that contain a dead read are ignored.

6. No Classic Out-of-Thin-Air

The point of our semantics is to avoid out-of-thin-air behaviour.
However, this cannot be proved, as there is no a priori general
definition of what thin-air behaviour is. Instead, we check our
semantics gives the desired behaviour on the classic examples.

Example 1 From the initial state, the second thread of Example 1
can deorder the write of 42 to x with respect to the read of y, as
it occurs in all branches, and then execute it. The write can then
propagate to the first thread, and be read. The write of 42 to x can
now be executed, propagated to the second thread, and read.

Example 2 On the other hand, the second thread of Example 2
cannot deorder the write, because it only occurs in one branch of
the read. The only possible steps for both reads are to read 0, and to
speculate that certain values other than 0 (which can obviously be
read) cannot be read. However, as the 0 branch does not contain any
write, taking speculation steps will not enable more deordering, so
the reads can only read 0.

Java Causality Test Cases We also hand-checked the behaviour
of our semantics on the 20 causality test cases collected by Pugh
during the JSR-133 Java Memory Model development [21]]. Leav-
ing aside the two tests that involve loops and volatile, the out-
comes are the same as those desired for the JMM, except for causal-
ity test 16. This test exposes the (intentional) lack of coherence
for non-volatile accesses in the Java memory model, in contrast to
C/++11 relaxed atomics, which satisfy coherence. These tests ex-
ercise the power of value-range speculation.

No-thin-air for arithmetic-free programs A further sanity check
is the “out-of-thin-air guarantee” of Sev&ik [29]: in a program
without arithmetic, the only values that are read and written are the
initial values and values that appear syntactically in the program.
Intuitively, this is true in our model because if deordering can
deorder a write of a value with the first read that reads it, then that
value must syntactically appear.

7. Undefined Behaviour

The undefined-behaviour example of [6, §7] can be expressed in
our setting as

rl = loadrx(x); r2 = loadrx(y);

if (rl == 0) storenx(x,r2)
r3 = loadnrx(a)

else
undef

storeqx(y,1)

with shared memory variables x and y, initially 0, and a, represent-
ing the array in the original example.

In this example, the order of the conditional and the write to
y should not matter, because they concern different locations. The
undefined behaviour should be triggered, because the write of 1 to
y can be executed, making it possible for the second thread to read
it, and write 1 to x, which the first thread can read, triggering the
undefined behaviour. On the other hand, if the write to y is removed,
the presence of a source of undefined behaviour in the program
should not be enough for it to trigger itself.

Starting from the initial event structure

RHXXO NANN~ R,|XX 1
SN
Rixa0 ~~~~~ Rygal %

! !

erxy 1 erxy 1

it can be deordered to

Rixx 0 ~ - Rpex 1
erxy 1 Rixa0 ~~n- Rycal *

which can itself be deordered to

erxy 1 Rixx 0 ~ - Ryex 1

SN

erxa 0 ~ns erxa 1 *

as the x acts as a joker for deordering.

The write of 1 to y can then be executed (and propagated) for
the second thread to read it, and write 1 to x, which can then be
read, which allows executing .

The order of the conditional and the write in the source does
not matter, as desired. If we remove the write to y, the undefined
behaviour is not triggered any more, as desired.

8. Implementability on Power/ARM

One of the design goals of the memory model is to be cheaply
implementable on Power and ARM, by mapping relaxed and
nonatomic reads and writes to plain assembly loads and stores,
without memory barriers or any other synchronisation.

We give an informal argument why this holds here, leaving
detailed proof for future work. We focus on Power to be concrete,
but the reasoning carries over to ARM.

Dependencies Power allows arbitrary thread-local reordering of
accesses to different locations (without dependencies or barriers),
which is what makes the basic two-thread two-location two-event
litmus tests (MP, SB, LB, R, S, 2+2W) of Sarkar et al. [23] all
permitted there. Our semantics allows all those reorderings, using
the first and second rules of Section[3.3]for R, W—W and R, W—R
respectively.

