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Abstract

In this paper we develop semantics for key aspects of the ARMv8
multiprocessor architecture: the concurrency model and much of
the 64-bit application-level instruction set (ISA). Our goal is to
clarify what the range of architecturally allowable behaviour is, and
thereby to support future work on formal verification, analysis, and
testing of concurrent ARM software and hardware.

Establishing such models with high confidence is intrinsically
difficult: it involves capturing the vendor’s architectural intent, as-
pects of which (especially for concurrency) have not previously
been precisely defined. We therefore first develop a concurrency
model with a microarchitectural flavour, abstracting from many
hardware implementation concerns but still close to hardware-
designer intuition. This means it can be discussed in detail with
ARM architects. We then develop a more abstract model, better
suited for use as an architectural specification, which we prove
sound w.r.t. the first.

The instruction semantics involves further difficulties, handling
the mass of detail and the subtle intensional information required to
interface to the concurrency model. We have a novel ISA descrip-
tion language, with a lightweight dependent type system, letting us
do both with a rather direct representation of the ARM reference
manual instruction descriptions.

We build a tool from the combined semantics that lets one ex-
plore, either interactively or exhaustively, the full range of archi-
tecturally allowed behaviour, for litmus tests and (small) ELF ex-
ecutables. We prove correctness of some optimisations needed for
tool performance.

We validate the models by discussion with ARM staff, and
by comparison against ARM hardware behaviour, for ISA single-
instruction tests and concurrent litmus tests.

Categories and Subject Descriptors C.0 [General]: Modeling
of computer architecture; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel programming; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Documentation, Languages, Reliability, Stan-
dardization, Theory, Verification

Keywords Relaxed Memory Models, semantics, ISA

1. Introduction

The ARM architecture is the specification of a wide range of pro-
cessors: cores designed by ARM that are integrated into devices
produced by many other vendors, and cores designed ab initio by
ARM architecture partners, such as Nvidia and Qualcomm. The
architecture defines the properties on which software can rely on,
identifying an envelope of behaviour that all these processors are
supposed to conform to. It is thus a central interface in the industry,
between those hardware vendors and software developers. It is also
a desirable target for software verification and analysis: software
that is verified w.r.t. the architecture should run correctly on any of
those processors (modulo any hardware errata, of course).

However, exactly what behaviour is and is not allowed by the ar-
chitecture is not always clear, especially when it comes to the con-
currency behaviour of ARM multiprocessors. The architecture aims
to be rather loose, to not over-constrain the hardware microarchi-
tectural design choices of all those different vendors, and to permit
optimised implementations with high performance and low power
consumption. To this end, it adopts a relaxed memory model, allow-
ing some effects of out-of-order and non-multi-copy-atomic imple-
mentations to be programmer-visible. But it describes that in prose,
which, as one might expect, leaves many open questions.

Our goal in this paper is to clarify this situation, developing
mathematically rigorous models that capture the ARM architec-
tural intent. But establishing such models with high confidence is
intrinsically difficult, as the vendor intent has not previously been
made this precise, either in public documents or internally. Black-
box testing of processor implementations is useful here, comparing
their behaviour against that allowed by models for a variety of con-
current test programs [3, 4, 8, 21, 22, 24], but it can only go so far;
one really needs to discuss the model in detail with the architects
(those with the authority to define what the architecture allows).
This means it must be accessible to them, and that suggests our
strategy: we first develop a concurrency model with a microarchi-
tectural flavour, abstracting from many hardware implementation
concerns but still close to hardware-designer intuition, so that it
can be clearly (albeit necessarily informally) related to the proces-
sor designs they have in mind, and be tested against their exten-
sional behaviour. In this Flowing model read requests, writes, and
barriers flow explicitly through a hierarchical storage subsystem.
We then develop a more abstract model, better suited for use as
an architectural specification and programmer’s model, which we
prove sound w.r.t. that. This partial-order propagation (or POP)
model abstracts from the storage-subsystem hierarchy to give a
model in which all hardware threads are symmetrical. Both mod-
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els have been discussed in detail with senior ARM staff, resolving
many subtle questions about the architecture.

The concurrency semantics alone is not enough to understand
or reason about concurrent code; one also needs semantics for
the instruction set architecture (the ISA). The ARM architecture
describes the sequential behaviour of the ISA reasonably precisely,
in a proprietary pseudocode language; the problems here are (1)
dealing with the mass of detail involved, and (2) integrating these
sequential descriptions into the concurrent semantics. One cannot
simply treat each instruction as an atomic transaction, or interleave
their pseudocode. Previous work on relaxed-memory semantics has
not really addressed this issue, either avoiding it entirely or defining
semantics for a small ad hoc fragment of the ISA. Here we use
a novel ISA description language, with a lightweight dependent
type system, that lets us use a rather direct representation of the
ARM architecture reference manual (the ARM ARM) instruction
descriptions [7]. We model all the application-level ISA except
for floating-point and vector instructions, and we validate this part
of the semantics against hardware for a suite of automatically
generated single-instruction tests.

Our models are defined in executable higher-order logic, in
Lem [19], and we use Lem to generate executable OCaml code
to make a tool allowing one to explore, either interactively or
exhaustively, the behaviour of concurrent litmus tests or (small)
conventional ELF binaries. For performance the tool relies on the
fact that certain transitions commute, to reduce the combinatorial
blow-up; we prove that those properties hold.

Our focus throughout is on the ARMv8 version of the ar-
chitecture, which introduced support for 64-bit execution. Ex-
ample ARMv8 cores and processors include the ARM-designed
Cortex-A53 and A57 cores, in the AMD Opteron A1100, the
Qualcomm Snapdragon 810, and the Samsung Exynos Octa 5433
SoCs; together with architecture-partner-designed processors such
as Nvidia Denver core, used in the Tegra K1. The Apple A7 and
A8 (in iPhones and iPads since the iPhone 5S) also appear to be
ARMv8-compatible.

ARMv8 also added several new concurrency primitives, in-
cluding the ARM load-acquire and store-release instructions, and
weaker barrier instructions than the ARMv7 dmb full barrier. It in-
cludes both a 64-bit and 32-bit instruction set; we deal with the
former, the A64 of AArch64, and all those concurrency primitives.

To summarise our contribution, we:

• give an abstract-microarchitectural model, the Flowing model,
for ARMv8 concurrency, validated both by black-box testing
and discussions with ARM staff (§3,4,7,13);

• give a more abstract model, the POP model (§5,8);
• integrate the above with an ISA semantics for all the

application-level non-FP/SIMD ARMv8 instruction set (§6);
• prove that POP does indeed abstract Flowing (§9);
• prove that various model transitions commute (§10);
• develop a tool that allows one to explore, either interactively or

exhaustively, the behaviour of concurrent litmus tests or (small)
conventional ELF binaries (§11); and

• demonstrate this on an example of the Linux ARMv8 spinlock
code (§12).

We begin with an informal description of the main ideas underlying
the Flowing model, and the concurrency phenomena it has to deal
with (§3,4). The web interface and other online material can be ac-
cessed from http://www.cl.cam.ac.uk/~pes20/popl16-armv8.

We envisage a stack as below, where the black-labelled edges,
in this paper, enable a range of semantics and verification activities
above this solid foundation, such as the gray-labelled edges show-
ing a possible C/C++11 concurrency implementation result above
ARM. Looking downwards, the Flowing model can also be used

for testing and verification of aspects of real hardware, taking us
closer towards a production top-to-bottom verified stack.

C/C++11 model

An axiomatic architectural model

POP operational (architectural) model

Flowing operational (abstract-microarchictecture) model

ARM implementations
by multiple vendors

prove correctness of C/C++11
atomics compilation scheme

prove soundness

prove soundness

establish confidence by
• discussion with ARM architects
• testing against ARM implementations

2. Related Work

There has been extensive recent work on hardware memory models,
e.g. for x86 [20], IBM Power [22, 23], and ARMv7 [4]. The Power
and ARM concurrency architectures are broadly similar, both be-
ing relaxed non-multi-copy atomic models that respect only certain
program-order relations, and which have cumulative memory bar-
rier instructions. But they differ in many important aspects: they
have different memory barrier and synchronisation instructions1,
and the associated microarchitectures are quite different. That is
important for us here: that Power model [22, 23] does not corre-
spond well to ARM implementations, and so cannot serve as a ba-
sis for the discussion with ARM architects that is needed for solid
validation that it matches their intent.

For example, in typical Power microarchitectures (as we under-
stand them) memory writes and read-requests propagate via sep-
arate structures, and the Power sync memory barrier implemen-
tation involves an acknowledgement being sent back to the orig-
inating hardware thread when the barrier has been processed by
each other thread. That Power model, largely based on discussions
with an IBM architect as it was, explicitly modelled those sync-
acknowledgements. But ARM microarchitectures may keep mem-
ory writes and read-requests in the same structures, with the ARM
dmb memory barrier achieving similar extensional effects to sync

quite differently, by keeping pairs of barrier-separated accesses or-
dered within those, rather than with global acknowledgements. It is
this ordering that our Flowing model captures. We shall see other
more subtle differences below, all of which are important for inten-
sional discussion with the vendors, and some of which give rise to
programmer-observable effects.