Our semantics has to ensure that semantic dependencies (data,
address, and control) from a read to a write are respected, otherwise

the thin-air examples become permitted. The syntactic dependen-
cies that Power respects over-approximate these. For example, take
the first thread of the following:

Example 5

rl = loadrx(x); ‘ r2 = loadrx(y);

storenx(x,rl) storenix(x,r2)

This will be mapped, by the compilation scheme for relaxed atom-
ics, to a Power load and store instruction

1d r1,0(rx) // load doubleword from [rx] to rl
std rl1,0(ry) // store doubleword in rl to [ry]

where rx and ry are registers holding the addresses of x and y.
In the Power semantics, that store cannot become visible to other
threads until its address and data are known (ultimately, because the
architecture does not permit value speculation), validating the fact
that our semantics does not allow deordering of the write w.r.t. the
read.

In contrast, Power does not respect control dependencies from a
read to a read, as the hardware can and does speculate conditional
branches. For example,

rl = loadrix(X);
if (rl == 1)

r2 = loadrx(y)
will be mapped to

1d r1,0(rx) // load doubleword from [rx] to rl

cmpdi rl,1 // compare rl with 1

bne .label // branch if nonequal, to label

1d r2,0(ry) // load doubleword from [ry] to r2
.label

In Power the second load can be satisfied before the first, and this
is accommodated in our semantics by permitting the second read
(r2=loadrx (y)) to be deordered with respect to the first.

Non-multi-copy-atomicity Power also has non-multi-copy-
atomic write propagation, allowing a write to propagating to other
threads one-by-one. Our semantics accommodates that with a
storage subsystem model that does exactly the same.

Write forwarding Power allows reads to read from program-
order-before writes thread-locally, without going through the stor-
age subsystem, as the PPOCA litmus test illustrates [23]]. This is
just an instance of Read after Write, and is covered by merging in
our semantics.

Registers An important source of weakness in Power has to do
with the fact that operations on registers do not enforce program
order, because of register shadowing, as illustrated by litmus tests
MP+dmb/sync+rs and LB+rs [23]. In our semantics, registers are
resolved to concrete values when building the event structure, so the
program order of register does not impose any order on execution.

Locks The crucial property of locks is that they enforce order
between actions before an unlock, and actions after the next lock.
In our memory model, this is enforced by preventing reordering
with respect to locks, and deordering of unlocks with respect to
other actions. In the standard Power lock implementation [[14], as
analysed by Sarkar et al. [24, §], (1) the lwsync preceding the write
signalling the unlocking enforces the order between the actions
programs-before the unlock and the unlock itself; (2) the branching
on the result of the store-conditional, followed by an isync in the
implementation of lock, enforces the order between the lock itself
and the actions program-order-after it; (3) the load-reserve/store-
conditional pair enforces the order between the unlock and the lock.

9. Relation to C/C++11

The fragment of the C/C++11 memory model restricted to relaxed-
atomic and non-atomic reads and writes and locks is widely be-
lieved to form an envelope around all reasonable optimisations.
Therefore, it would be desirable to have all the behaviours of our
memory model, on this fragment, be admitted by C/C++11. The
converse is not to be expected, of course, as the point of our model
is to exclude the thin-air executions that C/C++11 allows.

While very different in style, our memory model can be related
quite closely to C/C++11 candidate executionsﬂ A C/C++11 can-
didate execution is composed of two parts:

e A pre-execution, which is a set of memory actions of the pro-
gram annotated with just the syntactic relation between the
memory actions: (program order ‘sb’, and syntactic dependen-
cies ‘cd’ and ‘dd’). When the thread-local semantics builds the
set of pre-executions of a program, it considers all the values
the reads can read.

An execution witness, which is an attempt at justifying the pre-
execution by saying where each read could have read from (with
‘rf” edges), in what order locks are taken and released (with ‘lo’
edges), and by imposing an order on writes at the same location
(with ‘mo’ edges), etc.

A trace of our memory model induces, for each thread, a unique
configuration in its initial event structure. The executed reads, and
the reads merged into them, are enough to characterise this con-
figuration. Now, the union of these thread-local configurations is
a configuration in the disjoint union of the initial event structures
of the threads. This whole-program configuration corresponds to a
pre-execution, up to the ‘cd’ and ‘dd’ edges, and the initial writes
which are implicit in our memory model.