The other closely related work is the ARMv7 model of Alglave
et al. [4], which differs in other important aspects from what we
do here. Most importantly, it is aiming to be considerably more ab-
stract than either of the two models we present, without the mi-
croarchitectural flavour that enables us to establish a clear rela-
tionship between them and the architects’ intent. That level of ab-
straction is thus good for simplicity but bad for validation, and the
validation of that model relies heavily on black-box testing. In an
ideal world (but one which we leave for future work) we would
have both the low-level microarchitectural Flowing model as we
describe here, validated both by discussion and testing, and a proof

1 The Power sync and ARM dmb are broadly similar, but there is no ARM
counterpart of the Power lwsync, and there is no Power counterpart of the
ARMv8 dmb st and dmb ld barriers or of the ARMv8 load-acquire and
store-release instructions.

http://www.cl.cam.ac.uk/~pes20/popl16-armv8


(via our POP model) that such an abstract model is indeed sound
w.r.t. the architectural intent. The models differ also in their math-
ematical style: following Sarkar et al. [22, 23], we adopt an op-
erational style, which again is good for the correspondence with
architect intuition, while [4] is axiomatic. The latter is faster for ex-
haustively checking the results of small litmus tests, while the for-
mer allows one to incrementally explore single executions of larger
programs. Finally, we cover ARMv8 rather than ARMv7, and inte-
grate with semantics for a large part of the instruction set.

There has been a great deal of previous work using domain-
specific IDLs and proof assistants to describe instruction behaviour,
for many different purposes. On the formal and semantics side, this
includes the ARMv7 model by Fox [10] in his L3 language, that by
Goel et al. [11] for x86 in ACL2, work on automatically generating
compiler components, e.g. [9], and the assembly language and
machine-code models used by verified compilation work, e.g. [5,
13–15, 18, 26] With the exception of CompCertTSO [26], which
was w.r.t. the much simpler x86-TSO model, none of these address
concurrency. A few, notably those of Fox and Goel, are rather
complete in their coverage of the sequential ISA, but many include
just enough for the purpose at hand (simplifying the problems of
scale), and are not concerned with engineer-accessibility.

3. Introduction to the Flowing Model

Modern high-end processors are astonishingly complex. The
pipeline of an ARM Cortex-A57 core can have up to 128 in-
structions in flight simultaneously [6], with each instruction bro-
ken down into micro-operations that are dispatched to multiple
arithmetic, branch, floating-point, and load/store execution units.
Shadow registers and register renaming are used to prevent the
number of architected registers being a bottleneck. A very high-
level view of a Cortex-A72 core showing some of this is in Fig. 1,
and there are multiple levels of cache and interconnect in addition
to that, some shared between cores or clusters thereof.

A detailed microarchitectural description does not make a good
programmers model, or a usable basis for semantics and reasoning
about concurrent software. Indeed, much microarchitectural detail
is, by design, not observable to programmers (except via perfor-
mance properties); there are only some aspects that give rise to be-
haviour that concurrent contexts can observe, notably the out-of-
order execution that the pipeline permits (including shadow regis-
ters), and the lack of multi-copy-atomicity that the cache protocol,
cache hierarachy and interconnect might exhibit. Our task here is
to invent a new abstraction, just concrete enough to model those
aspects, and just concrete enough to let hardware designers and ar-
chitects relate it to the range of actual microarchitectures they have
in mind, but otherwise as simple as possible. This model can be
validated by discussion and by testing against hardware. Note that
we are not defining a specific microarchitecture, but rather a model
with a microarchitectural flavour that is architecturally complete,
allowing the full envelope of behaviour that the architects intend.
Then we can build higher-level models, proving them sound with
respect to that abstract-microarchitectural one, to use for reasoning.

We build this new abstraction, the Flowing model, in three parts.
The instruction semantics defines the behaviour of each instruction
in isolation, giving, for each, a clause of an AST type denoting the
machine-code instructions, a decode function that maps 32-bit op-
code bitvectors into that type, and a clause of an execute function
that gives imperative pseudocode for the instruction. Fig. 2 shows
these for the ADD instruction (eliding the body of its decode func-
tion). We elaborate on this ISA model and the language used for it
in §6. We interpret the bodies of the decode and execute functions
with an operational semantics for our ISA description language; the
steps of that semantics are essentially abstract micro-operations,
abstracting from the actual hardware micro-operations performed

Figure 1. ARM Cortex-A72 Core Block Diagram (source: ARM)

typedef ast =

forall Int ’R, ’R IN {32, 64}, (*register size*)

Int ’D, ’D IN {8,16,32,64}. (*data size*)

| ...

| AddSubImmediate of

(reg_idx,reg_idx,[:’R:],boolean,boolean,bit[’R])

function forall Int ’R, ’R IN {32,64},

Int ’D, ’D IN {8,16,32,64}.

decodeAddSubtractImmediate

([sf]:[op]:[S]:0b10001:shift:(bit[12]) imm12:Rn:Rd)

: ast<’R,’D> effect pure =

...

function clause execute (AddSubImmediate(d,n,

datasize,sub_op,setflags,imm)) = {

(bit[’R]) operand1 :=

if n == 31 then rSP() else rX(n);

(bit[’R]) operand2 := imm;

(bit) carry_in := 0; (*ARM:uninitialized*)

if sub_op then {

operand2 := NOT(operand2);

carry_in := 1;

}

else

carry_in := 0;

let (result,nzcv) =

(AddWithCarry(operand1,operand2,carry_in)) in {

if setflags then

wPSTATE_NZCV() := nzcv;

if (d == 31 & ~(setflags)) then

wSP() := result

else

wX(d) := result;

}

}

Figure 2. Instruction semantics for add/adds/sub/subs



by the arithmetic units etc. Even what one might think is a simple
instruction like add is surprisingly intricate when one handles all
the details; one execution involves 80 instruction-semantics steps.

The thread subsystem, analogous but different in detail to that
of the IBM Power model of Sarkar et al. [22], models the execution
of instructions in a single core (or hardware thread) by allowing
out-of-order execution, respecting various inter-instruction depen-
dencies as necessary. This abstracts from the out-of-order dispatch
and control logic, the register renaming, the load/store queues, and
the local (L1) cache of the core, modelling all that with a simple
tree of instruction instances:

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Some of these (boxed) may be finished, while others may be exe-
cuting out-of-order or speculatively, after a conditional branch (the
forks) which is not yet resolved. The ISA model generates events,
principally: register-read, register-write, memory-read, memory-
write and barrier, which are used by the thread-subsystem (§7.7
Sail interpreter step); some involve instruction-state continuations,
e.g. to record an instruction state which is awaiting the result of a
memory read.

The last part of the model is the storage subsystem, which re-
ceives memory read, write and barrier requests from the thread and
replies to read-requests with read-responses containing the write to
be read from. The storage subsystem abstracts from the intercon-
nect and shared cache levels in the microarchitecture. The Flowing-
model instruction semantics and thread subsystem will be reused in
our more abstract POP model, while the storage subsystem will be
replaced by a more abstract model.

Given all the complexity of real microarchitectures it is interest-
ing to note that the ARM architects have a much simpler abstrac-
tion in mind when they discuss the validity of different behaviour:
they can often reason about the architecture and the hypothetical
behaviour of hardware without needing to unpack details of cache
protocols and suchlike. The basic idea of our Flowing model is to
try to formalize this abstraction, keeping it as familiar to them as
much as possible. In the rest of this section we introduce it, via two
motivating examples.

Lack of multi-copy atomicity The ARM architecture is not multi-
copy atomic [8]: a write by one hardware thread can become visible
to some other threads before becoming visible to all of them. This
is observable to the programmer in concurrent litmus tests such as
WRC+addrs (write-to-read causality):

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addr

rf

Test WRC+addrs: Allowed

Here a message x=1 is written by Thread 0 and read by a Thread 1
which then raises a flag y=1. That in turn is read by Thread 2
which then tries to read the message. To prevent local reordering
in the second two threads, both of their second accesses are made
address-dependent on the results of their first reads. This is not
enough to prevent the unwanted behavior shown, in which Thread 2
reads from the initial state of x, not the value 1 of the message (a).

The diagram shows a particular execution, not a program: a
graph over memory read and memory write events. A read event
b:R[x]=1 represents a memory read from the address of x of value
1. Similarly a:W[x]=1 represents a memory write. All variables

are disjoint and initialized to 0. The rf edges indicate reads-from
relations between writes and reads (the rf edge from a red dot
indicates a read from the initial memory value).

Microarchitecturally, this behaviour can arise from multi-level
cache and core clustering. Two cores that share a cache level that
is not shared with a third core can observe each other’s memory
accesses before the third core does. ARM architects reason about
the behaviour of this by abstracting it to a tree-shaped topology of
queues in which requests “flow”, starting from the entry point of the
issuing thread through join points until they reach main memory.
On their way to main memory some requests might bypass others
subject to reordering conditions. In this abstraction, read requests
do not need to travel all the way to main memory to get satisfied:
if a read request encounters a write to the same address, a read
response can be immediately sent to the issuing thread of the
read request. This abstraction is the inspiration behind the Flowing
storage subsystem.

For example, a particular processor might have a topology as
below, with the pairs of threads 0,1, and 2,3, each sharing a queue
which is not shared with the rest (many other topologies are possi-
ble, especially with more cores). At a certain point in the computa-
tion, the write (a) might have propagated down past one join point,
with the read request (b) still above that point.

memory (x=0;y=0)

Thread 0 Thread 1

b:R[x]

a:W[x]=1

Thread 2 Thread 3

Later the read request (b) can flow down another step, and then
perhaps be satisfied directly from (a). That will resolve the address
dependency to write (c), which could be committed and flow to the
same point:

memory (x=0;y=0)

Thread 0 Thread 1

c:W[y]=1

a:W[x]=1

Thread 2 Thread 3

Then, as (c) and (a) are to different addresses (and not separated
by a barrier), they can be reordered , and (c) could flow past the
next point where it can satisfy Thread 2’s first read. In turn that
resolves the Thread 2 address dependency to its read of x, and that
can flow down and be satisfied from the initial x=0 value in main
memory before (a) passes the bottom join point.

The abstraction used in this description has pros and cons. It
is reasonably simple and easy to understand, and to relate to hi-
erarchical microarchitectures. But the asymmetry between hard-
ware threads is uncomfortable from an architectural point of view
(programmers will typically not know the assignment of software
threads to particular hardware threads, and should not write code
where the correctness depends on that assignment); it is exactly
that asymmetry that our POP model will abstract from.

It is interesting to note also that the testing of ARM implemen-
tations that we have done to date has not exhibited observable non-
multi-copy-atomic behaviour, even though the architecture inten-
tionally and unambiguously permits it (to allow freedom for future
implementations). This limits the extent to which a model can be
validated by black-box testing alone; it also means, as usual for
a loose specification, that it is important to reason about software
w.r.t. the architecture rather than w.r.t. current implementations, at
least if it is intended to be portable to future implementations.



Contrasting again with Power, there such non-multi-copy-
atomic behaviour can be understood in a different way, from the
cache protocol alone acting in a symmetric topology [16, §12]. In
this sense the Flowing model is not a good intensional representa-
tion of Power microarchitectures, and there are litmus tests that are
observable on Power implementations that Flowing does not allow.
But the POP model permits those, and it is a plausible basis for a
good common model.

Out-of-order execution Turning to the thread model that we use
for both Flowing and POP, ARM and Power implementations dif-
fer in just how much out-of-order execution they exhibit. The
MP+dmb.sy+fri-rfi-ctrlisb (message-passing) litmus test below is a
message-passing test where the writes of Thread 0 are maintained
in order by a dmb sy barrier and the reads c and f of Thread 1 are
separated by another write to y (which is coherence2 after the write
to y in Thread 0, indicated by co edge), a read of y, a branch, and
an isb barrier (indicated by a ctrlisb edge); the question is whether
the instructions in Thread 1 create enough order to prevent the read
of x reading from the initial state 0.

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: W[y]=2

Thread 1

e: R[y]=2

f: R[x]=0

dmb.sy
rf

co

po

rf

ctrlisbrf

Test MP+dmb.sy+fri-rfi-ctrlisb: Allowed

MP+dmb.sy+fri-rfi-ctrlisb AArch64
Thread 0 Thread 1

MOV W0,#1 LDR W0,[X1]
STR W0,[X1] MOV W2,#2
DMB SY STR W2,[X1]
MOV W2,#1 LDR W3,[X1]
STR W2,[X3] CBNZ W3,LC00

LC00:
ISB
LDR W4,[X5]

Initial state: 0:X1=x ∧ 0:X3=y ∧ 1:X1=y
∧ 1:X5=x

Allowed: x=1 ∧ y=2 ∧ 1:X0=1
∧ 1:X3=2 ∧ 1:X4=0

The PLDI11 Power model [22] forbids this behaviour as the read
c, the write d, the read e, the isync (the Power analogous to isb )
and the read f all have to commit in program order. The read c
can be committed only after it has been satisfied (by the write
b) which means the write b has propagated to Thread 1. Write
b can propagate to Thread 1 only after the lwsync (the Power
lightweight memory barrier, weaker than dmb sy) and the write a
have propagated to Thread 1. Therefore, when the read f is satisfied
it can only be from the write a (or coherence-after write).

In testing, the above is observed on some ARM machines ([4,
Table VI] and [16, §10.6]). To allow this behaviour read e has to be
able to commit before read c gets its value back. ARM architects
give two distinct explanations for this behaviour. In the first ex-
planation the microarchitecture handles reads in two distinct steps,
with a read request being issued and then satisfied. In this example,
after the read c has been issued the microarchitecture can guaran-
tee its coherence order even though it has not been satisfied yet,
by keeping read requests and writes to the same address ordered in
the Flowing hierarchy, and continue by committing the program-
order–following write to the same address d. This enables e to be
committed, which resolves the control dependency and allows f to
be issued and satisfied with the initial value (0), before c was satis-
fied.

The second explanation is that the write d is independent of
the read c in every respect except coherence. This prevents d from
being committed but it does not prevent the thread from forwarding
d to the po-following read e which in turn can be committed before
d (as the address and value of d are fixed).

Our Flowing model incorporates both of these mechanisms.

2 Coherence is the per-location order over writes to that location that con-
ventional multiprocessor architectures all provide.

4. Flowing Model Design

We now discuss a selection of further aspects of the Flowing design.

4.1 Coherence

Relaxed-memory processors exhibit much programmer-observable
reordering of memory actions, but they typically do aim to guar-
antee some coherence property: with loads and stores to a single
location appearing to execute in a global linear order.

The PLDI11 Power model guaranteed this in the storage subsys-
tem by fiat, by maintaining a partial order of the coherence commit-
ments between writes made so far, and in the thread semantics by
allowing writes (to the same address) to be committed, and reads
(to the same address) to be satisfied, only in program order.

Here the Flowing storage subsystem can easily maintain writes
and read requests to the same address in-order as they flow down
the hierarchy, but the thread semantics has to be more liberal to
match the architects’ intent, and this is further complicated by the
need to restart reads. In the following paragraphs we explain how
the thread subsystem guarantees the coherence order of two writes
will match their program order (write-write coherence), and the
coherence of two writes that were read by two reads will match
the program order of the reads (read-read coherence).

Write-write coherence Simply committing writes to the same ad-
dress in program order would exclude the LB+data+data-wsi (load-
buffering) litmus test below, which the ARM architects intend to be
allowed (to date, we have not observed this behaviour in testing).
We resolve this in the model by allowing writes to be committed out
of order, and only passing a write to the storage when no other po-
after write to the same address has been committed. This means we
can commit and pass to the storage subsystem the write e:W[x]=2
before the data dependency in Thread 1 is resolved, and only later
commit d:W[x]=1, without ever passing it to the storage subsys-
tem. In hardware, the two writes might be merged together.

Thread 0

a: R[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: W[x]=2

data
rf

data

rf
co

Test LB+data+data-wsi: Allowed

LB+data+data-wsi AArch64
Thread 0 Thread 1

LDR W0,[X1] LDR W0,[X1]
EOR W2,W0,W0 EOR W2,W0,W0
ADD W2,W2,#1 ADD W2,W2,#1
STR W2,[X3] STR W2,[X3]

MOV W4,#2
STR W4,[X3]

Initial state: 0:X1=x ∧ 0:X3=y ∧ 1:X1=y
∧ 1:X3=x

Allowed: x=2 ∧ y=1 ∧ 0:X0=2
∧ 1:X0=1

If the dependency from the read c to the write d was an address
dependency the behaviour would be forbidden by the architecture,
as resolving the address of the write d might raise an exception,
in which case the write e must not be visible to other threads. The
models therefore distinguish between the two cases by allowing
a write to be committed only after all po-previous addresses have
been fully determined.

Read-read coherence The RSW (read-from-same-write) litmus
test below challenges the coherence order of reads. The model
allows it in the same way as hardware, by allowing read e to be
issued before the address dependency from c to d is resolved, and
therefore before the read d to the same address is issued. After e
is satisfied by the storage subsystem with the initial value, read
request f can be issued and satisfied with the initial value as well.
Only at that point can the instructions of Thread 0 commit in order
and the writes and the barrier flow all the way into memory. In turn,
Thread 1 issues read c and the storage satisfies it with the write b
that just flowed into memory. This resolves the address dependency
and allows read d to be issued and satisfied from the initial state.



Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[z]=0

e: R[z]=0

f: R[x]=0

dmb.sy

rf

addr

po

addr

rf

rf

rf

Test RSW: Allowed

RSW AArch64
Thread 0 Thread 1

MOV W0,#1 LDR W0,[X1]
STR W0,[X1] EOR W2,W0,W0
DMB SY LDR W3,[X4,W2,SXTW]
MOV W2,#1 LDR W5,[X4]
STR W2,[X3] EOR W6,W5,W5

LDR W7,[X8,W6,SXTW]
Initial state: 0:X1=x ∧ 0:X3=y ∧ 1:X1=y

∧ 1:X4=z ∧ 1:X8=x
Allowed: 1:X0=1 ∧ 1:X7=0 ∧ 1:X3=0

∧ 1:X5=0

Notice that there is no coherence violation between the reads d and
e as both of them read from the same write. If read d was to read
from a different write than e, then e would have had to be restarted
as the write e reads from might be co-before the write d reads from.

It is thus because the model allows issuing reads out of order
that the model must also perform read restarts. In fact the model
also allows reads to be issued out of order with write commitments.
Coherence is then maintained by restarting uncommitted reads in
two situations. When a read r is satisfied by a write w, if exists a
po-previous read that was issued after r (i.e. the reads were issued
out of order), and has already been satisfied by a write that is
different than w, and w was not forwarded to r then r is restarted;
otherwise all po-following reads to the same address that have been
issued before r and have already been satisfied are restarted, except
for reads that have been satisfied by w and reads that have been
satisfied by forwarding a write that is po-after r. When a write w
is committed we restart all po-following reads to the same address
that have been satisfied by a different write that is not po-after w,
together with all po-following reads to the same address that have
been issued and not satisfied yet.