For example, if we consider the program below

rl = loadnx(X);

r2 = loadri(Xx);

if (rl == r2)
storerx(y,1)

r3 = loadrx(y);
storex(x,r3)

and its execution where the second read is merged into the first (one
step per branch), where the write is deordered, executed, and read,
then the corresponding configuration is:

!

erxy 1

where actions that are executed are in blue, actions that are merged
into actions that are executed, and are hence implicitly executed,
are in green, actions that are not executed are in black, and actions
that are merged into actions that are not executed are in grey.

Execution witness A trace also induces an execution witness:

e When receiving a read request, the storage subsystem deter-
mines which writes can satisfy it; this induces ‘rf” edges.

e When propagating writes, the storage subsystem determines a
coherence order on writes at the same location; this induces
‘mo’ edges.

2Because of the limitations w.r.t. undefined behaviour of C/C++11, in
this section, we only consider programs without thread-local sources of
undefined behaviour.

e When executing the load-linked/store-conditional pairs under-
pinning locks, the storage subsystem determines an oder be-
tween unlock and lock actions; this induces ‘lo’ edges.

This execution witness is partial, because it only concerns memory
actions that are issued to the storage subsystem. However, merged
memory actions can be inserted back into the execution witness.
For example, if a Write after Write merging turns the event struc-
ture fragment (in black) on the left to the one on the right, then the
partial execution witness (in colour) on the right can be completed
into the one on the left:

«@ «@
l mo l mo
a:Wyx 1 mo aWpx1 T
fim [
mo b:Wux1 > B
=]

B

The question now is whether this candidate execution is consis-
tent.

Race reconstruction If the program is racy, the above reconstruc-
tion does not always produce a consistent candidate execution. For
example, the program below (where x is initially 0) contains a race:

rl = load (x) || storem(x,1)

However, the execution witnessing this race in the C/C++11 mem-
ory model is the one where the read reads O from the initial
state. The execution in which the race actually happens, and for
which our model flags the race, is the one where the read reads 1.
However, this execution is not consistent according to C/C++11,
because the read and the write are not related by the C/C++11
happens-before relation.

na X0

W
asV ; \1‘sw

1:Rnax1 LU 2:Wha x1

This is arguably a design flaw of C/C++11 [4] 16} [27]: the presence
of races is determined on consistent candidate executions, but the
consistency predicate filters out the actual execution exhibiting the
race.

Value-range speculation C/C++11 implicitly assumes any value-
range speculation is valid. For example, the configuration that cor-
responds to the pre-execution of Example 2 that exhibits the thin-air
behaviour would correspond to an execution of our memory model
where reading values other than 42 has (incorrectly) been specu-
lated to be impossible:

erxy 42

!

WHXX 42

10. Related Work

Currently, no other programming-language memory model ad-
dresses the issue of high-performance concurrent accesses satisfac-
torily.

As we recalled in §2.1] the C/C++11 model [11 B3l [7, 8] does
not attempt to exclude thin-air examples, merely noting that they
are undesirable. C++14 is similar, with the intentionally vague

language “§29.3p9 Implementations should ensure that no ‘out-of-
thin-air’ values are computed that circularly depend on their own
computation. What “circularly depend on” means is very unclear in
a relaxed-memory setting, where some naively impossible cycles
are permitted.

The Java memory model (JMM) of Manson et al. [[17]] excludes
the classic thin-air examples by building chains of partial execu-
tions, where each execution is justified by the previous one, but can
make different control-flow choices. The JMM was later shown not
sound w.r.t. some common compiler optimisations, including com-
mon subexpression elimination [11, 25]]: turning Example 4 into
the second thread of Example 3 is not sound in the JMM.

Boehm and Demsky [9] propose a restriction of the C/C++11
memory model that forbids out-of-of-thin-air, but also forbids “load
buffering” (including Example 3 reading 42). As that is architec-
turally allowed on Power and ARM (and actually observed on
some ARM hardware), this would require introducing memory bar-
riers when implementing relaxed accesses. It is currently unclear
whether the cost of this would be prohibitive.

There is also work suggesting that stronger memory models,
like sequential consistency, could be implementable with low over-
head [18 [26]. However, it relies on specialised hardware, whereas
we target existing hardware.

In Batty et al. [6, §6], we proposed a broadly similar approach
to the one we develop here. This previous model is based on steps
combining execution and deordering, and accounts for deordering-
only examples, like turning Example 1 into Example 3. However, it
does not account for more complex optimisations, like turning Ex-
ample 4 into Example 3. Our approach in this paper features finer-
grained steps, separating the different aspects of optimisations, and
uses an event-structure rather than a labelled-transition-system rep-
resentation of the semantics of each thread. This allows us to ad-
dress the more complex optimisations that had been left for future
work, and makes it easier to relate to how compilers operate.

Seveik [29] describes a memory model aimed at showing the
soundness of certain classes of optimisations with respect to DRF
and the “out-of-thin-air guarantee”. His memory model describes
the semantics of each thread as a set of memory-access-event
traces, closed under primitive semantic changes: reordering, elimi-
nation, and introduction of memory actions. Wildcard traces, con-
taining wildcard read events R x *, are used to express indepen-
dence of a trace’s validity on the value that the wildcard reads might
read; this captures some of the intensional structure of each thread.
(Our event structure semantics captures more of that structure, and
one can see our previous work [6, §6] as intermediate between the
two.)

The memory model framework of Saraswat et al. [22] tackles a
language with limited control flow: conditionals can only surround
expressions (including reads), not statements (so no writes). The
framework is based on merging and splitting state transformers
(“steps”). Our treatment of merging is inspired by that work, but
tackles unrestricted conditionals by using event structures.

Jeffrey and Riely propose, in work in progress [16], a memory
model that also makes use of event structures, but in a more classi-
cal way: a single event structure represents the whole program, and
an execution (a configuration of the event structure) is justified by
a chain of events in a “relaxed” configuration, which can include
conflicting events. Their semantics (as it stands) allows some out-
of-thin-air executions. We believe their semantics is more liberal
than ours.

Jagadeesan et al. [15] define a memory model for Java, replac-
ing the 2005 Java Memory Model with a structural operational se-
mantics for a syntactic calculus that includes explicit value spec-
ulation steps, introducing hypothetical writes. To prevent thin-air
behaviour, threads cannot see their own speculative writes, and the

justification for speculation needs to be justified by less specula-
tion. The justification for speculating a value can come from a dif-
ferent execution of the program, so it is not clear what behaviour it
permits.

Zhang and Feng [30] propose an operational memory model
with a “replay” mechanism, where instructions can be re-executed
several times. They forbid some, but not all, out-of-thin-air be-
haviour [13]. Moreover, their replay mechanism appears difficult
to relate to compiler and hardware operational intuitions.

Petri and Boudol [10] also develop an operational semantics
with explicit speculation steps to show the soundness of some
speculation-based optimisations in a DRF memory model.

Demange et al. [12] propose a memory model for Java, but one
oriented towards implementation above the relatively simple TSO
model of x86 hardware, without the load-store reordering of the
Power and ARM architecture that (when combined with compiler
optimisations) makes the thin-air problem challenging.

Hardware memory models are typically thin-air-free, as hard-
ware generally does not do value speculation, but they are not sound
with respect to common compiler optimisations (collapse of condi-
tionals, CSE, and so on).

11. Conclusion

In this paper, we reaffirmed the need of programming languages
for a memory model that forms an envelope around all reasonable
optimisations, yet does not exhibit out-of-thin-air behaviour, and
outlined a proposed solution for a core calculus. The memory
model we describe is an operational semantics where threads are
represented by event structures, and transitions mix execution and
transformation of the thread state. This memory model behaves as
desired on the classical out-of-thin-air test cases. Moreover, unlike
C/C++11, it deals with undefined behaviour.

Much work remains to turn it into a full-fledged proposal for a
C/C++ or Java semantics. The main avenues are:

1. Feature parity with C/C++11: other memory orders (SC, re-
lease, acquire, and consume), other memory actions (read-
modify-write, fences), and cross-memory-order optimisations.

2. Integration with a memory layout model, to deal with memory
allocation, pointers, mixed-size accesses, etc.

3. Assurance of implementability on more platforms, preferably
by mechanised proof w.r.t. well-established hardware models.

4. Assurance of usability, by developing methods of reasoning and
discussion with programmers.

5. Assurance of soundness of optimisations, by analysis and test-
ing of current compilers, correctness proofs of particular syn-
tactic optimisations, and discussion with compiler developers
to ensure that the model is comprehensible to them.