When a read is restarted all its dataflow dependents are also
restarted, and the storage subsystem removes any read request
issued for the read.

The restart of reads on write commitment guarantees write-read
coherence. Finally read-write coherence is maintained by requiring
that when a write w is committed all po-previous reads to the same
address have been issued and can not be restarted.

The MP+dmb.sy+pos-fri-rfi-ctrlisb litmus test, which is ob-
served on ARM hardware, is explained by ARM architects by al-
lowing the write e to be committed before the reads c and d are
satisfied.

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: R[y]=1

e: W[y]=2

Thread 1

f: R[y]=2

g: R[x]=0

dmb.sy

rf

rf

co

po

po

rf

ctrlisbrf

Test MP+dmb.sy+pos-fri-rfi-ctrlisb: Allowed

MP+dmb.sy+pos-fri-rfi-ctrlisb AArch64
Thread 0 Thread 1

MOV W0,#1 LDR W0,[X1]
STR W0,[X1] LDR W2,[X1]
DMB SY MOV W3,#2
MOV W2,#1 STR W3,[X1]
STR W2,[X3] LDR W4,[X1]

CBNZ W4,LC00
LC00:
ISB
LDR W5,[X6]

Initial state: 0:X1=x ∧ 0:X3=y ∧ 1:X1=y
∧ 1:X6=x

Allowed: x=1 ∧ y=2 ∧ 1:X0=1
∧ 1:X2=1 ∧ 1:X4=2 ∧ 1:X5=0

But to do so the model must guarantee read d will not be restarted
when c is satisfied. To do so and maintain read-read coherence, the
model allows write e to be committed only if the reads have been
issued in order, and refrains from restarting reads that are satisfied
out of order if they were issued in program order. Hence the model
keeps track of the order in which reads are issued (again, following
hardware).

4.2 New ARMv8 Memory Barriers

AArch64 introduces a new variant of the dmb barrier, dmb ld. The
regular dmb barrier, now required to be written as dmb sy, orders
arbitrary memory actions that occur before and after it, and also has
a cumulativity property, e.g. ordering writes that the barrier thread
reads from before the dmb w.r.t. writes that it performs after.

The new dmb ld orders loads that occur before the barrier with
load and stores that occur after the barrier, and dmb st (also in
ARMv7) orders stores that occur before the barrier with stores that
occur after the barrier.

Discussions with ARM architects reveals their intention behind
these barriers is weaker than one might imagine. In particular, they
are intended to enforce order only between accesses from the same
thread, and so the dmb st and dmb ld barriers do not have a similar
cumulativity property.

4.3 Load-acquire/Store-release

Another addition in AArch64 is the load-acquire and store-release
instructions. According to the ARM ARM, store-release is multi-
copy-atomic when observed by load-acquires, a strong property
that conventional release-acquire semantics does not imply. Fur-
thermore, despite their names, these instructions are intended to be
used to implement the C11 sequentially consistent load and store.

From their description in the ARM ARM, these two instructions
behave somewhat like two halves of a dmb sy, where the store-
release enforces cumulative order with po-previous instructions and
load-acquire enforces order with po-later instructions. One might
expect this will be enough to guarantee the multi-copy atomicity
of store-release, but this is not the case. In the Flowing model one
can imagine a read request from a load-acquire being satisfied by
a write from a store-release when the two requests are adjacent in
some (non root) queue. Before the read satisfaction, the load/store
pair behaves like a dmb sy, preventing instructions from being
reordered with them. But after the read is satisfied, half of the
implicit dmb sy disappears, and instructions can be reordered with
the write, breaking its multi-copy atomicity.

To guarantee the multi-copy atomicity of store-release, the
Flowing model does not allow a read from load-acquire to be satis-
fied from a store-release write until the write has reached the mem-
ory. In addition, when such a read is satisfied from a regular write,
the read does not disappear from the storage subsystem as regular
reads do, instead it is marked as satisfied and reordered with the
write that satisfied it. This semantics has some surprising effects
the ARM architects did not expect, in particular, the litmus test in
[7, §J10.2.4] (IRIW+poaas+LL) can be weakened by changing the
second load in P3 and P4 to regular loads (IRIW+poaps+LL) and
the behaviour will still be forbidden. The implications of these are
currently being discussed with ARM.

4.4 Dependencies

We say there is a load-store dependency between a load and a
following store instructions, if there is a data flow from the reg-
ister holding the value loaded by the load and the registers used
by the store, and similarly for load-load dependency. The architec-
ture guarantees some ordering for instructions that have load-load
and load-store dependencies. Currently, ARM ARM [7, §B2.7.4]
makes a distinction between ‘true’ and ‘false’ load-store data de-
pendencies, with the intuition being that for a ‘false’ dependency
the value read does not extensionally affect the value stored. Mak-
ing this precise in a satisfactory way is problematic, as too liberal
a notion of ‘false’ dependency (allowing more hardware optimisa-
tion) can also make it impractical to compute whether a trace is
admitted by the architecture or not. This question is currently un-
der discussion with ARM, after we drew it to their attention, and
it is possible the semantics will be strengthened to not distinguish



between the two kinds of dependency; our model follows that pro-
posal at present.

4.5 Branch Prediction

Control dependencies from a load to another load are not in gen-
eral respected, as hardware can speculatively reach and satisfy the
second load early. For a computed branch, in principle the branch
prediction hardware might guess an arbitrary address (or at least an
arbitrary executable-code-page address); there seems to be no rea-
sonable way to limit this behaviour, and one can construct litmus
tests that observe it. Mathematically that is no problem, but to make
the tool based on our model usable in practice, we have to approx-
imate here, otherwise the nondeterminism (picking addresses that
turn out to be incorrect) would be prohibitive.

A detailed prose description of the Flowing thread and storage
subsystem is given in §7.

5. Introduction to the POP Model

We now show how the POP model abstracts from the hierarchical
storage subsystem structure of the Flowing model, to give a better
programming model (and to combine the best of both worlds from
the pros and cons of the Flowing abstraction listed in §3).

The purpose of the queues in the Flowing storage subsystem
is to maintain order between requests, relaxing it subject to the re-
ordering condition. The topology, on the other hand, determines the
order in which a request becomes visible to the threads. Consider
for example the write a:W[x]=1 in the first storage subsystem state
diagram of §3 for WRC+addrs. It is visible to threads 0 and 1, as
a read request from each of these threads can potentially flow and
encounter a, but it is not visible to threads 2 and 3, as a read re-
quest issued by those would flow all the way to memory without
encountering a. In the POP model we make these two notions ex-
plicit. Instead of the queues enforcing an implicit order we record
an order (as a graph) over all requests, and instead of letting a fixed
topology determine the order in which a request becomes visible,
we record for each thread a set of requests that have become visible
to it, and we allow requests to be added to these sets (subject to
conditions over its place in the order).

Notice that unlike the PLDI11 storage coherence order, which
is only over writes, and only relates writes to the same address, the
POP storage model records an order over all requests (writes, reads
and barriers) and it relates requests with different addresses. In ad-
dition, POP records propagation sets (which do not add ordering)
as opposed to the PLDI11 propagation queues (which play a signif-
icant role in ordering). Moreover, in the PLDI11 model, when an
event is propagated to a new thread, it takes its place in the head
of the propagation queue, while in the POP model, requests that
propagated to a new thread can do so from the middle of the order.
Further, in the PLDI11 model the storage subsystem receives a read
request from a thread and replies to it with a read response in an
atomic transition, while in POP the storage subsystem receives the
request and replies to it in two distinct transitions. Finally, as men-
tioned in the introduction, the Power sync memory barrier requires
an acknowledgement to be passed from the storage subsystem to
the issuing thread, while the POP model maintain memory-barrier-
induced ordering without such acknowledgements.

5.1 Example: POP Simulating Flowing

In the following we will demonstrate an execution of the
MP+dmb.sy+addr litmus test below. On the thread subsystems side
we will do our best to make the second load read 0. On the storage
subsystem side we will first show how the Flowing model behaves
and then an analogous behaviour of the POP model.

Since there is an address dependency between the first load and
the second load in Thread 1, the thread has to start by issuing the

first load, c. In the Flowing storage subsystem, read c is received
from Thread 1 and placed at the top of the queue associated with
that thread. Similarly, in the POP storage subsystem, read c is
recorded as propagated to Thread 1.

In Thread 0 now, the presence of a dmb sy between the two
stores forces them (and the dmb sy) to be committed in program
order. The Flowing storage model places these requests in the
queue associated with Thread 0, one on top of the other, in the order
they were received (i.e. program order). The POP storage model
records each of these instructions as propagated to Thread 0 when
it is received. In addition, when the dmb sy request is received it is
recorded as being ordered after the previously received write a and
when the write b is received it is recorded as being ordered after
the dmb sy.