Although the development so far tackles only the core of the issue,
not a full-blown programming language, it offers a potential way
forward for concurrent programming language semantics.

Acknowledgments

We thank Mark Batty and Robin Morisset for discussions. This
work was partly funded by the EPSRC Programme Grant REMS:
Rigorous Engineering for Mainstream Systems, EP/K008528/1.

References
[1] Programming Languages — C. 2011. ISO/IEC 9899:2011. http:
//www.open-std.org/jtcl/sc22/wgld/docs/n1539.pdf.

[2] J. F. Bastien. N4455 No sane compiler would optimize atomics, Apr.
2015. available at http://www.open-std.org/jtcl/sc22/wg21/
docs/papers/2015/n4455.html.

[3] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[4] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: from C++11 to POWER. In
POPL, 2012.

[5] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[6] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and
P. Sewell. The problem of programming language concurrency se-
mantics. In ESOP, 2015.

[7] P. Becker, editor. Programming Languages — C++. 2011. ISO/IEC
14882:2011. http://www.open-std.org/jtcl/sc22/wg21/docs/
papers/2011/n3242.pdf.

[8] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency
memory model. In PLDI, 2008. .

[9] H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-thin-
air results. In Proc. MSPC, 2014.

[10] G. Boudol and G. Petri. A theory of speculative computation. In
ESOP, 2010.

[11] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model:
Operationally, denotationally, axiomatically. In ESOP, 2007.

[12] D. Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, and
J. Vitek. Plan B: A buffered memory model for Java. In POPL, 2013.

[13] X. Feng. Presentation at Dagstuhl seminar 15191, May 2015.

[14] IBM. Power ISA version 2.06, 2009.

[15] R.Jagadeesan, C. Pitcher, and J. Riely. Generative operational seman-
tics for relaxed memory models. In Proc. ESOP, 2010.

[16] A. Jeffrey and J. Riely. Event structures and refinement for relaxed
memory. Slides presented at the Memory Model meeting, Cambridge,
Sept. 2014.

[17] J. Manson, W. Pugh, and S. Adve. The Java memory model. In POPL,
2005.

[18] D. Marino, A. Singh, T. D. Millstein, M. Musuvathi, and
S. Narayanasamy. A case for an sc-preserving compiler. In PLDI,
2011.

[19] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem:
reusable engineering of real-world semantics. In Proc. ICFP, 2014.

[20] M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures
and domains. In Proceedings of Semantics of Concurrent Computa-
tion, 1979. . URL http://dx.doi.org/10.1007/BFb0022474.

[21] W. Pugh. Causality test cases. available at http://www.cs.umd.edu/
~pugh/java/memoryModel/CausalityTestCases.html.

[22] V. A. Saraswat, R. Jagadeesan, M. M. Michael, and C. von Praun. A
theory of memory models. In PPOPP, 2007.

[23] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Un-
derstanding POWER multiprocessors. In PLDI, pages 175-186, June
2011.

[24] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
PLDI, 2012.

[25] J. Sev¢ik and D. Aspinall. On validity of program transformations in
the Java memory model. In ECOOP, 2008.

[26] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musu-
vathi. End-to-end sequential consistency. In Proc. ISCA, 2012.

[27] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In OOPSLA, 2013.

[28] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid in the
C11 memory model and what we can do about it. In POPL, 2015.

[29] J. Sev&ik. Safe optimisations for shared-memory concurrent programs.
In PLDI, 2011.

[30] Y. Zhang and X. Feng. An operational approach to happens-before
memory model. In TASE, pages 121-128, 2013.

http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf
http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://dx.doi.org/10.1007/BFb0022474
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html

	Introduction
	Recalling the Problems
	The Thin-Air Problem
	The Concurrent Undefined Behaviour Problem

	Our Approach, Informally
	Thread State
	Dynamics

	Formal Setup
	Language
	Memory Actions
	Construction of the Initial Event Structure

	The Semantics in More Detail
	State
	Outcome
	Storage Subsystem
	Execution
	Deordering
	Merging
	Undefined Behaviour
	Value-Range Speculation

	No Classic Out-of-Thin-Air
	Undefined Behaviour
	Implementability on Power/ARM
	Relation to C/C++11
	Related Work
	Conclusion