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb.sy
rf

addr

rf

Test MP+dmb.sy+addr: Forbidden

MP+dmb.sy+addr AArch64
Thread 0 Thread 1

MOV W0,#1 LDR W0,[X1]
STR W0,[X1] EOR W2,W0,W0
DMB SY LDR W3,[X4,W2,SXTW]
MOV W2,#1
STR W2,[X3]
Initial state: 0:X1=x ∧ 0:X3=y ∧ 1:X1=y

∧ 1:X4=x
Forbidden: 1:X0=1 ∧ 1:X3=0

The Flowing storage model must flow the write b to the root
queue before the read c gets there in order for c to be satisfied
by b. But before it can do that it must flow the dmb sy and write
a to the root, as none of these can be reordered with the others.
Similarly, the POP storage subsystem must propagate the write b
to Thread 1 before propagating the read c to Thread 0 in order for c
to be satisfied by b. But before it can do that it must propagate the
dmb sy and write a, as they are ordered before b. When the dmb sy
and write b are propagated to Thread 1 they are recorded as being
ordered before c.

Back in the Flowing storage subsystem, read c can flow to the
root queue and get satisfied by b. In the POP storage subsystem,
read c can propagate to Thread 0 and get satisfied by b.

After c was satisfied the address dependency is resolved and
Thread 1 can issue read d. In the Flowing storage model, d is placed
at the top of the queue associated with Thread 1 and it is clear it
will not be able to read the initial value of x as the write a is in the
root queue. Similarly in the POP storage model, d is recorded as
propagated to Thread 1 and ordered after the dmb sy and write a,
and therefore d will not be able to read the initial value of x.

A detailed prose description of the POP storage subsystem is
given in §8. In the next section we describe the ISA model.

6. ISA Model

Handling the instruction semantics raises two problems, as noted
in the introduction: the mass of detail involved, and its semantic
integration with the concurrent semantics. We address both with a
domain-specific language for ISA description, Sail.

The ARM ARM has 224 application-level non-FP/SIMD in-
structions, counting subsections of Chapter C6 A64 Base Instruc-
tion Descriptions (each of which defines one instruction, some-
times with several variants). Of these 224, we support all except
21 (and aspects of 4 more), relating to exceptions, debug, system-
mode, and load-non-temporal-pair.

Fig. 2 shows excerpts of this. At the top is a clause of an in-
struction AST datatype (ast), with constructor AddSubImmediate,
covering four ADD and SUB instructions. Then there is
a decoding function decodeAddSubtractImmediate that
pattern-matches a 32-bit vector and constructs an element
of that ast type (the body of this function is elided). For
example, the ARM assembly instruction ADD X1, X2, #1



would be assembled to 0x91000441, which is decoded to
AddSubImmediate(1,2,64,0,0,ExtendType_UXTB,1). Finally
there is a clause of the execute function that defines the behaviour
of these instructions.

Hardware vendors differ widely in the level of detail and rigor
of their instruction descriptions. The ARM ARM is relatively good
in these respects: the pseudocode used is reasonably complete and
close to something that could be executed, at least for sequential
code (Shi et al. build a simulator based on pseudocode extracted
from an ARMv7 pdf [25]). We therefore want to follow it closely,
both to avoid introducing errors and to keep our definitions readable
by engineers who are already familiar with the ARM ARM. Sail
is designed with this in mind, and our instruction descriptions
can often be line-for-line identical to those of the ARM ARM.
Looking again at Fig. 2, the body of the Sail execute clause differs
from the ARM ARM text [7, §C6.6.4, ADD (immediate)] only in
minor details: the type annotations and concrete syntax for let.
Both languages are imperative, with mutable local variables and
primitives for register and memory reads and writes, and typed bit
vectors.

For Sail, we developed a type system expressive enough to type-
check such code without requiring excessive type annotation or par-
tiality. The ISA description manipulates bitvectors of differing sizes
and start-indices, which we support with dependent types over Int.
For example, Fig. 2 includes a variable ’R of kind Int, bounded to
be either 32 or 64, to accommodate those two flavours of instruc-
tions; the code involves bitvector types bit[’R] of that length and
also a singleton type [:’R:] (really, an integer range type from ’R

to ’R). This instruction happens not to index into a vector; in those
that do, the indices use such range types (not necessarily single-
tons). Type inference and checking involve polynomial equations
and inequalities, undecidable in general but not a problem in prac-
tice, as the constraints that actually arise here are relatively simple.
Sail also provides implicit type coercions between numbers, vec-
tors, individual bits, and registers, again keeping the specification
readable. A simple effect system tracks the presence of memory
and register operations, identifying pure code. The language has
first-order functions and pattern-matching, including vector con-
catenation patterns (as used in decodeAddSubtractImmediate).
We have also used Sail for related work on IBM Power ISA se-
mantics [12] (Power uses a broadly similar but different and less
rigorous pseudocode); it is expressive enough for both.

The dynamic semantics of Sail is where we see the integra-
tion with the concurrency thread-subsystem semantics: unlike a se-
quential or sequentially consistent system, we cannot simply use
a state-monad semantics that updates a global register and mem-
ory state. Instead, the Sail semantics (expressed as an interpreter
in Lem) makes register and memory requests to the thread seman-
tics, providing a continuation of the instruction state. It also has to
announce to the thread semantics the point at which the address
of a memory write becomes available – an example where we dif-
fer from the ARM ARM pseudocode as written there, adding extra
information. The thread semantics further needs to know the regis-
ter footprint of an instruction and intra-instruction register dataflow
information (e.g. the register reads that may feed into a memory
address); the Sail interpreter calculates these with an exhaustive
symbolic taint-tracking execution.

7. The Flowing Model in Detail

7.1 The Storage Subsystem/Thread Interface

The model is expressed in terms of read, write, and barrier requests.
Read and write requests include the kind of the memory access
(e.g. exclusive, release, acquire), the ID of the issuing thread and

the memory access address. Write requests also include a value.
Barrier requests include the issuing thread ID.

When we refer to a write or read request without mentioning the
kind of request we mean the request can be of any kind.

The storage subsystem and a thread subsystem can exchange
messages through synchronous transitions:

• a write request can be passed to the storage subsystem by a
thread Commit store instruction transition coupled with a stor-
age subsystem Accept request transition;

• a (memory) barrier request can be passed to the storage subsys-
tem by a thread Commit barrier instruction transition coupled
with a storage subsystem Accept request transition;

• a read request can be passed to the storage subsystem by a
thread Issue read request transition coupled with a storage sub-
system Accept request transition; and

• a read response can be returned from the storage subsystem
to a thread by a storage subsystem Satisfy read from segment
or Satisfy read from memory transition coupled with a thread
Satisfy memory read from storage response transition.

7.2 Storage Subsystem States

The Flowing storage subsystem state includes:

• thread_ids, the set of thread IDs that exist in the system;
• topology, a data structure describing how the segments are

connected to each other;
• thread_to_segment, a map from thread IDs to segments, associ-

ating each thread with its leaf segment;
• buffers, a map from segments to list of requests associating each

segment with the requests queued in that segment;
• reordered, a set of request pairs that have been reordered

w.r.t. each other; and
• memory, a map from memory addresses to the most recent write

request to that address to reach memory.

7.3 Storage Subsystem Transitions

Accept request A request r from thread r.tid can be accepted if:
1. r has not been accepted before (i.e. r is not in buffers); and
2. r.tid is in thread_ids.

Action: add r to the top of buffers(thread_to_segment(r.tid)).

Flow request A request r can flow from segment s1 to s2 if:
1. r is at the bottom of buffers(s1); and
2. s1 is a child of s2 in topology.

Action:
1. remove r from buffers(s1);
2. add r to the top of buffers(s2); and
3. remove from reordered any pair that contains r.

Reorder requests Two requests r_new, r_old that appear consec-
utively in buffers(s) (r_new nearer the top) can be reordered if:
1. (r_new, r_old) does not appear in reordered (i.e. they have not

been reordered (in segment s) with each other before (prevent-
ing live lock); and

2. r_new and r_old satisfy the reorder condition (§7.4).

Action:
1. switch the positions of r_new and r_old in buffers(s); and
2. record the reordering of r_new and r_old (by adding the pair

(r_new, r_old) to reordered).

Satisfy read from segment Two requests, r_read, r_write, can
generate a read response to thread r_read.tid if:
1. r_read is a read request ;
2. r_write is a write request;



3. r_read, r_write appear consecutively in buffers(s) for some
segment s, with r_read closer to the top (newer); and

4. r_read and r_write are to the same address.

Action:
1. send a read response for request r_read to thread r_read.tid,

containing r_write; and
2. remove r_read.

Satisfy read from memory A read request r_read from thread
r_read.tid can generate a read response to thread r_read.tid if
r_read is at the bottom of buffers(s), where s is the root segment
in topology. Action:
1. send a read response for request r_read to thread r_read.tid,

containing the write stored in memory for the address
r_read.addr; and

2. remove r_read.

Flow write to memory The write request r_write can be stored
into memory if: r_write is at the bottom of buffers(s), where s is the
root segment in topology. Action:
1. update memory to map the address r_write.addr to r_write; and
2. remove r_write from buffers(s) and reordered.

Flow barrier to memory A barrier request r_barr can be dis-
carded if: r_barr is at the bottom of buffers(s), where s is the root
segment in topology. Action: remove r_barr.

7.4 Auxiliary Definitions for Storage Subsystem

Reorder condition Two requests r_new and r_old are said to meet
the reorder condition if:
1. neither one of r_new, r_old is a dmb sy; and
2. if both r_new and r_old are memory access requests, they are

to different addresses.

7.5 Thread States

The state of a single hardware thread includes:

• thread_id, a unique identifier of the thread;
• register_data, general information about the available registers,

including name, bit width, initial bit index and direction;
• initial_register_state, the initial values for each register;
• initial_fetch_address, the initial fetch address for this thread;
• instruction_tree, a data structure holding the instructions that

have been fetched in program order; and
• read_issuing_order, a list of read requests in the order they

were issued to the storage subsystem.

7.6 Instruction State

Each instruction in the instruction_tree has a state including:

• program_loc, the memory address where the instruction’s op-
code resides;

• instruction_kind, the kind of the instruction (e.g. load-acquire);
• regs_in, the input registers, for dependency calculation;
• regs_out, the output registers, for dependency calculation;
• reg_reads, accumulated register reads;
• reg_writes, accumulated register writes;
• mem_read, one of none, pending a, requested a,

write_read_from w, where a is a memory address and w
is a memory write;

• mem_write, one of none, potential_address a, pending w, com-
mitted w, where a is a memory address and w is a memory write;

• committed, set to true when the instruction can no longer affect
the memory model (the Sail interpreter might still need to
complete the execution of the ISA definition);

• finished, set to true only after committed is set to true and the
Sail interpreter has finished executing the ISA definition; and

• micro_op_state, the meta-state of the instruction, one of plain
interpreter_state (ready to make a Sail interpreter transition
from interpreter_state), pending_mem_read read_cont (ready
to perform a read from memory) or potential_mem_write
write_cont (ready to perform a write to memory) where
read_cont is a Sail interpreter continuation that given the
value read from memory returns the next interpreter state, and
write_cont is a Sail interpreter continuation that given a boolean
value (that indicates if the store was successful) returns the next
interpreter state.

Instructions that have been fetched (i.e. in instruction_tree) and
have a finished value of false are said to be in-flight. Instructions
that have a committed value of true are said to be committed.
Load instructions with the value requested for mem_read are said
to have an outstanding read request, and if they have the value
write_read_from they are said to be satisfied. Store instructions
with mem_write = pending w are said to have a pending write. We
say instruction i has fully determined address if all instructions that
write to input registers of i that affect memory address calculation
in the ISA definition of i are committed. We say i is fully determined
if all instructions that write to input registers of i are committed.

7.7 Thread Transitions

Sail interpreter step An instruction i in meta-state plain inter-
preter_state can perform an interpreter step as follows:

• if interpreter_state indicates a memory-read event: set
i.mem_read to pending interpreter_state.read_addr and up-
date the instruction meta-state to pending_mem_read inter-
preter_state.read_cont;

• if interpreter_state indicates a memory-write-address event: set
mem_write to potential_address interpreter_state.write_addr
and update the instruction meta-state to plain inter-
preter_state.next;

• if interpreter_state indicates a memory-write-value event: set
mem_write to pending w (where w is a write request with the
value interpreter_state.write_value and the address that was
in mem_write before) and update the instruction meta-state to
potential_mem_write interpreter_state.write_cont;

• if interpreter_state indicates a register-read event: look in
instruction_tree for the most recent po-previous instruc-
tion, i’ that has interpreter_state.reg in i’.regs_out. If inter-
preter_state.reg is not in i’.reg_writes the transition is disabled.
Otherwise, add interpreter_state.reg to i.reg_reads and update
the meta-state of i to plain (interpreter_state.reg_count val)
(where val is the value written to the register by i’);

• if interpreter_state indicates a register-write event: add inter-
preter_state.reg to i.reg_writes and update the meta-state of i to
plain interpreter_state.next; and

• if interpreter_state indicates an internal step: update the meta-
state of i to plain interpreter_state.next.

Fetch instruction An instruction i, from address loc, can be
fetched, following its program-order predecessor i’ if:
1. i’ is in instruction_tree;
2. loc is a possible next fetch address for i’ according to the ISA

model;
3. none of the successors of i’ in instruction_tree are from loc; and
4. i is the instruction of the program at loc.

The possible next fetch addresses allow speculation past calculated
jumps and conditional branches; they are defined as:

1. for a non-branch/jump instruction, the successor instruction
address;

2. for a jump to constant address, that address;



3. for a conditional branch, the possible addresses for a jump3

together with the successor; and
4. for a jump to an address which is not yet fully determined (i.e.,

where there is an uncommitted instruction with a dataflow path
to the address), any address. This is (necessarily) approximated
in our implementation, c.f. §4.5.

Action: construct an initialized instruction instance, including static
information available from the ISA model such as instruction_kind,
regs_in, regs_out, and add it to instruction_tree as a successor of i’.

This is an internal action of the thread, not involving the storage
subsystem, as we assume a fixed program rather than modelling
fetches with memory reads; we do not model self-modifying code.

Issue read request An in-flight instruction i in meta-state pend-
ing_mem_read read_cont can issue a read request of address a to
the storage subsystem if:
1. i.mem_read has the value pending a, i.e., any other reads with

dataflow path to the address have been satisfied, though not
necessarily committed, and any arithmetic on such a path com-
pleted; and

2. all po-previous dmb sy and isb instructions are committed.

Action:
1. send a read-request to the storage subsystem;
2. change i.mem_read to requested a; and
3. update read_issuing_order to note that the read was issued last.

Satisfy memory read from storage response A read response
with write w, for read request from instruction i in meta-state
pending_mem_read read_cont can always be received. Action:
1. if i.mem_read does not have the value requested the response

is ignored (this can happen when the read is satisfied by write
forwarding while waiting for the response); else

2. if there exists a po-previous load instruction to the same address
that was issued after i (i.e., issued out of order) and was satisfied
by a write that is not w, set i.mem_read to pending; else

3. for every in-flight instruction i’ that is po-after i and has read
from a write to the same address as i that is not w and not po-
successor of i, restart i’ and its data flow dependents;

4. change i.mem_read to write_read_from w; and
5. update the meta-state of i to plain (read_cont w.value).

Satisfy memory read by forwarding an in-flight write A pend-
ing memory write w from an in-flight store instruction i’ can
be forwarded directly to a load instruction i in meta-state pend-
ing_mem_read read_cont if:
1. i.mem_read has the value pending w.address or requested

w.address; and
2. i’ is po-before i, there is no other store instruction to the same

address in between them, and there is no other load instruction
in between them that has read from a different store instruction
to the same address.

Action:
1. for every in-flight instruction i” that is po-after i and has read

from a write to the same address as i that is not w and not po-
successor of i, restart i” and its data flow dependents;

2. change i.mem_read to write_read_from w; and
3. update the meta-state of i to plain (read_cont w.value).

Commit store instruction A store instruction i in meta-state po-
tential_mem_write write_cont and with pending write w can be
committed if:
1. i is fully determined;

3 In AArch64, all the conditional branch instructions have a constant ad-
dress.

2. all po-previous conditional branches are committed;
3. all po-previous dmb sy and isb instructions are committed;
4. all po-previous memory access instructions have a fully deter-

mined address; and
5. all po-previous instructions that read from the same address

have either an outstanding read request or are satisfied, and
cannot be restarted (see §7.8).

Action:
1. restart any in-flight loads (and their dataflow dependants) that:

(a) are po-after i and have read from the same address, but from
a different write and where the read could not have been by
forwarding an in-flight write that is po-after i; or

(b) have issued a read request that has not been satisfied yet.
2. if there is no committed po-following store to the same address,

send a write request to the storage subsystem;
3. record the store as committed (i.e. set i.mem_write to committed

w and committed to true); and
4. update the meta-state of i to plain (write_cont true).

Commit barrier instruction A barrier instruction i in meta-state
plain interpreter_state can be committed if:
1. interpreter_state indicates a barrier event is pending;
2. all po-previous conditional branches are committed;
3. all po-previous barriers (of any kind) are committed;
4. if i is isb , all po-previous memory access instructions have a

fully determined address; and
5. if i is dmb sy, all po-previous memory access instructions are

committed.

Action:
1. record the barrier as committed (i.e. set committed to true); and
2. update the meta-state of i to plain interpreter_state.next.

Finish instruction An in-flight instruction i in meta-state plain
interpreter_state can be finished if:
1. interpreter_state indicates the execution of the ISA definition

has finished;
2. if i is a load instruction:

(a) all po-previous dmb sy and isb instructions are committed;
(b) let i’ be the store instruction to the same address as i that

appears last in program order before i:
i. if i’ was forwarded to i, i’ is fully determined, otherwise

i’ is committed;
ii. all memory access instructions, po-between i’ and i,

have a fully determined address; and
iii. all load instructions to the same address as i , that are

po-between i’ and i, are committed.
3. i is fully determined; and
4. all po-previous conditional branches are committed.

Action:
1. if i is a branch instruction, abort any untaken path of execution,

i.e., any in-flight instruction that are not reachable by the branch
taken in instruction_tree; and

2. record the instruction as finished, i.e., set finished (and commit-
ted) to true.

7.8 Auxiliary Definitions for Thread Subsystem

Restart condition To determine if instruction i might be restarted
we use the following recursive condition: i is an in-flight instruction
and at least one of the following holds,

1. there exists an in-flight store instruction s such that applying the
action of the Commit store instruction transition to s will result
in the restart of i;



2. there exists an in-flight load instruction l such that applying the
action of the Satisfy memory read from storage response tran-
sition to l will result in the restart of i (even if l is already satis-
fied);

3. i has an outstanding read request that has not been satisfied
yet, and there exists a load instruction po-before i that has an
outstanding read request to the same address (maybe already
satisfied) after i; or

4. there exists an in-flight instruction i’ that might be restarted and
an output register of i’ feeds an input register of i.

8. The POP Model

8.1 The Storage Subsystem/Thread Interface

The storage subsystem and a thread subsystem can exchange mes-
sages through synchronous transitions:

• a write request can be passed to the storage subsystem by a
thread Commit store instruction transition coupled with a stor-
age subsystem Accept request transition;

• a (memory) barrier request can be passed to the storage subsys-
tem by a thread Commit barrier instruction transition coupled
with a storage subsystem Accept request transition;

• a read request can be passed to the storage subsystem by a
thread Issue read request transition coupled with a storage sub-
system Accept request transition; and

• a read response can be passed from the stor-
age subsystem to a thread by a storage subsystem
Send read-response to thread transition coupled with a
thread Satisfy memory read from storage response transition.

In addition to the above, when a load instruction is restarted in
the thread subsystem, all its read-requests are removed from the
storage subsystem.

8.2 Storage Subsystem State

The POP storage subsystem state includes:

• thread_ids, the set of thread IDs that exist in the system;
• requests_seen, the set of requests (memory read/write requests

and barrier requests) that have been seen by the subsystem;
• order_constraints, the set of pairs of requests from re-

quests_seen. The pair (r_old,r_new) indicates that r_old is be-
fore r_new (r_old and r_new might be to different addresses
and might even be of different kinds); and

• requests_propagated_to, a map from thread IDs to subsets of
requests_seen, associating with each thread the set of requests
that has propagated (potentially visible) to it.

8.3 Storage Subsystem Transitions

Accept request A request r_new from thread r_new.tid can be
accepted if:
1. r_new has not been accepted before (i.e., r_new is not in re-

quests_seen); and
2. r_new.tid is in thread_ids.

Action:
1. add r_new to requests_seen;
2. add r_new to requests_propagated_to(r_new.tid); and
3. update order_constraints to note that r_new is after every re-

quest r_old that has propagated to thread r_new.tid, and r_new
and r_old do not meet the Flowing reorder condition (see
Reorder condition).

Propagate request to another thread The storage subsystem can
propagate request r (by thread tid) to another thread tid’ if:
1. r has been seen before (i.e., r is in requests_seen);

2. r has not yet been propagated to thread tid’; and
3. every request that is before r in order_constraints has already

been propagated to thread tid’.

Action:
1. add r to requests_propagated_to(tid’); and
2. update order_constraints to note that r is before every request

r_new that has propagated to thread tid’ but not to thread tid,
where r_new and r do not meet the Flowing reorder condition
(see Reorder condition).

Send read-response to thread The storage subsystem can send a
read-response for read request r_read to thread r_read.tid contain-
ing the write request r_write if:
1. r_write and r_read are to the same address;
2. r_write and r_read have been propagated to (exactly) the same

threads;
3. r_write is order_constraints-before r_read; and
4. any request that is order_constraints-between r_write and

r_read has be fully-propagated (§8.4) and is to a different ad-
dress.

Action:
1. send thread r_read.tid a read-response for r_read containing

r_write; and
2. remove r_read.

8.4 Auxiliary Definitions for Storage Subsystem

Fully propagated Request r is said to be fully-propagated if it
has been propagated to all threads and so has every request that is
order_constraints-before it.

Removing read request When a read request is removed from the
storage subsystem, due to restart of the instruction in the thread
subsystem or satisfaction, first order_constraints is restricted to
exclude the request; it is then further restricted by applying the
reorder condition to each pair of ordered requests and removing
pairs that can be reordered; finally the transitive closure of the result
is calculated.

9. POP Abstracts Flowing

We now show that the POP model does indeed abstract the Flowing
model, as intended. The detailed proof is available online; here we
outline the statement of the theorem and the overall structure of the
proof. A Flowing trace is a sequence

(tss0,flo0), a1, (tss1,flo1), . . . , an, (tssn,flon)

where each tssi denotes a thread subsystem state, floi denotes a
Flowing storage subsystem state and for each i ∈ [1, n] the transi-
tion ai is enabled at the Flowing system state f = (tssi−1,floi−1)

and when taken leads to f ′ = (tssi,floi), written as f
ai

−→F f ′.
We define the dual notion for POP traces with a POP system state
(tss, pop), where pop is a POP storage subsystem state. We say
that a Flowing trace trF is equivalent to a POP trace trP if the last
system state in each trace has identical thread subsystem states.

We prove that POP soundly relaxes Flowing by establishing a
simulation relation from Flowing to POP which for a given Flowing
trace generates an equivalent POP trace. Since the thread subsystem
state has full information about the execution of the instructions,
equivalence of traces implies identical program behaviour.

Theorem 1 (POP relaxes Flowing). Let trF be a Flowing trace
ending at Flowing system state (tss,flo). Then there exists a POP
trace trP which ends at POP system state (tss ′, pop) such that
tss = tss ′.



Our proof relies on a simulation relation σ and a transition map
µ : AF 7→ A∗

P . The simulation relation is such that whenever
(f, p) ∈ σ, f and p have identical thread subsystem states. Besides
the simulation relation, we also define a function µ : AF 7→ A∗

P

which maps a Flowing transition into a (possibly empty) sequence
of POP transitions. We then show inductively that for any Flowing
system state f and POP system state p, if (f, p) ∈ σ and there is
a Flowing transition f

a
−→F f ′, then there is a POP system state p′

such that p
µ(a)
−−−→P

∗ p′ and (f ′, p′) ∈ σ.

10. Commutativities

Exploring all architecturally allowed outcomes of concurrent test
programs is computationally expensive. In any state of the model
multiple transitions might be enabled, and any possible trace of
these transitions might produce a new outcome. From the definition
of the model, however, it is clear that the order in which the
abstract machine takes certain transitions does not matter: certain
thread-internal transitions can be reordered and the outcome will
be the same. We proved this for particular kinds of transitions
and implemented an optimisation of the tool we describe below
that uses this result to improve the performance of exhaustively
exploring the possible behaviours of concurrent programs.

The property we proved is the following: assume transition t
takes the abstract machine from state s0 to s, and transition t′ from
s0 to s′. Then for particular types of transitions t the model only
needs to explore the traces starting with t, because in s transition t′

is enabled again and either

• in s′, transition t is enabled and taking t in s′ produces the same
state as taking t′ in s; or

• taking transition t′ in state s results in s′.

Theorem 2. Let t, t′ ∈ enumerate-transitions-of-system s0 and
assume t is a thread-internal transition, an instruction-finish tran-
sition, a register read or write transition, a potential-memory-write
transition, or a fetch transition, and neither t nor t′ are fetch tran-
sitions directly po-after a branch. Then

(t ∈ enumerate-transitions-of-system s
′
∧ (1)

t
′
∈ enumerate-transitions-of-system s ∧

state-after-transition s
′
t = state-after-transition s t

′) ∨

(t′ ∈ enumerate-transitions-of-system s ∧ (2)

system-state-after-transition s t
′ = s

′)

The proof (available online) is by case analysis on the transition
kinds of t and t′. The reason the second clause in the statement
above is needed is that t might be enabled by an instruction i that
can be subject to restart, for example by a storage read response
transition t′, or part of a speculatively executed branch that might
be aborted when the branch is resolved. In these cases, when taking
transition t the instruction i makes progress which is “overwritten”
when taking transition t′.

11. Exploration Tool

We have built a tool that lets one explore, interactively or exhaus-
tively, all the executions admitted by the model for small test pro-
grams, either litmus tests or conventional ARMv8 ELF executables.
The core of the tool is OCaml code automatically generated by the
Lem compiler from the model definition (giving reasonable confi-
dence that it is executing the model as specified), to which we add
a driver and user interface code.

The exhaustive mode of the tool takes a litmus test as an in-
put and produces a list of all the observable final states (using a
memoised search), together with an example trace for each one; it

also evaluates the litmus test final-state assertion. We use this on a
cluster and a large server machine for bulk litmus test and ISA test
validation.

The interactive mode lets the user make the nondeterministic
choices between the available transitions at each state (or follow
a previously identified sequence of choices). The user can also
choose to let the tool eagerly take all the ISA internal transitions of
each instruction and only prompt the user for the thread and stor-
age subsystem transitions, or, further, to eagerly take transitions
which are known to commute with others (§10), leaving the user
only the choices that affect memory behaviour. At each point the
tool displays the abstract state of the model, including the storage
subsystem state, the tree of instruction instances for each hardware
thread, and the Sail instruction state (the remaining Sail code and
local variable environment) for each instruction. The delta from
one state to the next is highlighted and the tool supports arbitrary
‘undo’, for ease of exploration. The tool provides both a command-
line and web interface, using js_of_ocaml to compile to JavaScript
that can run standalone in a browser. The web interface can be ac-
cessed from http://www.cl.cam.ac.uk/~pes20/popl16-armv8.

In small sequential tests the tool currently has a performance
of the order of 90 IPS: a test adding up the numbers from 0 to 20
(an ELF binary compiled with GCC from a C program with a for

loop), involving 212 instruction instances, takes 2.4 seconds to run
using the Flowing model, 25.5 seconds in the POP model. Many
optimisations are possible; for example, the POP model currently
keeps all writes, but “sufficiently old” writes could be discarded
(though the performance gain of doing such optimisations must be
balanced against the cost of making the model less clear).

Exhaustive exploration of concurrent tests is intrinsically chal-
lenging due to the combinatorial explosion: using the POP model
to compute all possible outcomes of the MP+dmb+addr litmus test
without the commutativity optimisation of §10 takes 8 hours 35
minutes on an Intel Core i5 machine with 16GB RAM, 12 hours 23
minutes using the Flowing model. Using the commutativity prop-
erty to avoid exploring equivalent traces improves the run time for
this test to 4 seconds with POP and 5.5 seconds with Flowing.

12. Example

One of the benefits of our model and tool is to make it possi-
ble to explore the behaviour of intricate concurrent code with re-
spect to the full envelope of behaviour allowed by the architecture,
not just test it on particular implementations. Previous such tools
have been useful both for Linux kernel developers [17] and ARM
hardware engineers [personal communication], but were limited in
many ways: to a concurrency model that was not well-validated
w.r.t. ARM (and in fact did not match the intent in some respects),
to a tiny fragment of the ISA, and to ARMv7; we have now relaxed
all these limitations.

We demonstrate this for an ARMv8 spinlock implementation
taken from the Linux kernel. The example uses two threads, each
running a small critical section wrapped with lock and unlock
functions. It assumes an initial state with register X0 holding the
address of a lock, register X4 the address of a shared memory
object, and register X5 (accessed as a half register with W5) a
thread id.

The sample critical section for Thread 0 is on the next page;
that for Thread 1 differs in taking the branch to error on loading
1 from the shared memory object (with a CBZ). If it does, then
Thread 1 has been allowed into the critical section before Thread 0
has released the lock.

http://www.cl.cam.ac.uk/~pes20/popl16-armv8


lock: LDAXR W1, [X0]

ADD W2, W1, #16, LSL #12

STXR W3, W2, [X0]

CBNZ W3, lock

EOR W2, W1, W1, ROR #16

CBZ W2, out

spin: LDAXRH W3, [X0]

EOR W2, W3, W1, LSR #16

CBNZ W2, spin

out: RET

unlock:

LDRH W1, [X0]

ADD W1, W1, #1

STLRH W1, [X0]

RET

// T0 critical section

BL lock

STR W5, [X4]

LDR W5, [X4]

CBNZ W5, error

BL unlock

The spinlock uses several ARMv8 release/acquire instruc-
tions, some exclusive (load-linked/store-conditional pairs), namely
LDAXR, load-acquire exclusive register, LDAXRH, load-acquire
halfword, STXR, store exclusive register, and STLRH, store-
release halfword. We explored this example interactively in both
the Flowing and POP models, with both 32- bit and 64-bit instruc-
tions. In neither model were we able to exit the spin section of the
lock code while the opposite thread had not passed the unlock sec-
tion once the STXR had been executed. This was true whether the
store had propagated to main memory or the opposite thread.

We then injected an error into this implementation, replacing
STXR with a plain STR. In the resulting program, we found an
execution trace in which the write of the store claiming the lock in
Thread 0 does not propagate to Thread 1 before Thread 1 tests the
lock, and so Thread 1 is also able to also claim the lock and enter
its critical section, at which point the critical section of Thread 0
loads a 1 into W5 and the CBNZ instruction branches to error.
Finding this error required that the store on Thread 0 propagated
to Thread 1 only after Thread 1 also stored to the lock, which may
or may not happen in an actual execution on hardware but which we
could quickly see as an architectural possibility during exploration.

13. Experimental Validation

Single-instruction tests For the validation of the sequential ISA
semantics we wrote a tool for automatically generating ARM as-
sembly tests that compare hardware and model behaviour for in-
dividual instructions. Each of the tests first initialises registers and
memory to particular values, then logs the relevant CPU and mem-
ory state before and after running the instruction that is tested.

The tests are generated largely automatically based on informa-
tion derived from the instruction descriptions in the ARM ARM.
The manual describes the encoding of the instructions and instruc-
tion fields using tables of the legal bit patterns; the instruction’s
pseudo code explains how the instruction’s parameters are used by
the instruction: some instruction fields encode immediate values,
others mode strings or bits that switch between different variants
of the same instruction. Based on this the tool generates tests by
selecting random immediate values and all legal combinations of
mode strings and bits to test, as much as possible, all behaviours of
the instruction.

The test programs are statically linked Linux ELF binaries pro-
duced by GCC, that can be executed using our tool.

The tool generates around 8400 tests, all of which pass. The
tests are generated uniformly for almost all instructions; branches
and loads/stores need some additional setup.

Litmus tests For experimental validation of the concurrency
semantics, we use a library of litmus tests developed in previous
work on Power and ARM [2, 4, 22, 23], including both hand-
written tests and tests autogenerated by the diy tool of Alglave
and Maranget [1], adapted to ARMv8. We use the the litmus

tool [3] to make an ARM executable that is then run on different
ARM devices. The executable runs millions (sometimes billions) of

iterations of the test, trying to excite the cores to produce interesting
behaviour, the outcome of which is a list of observed final states.

For each litmus test we then compare the final states observed
on hardware with the final states reported by the exhaustive explo-
ration of the model. In addition, we compare the results of exhaus-
tive exploration between Flowing and POP. The exhaustive explo-
ration of Flowing gives results for 2489 litmus tests and of POP for
2530, out of 4832; the remainder exceed time or memory limits.

The experimental comparison between Flowing and POP shows
no difference between the models. One can devise exotic litmus
tests on which the models will behave differently, exploiting the
Flowing observable topology (e.g. 4xIRIW+addrs, combining mul-
tiple instances of the IRIW+addrs litmus test), but these are too big
for our tool’s exhaustive enumeration. (we checked by hand that
that test is allowed by POP and proved it is forbidden by Flowing).

The comparison with hardware shows all the observable be-
haviour on hardware is allowed by the models (i.e. models are
sound). As expected, some behaviours that are allowed by the mod-
els are not observed on current hardware.

In online material we give two tables (for ARMv7 and ARMv8)
with a small sample of our experimental results, for the litmus tests
cited by name in this paper (including results for Snapdragon 810,
Denver, and A8X processors). The models are sound with respect to
this data; indeed, the tested hardware is often less relaxed than the
models and architectural intent. The data also illustrates how much
hardware behaviour varies from one implementation to another,
further emphasising the importance of a precise understanding of
the architectural envelope.

14. Conclusion

Well-validated semantic models for mainstream processor architec-
tures are an important and technically challenging problem in them-
selves, and they are also an essential prerequisite for higher-level
semantics and verification, of fine-grained concurrent algorithms,
operating systems code, compilers, high-level-language concur-
rency models, and much more.

In this paper we have taken important steps towards this for
the ARMv8 architecture, combining concurrency models, both mi-
croarchitectural and more abstract, with a complete application-
level non-FP/SIMD ISA semantics. The former are validated by
discussion with ARM and by black-box litmus testing; the latter
by the close correspondence with the ARM ARM and by single-
instruction testing. Our models will be made available for use by
others, in their Sail and Lem source and as command-line and web-
interface executable tools. We have also (in an initial experiment)
used Lem to generate Isabelle/HOL definitions of all the model ex-
cept the Sail interpreter, to support mechanised reasoning.

Much future work is possible, of course. In the short term, more
validation is always desirable, here especially for the exclusive
operations and for mixed-size accesses (we have not touched on
the latter in this paper; our model covers them but they have not
been well-tested). For work on concurrent algorithms and verified
compilation, our coverage should be sufficient, but for some OS
code one would also need semantics for exceptions, interrupts, and
virtual memory, including all their interactions with concurrency.
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[26] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22:1–22:50, June 2013. ISSN 0004-5411.
. URL http://doi.acm.org/10.1145/2487241.2487248.

http://diy.inria.fr/
http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dx.doi.org/10.1007/978-3-319-12466-7_1
www.arm.com/products/processors/
cortex-a/cortex-a57-processor.php
http://opac.inria.fr/record=b1105256
http://doi.acm.org/10.1145/1706299.1706346
http://dx.doi.org/10.1007/978-3-642-32347-8_23
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://doi.acm.org/10.1145/2505879.2505897
http://doi.acm.org/10.1145/2535838.2535841
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://lwn.net/Articles/470681/
http://doi.acm.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2628136.2628143
http://doi.acm.org/10.1145/1594834.1480929
http://doi.acm.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/2254064.2254102
http://dx.doi.org/10.1007/978-3-642-25379-9_25
http://doi.acm.org/10.1145/2487241.2487248

	Introduction
	Related Work
	Introduction to the Flowing Model
	Flowing Model Design
	Coherence
	New ARMv8 Memory Barriers
	Load-acquire/Store-release
	Dependencies
	Branch Prediction

	Introduction to the POP Model
	Example: POP Simulating Flowing

	ISA Model
	The Flowing Model in Detail
	The Storage Subsystem/Thread Interface
	Storage Subsystem States
	Storage Subsystem Transitions
	Auxiliary Definitions for Storage Subsystem
	Thread States
	Instruction State
	Thread Transitions
	Auxiliary Definitions for Thread Subsystem

	The POP Model
	The Storage Subsystem/Thread Interface
	Storage Subsystem State
	Storage Subsystem Transitions
	Auxiliary Definitions for Storage Subsystem

	POP Abstracts Flowing
	Commutativities
	Exploration Tool
	Example
	Experimental Validation
	Conclusion

