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Abstract: Increasing distributed generation and intermittency, along with the increasing frequency of extreme weather 

events, pose a serious challenge supply security in the electric power sector. Understanding the costs of interruption is 

vital for enhancing power system infrastructure and planning the distribution grid. Customer rights and demand response 

are additional reasons to study the value of power reliability. We make use of the directional distance function and shadow 

pricing method for a case study from Finland with the aim of calculating the cost of one minute of power interruption from 

the perspective of the distribution network operator. The sample consists of 78 distribution network operators from Finland 

based on cost and network information between 2013 and 2015. 
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1. Introduction 

Continuity of electric power supply is a key concern for authorities, Distribution System 

Operators (DSOs) and for the consumers. As each sector, such as finance, telecommunications, health, 

entertainment, transportation etc. become more and more dependent on electricity, the results of 

power interruptions become more devastating. There is no surprise that the United States Homeland 

Security defines energy sector as “uniquely critical because it provides an “enabling function” across 

all critical infrastructure sectors” (White House, 2013), while (Securing the US Electrical Grid, 2014) 

emphasizes the significance of the electric power grid as “the most critical of critical infrastructure”. 

As rapidly increasing intermittent renewable energy sources create a challenge for the power system 

planners, the increasing frequency and the duration of the extreme weather events have become a 

major threat for the electric power security (Küfeoğlu et al., 2014). Consequently, estimation of the 

costs of power interruptions or the value of lost load has become an attractive field for researchers. 

Customer surveys, indirect analytical methods and case studies are the three major methodologies 

which are commonly used to assess customer interruption costs (CIC). Each method has certain 

advantages and disadvantages. Customer Surveys are the preferred and most extensively used 

approach. A customer survey is prepared and distributed to the electricity customers through various 

means such as one-to-one interviews, telephone calls, e-mails or by mail and will ask questions about 

various interruption scenarios. This method is the most popular one for obtaining customer-specific 

results (Küfeoğlu and Lehtonen, 2015). However, extensive surveys requires time, effort and money. 

Furthermore, dealing with the raw responses and censoring outliers from the data sets are other 

challenges of this methodology. The second approach is Indirect Analytical Methods. The main 

advantage of this method is that it is relatively a straightforward and easy to apply when compared 

to customer surveys. Electricity prices or tariffs, value added or turnover of a customer, gross 

domestic product of a country, annual energy consumption or the peak power reached during a year 

of a customer group, region or a country are some of the input data for this approach. These data are 

publicly available, objective and easy to reach. The major shortcoming of this methodology is that 
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since it uses general and average data, naturally it provides broad and average results. Finally, the 

Case Studies approach is another method for CIC analysis. Case studies are conducted after major or 

significant blackouts. It is the best way of evaluating both direct and indirect economic costs incurred 

as a result of the power outages. Even though this method provides the most accurate and reliable 

results, since they are done after actual events, they are not commonly used. Case studies from New 

York City blackout of 1977 (Corwin and Miles, 1978) and Storm Gudrun of 2005 in Sweden (Carlsson 

et al., 2008) are good examples for this. The comprehensive review paper (Küfeoğlu and Lehtonen, 

2016) compiles the academic studies in the field of worth of electric power reliability until 2015. More 

recent studies can be found based on country-specific data. Studies (London Economics, 2013; 

Growitsch et al., 2015; Sullivan et al., 2015) adopt customer surveys. The report by Sullivan et al. 

(2015) summarizes the value of service reliability for the electricity customers in the United States. 

Another detailed report (London Economics, 2013) investigates the value of lost load (VoLL) for 

electricity customers in Great Britain. Study (Growitsch et al., 2015) uses a customer survey in 

Germany. In addition to these survey-based studies, indirect analytical methods are commonly used 

as well. Some examples can be found at (Poudineh and Jamasb, 2017; Shivakumar et al., 2017; 

Minnaar et al., 2017; Kim and Cho, 2017; Abrate et al., 2016). The paper (Poudineh and Jamasb, 2017) 

presents the worth of energy not supplied (ENS) in Scotland. The studies by Shivakumar et al. (2017) 

and Abrate et al. (2016) target the costs of power interruptions at residential sector in the European 

Union and Italy respectively. Another paper introduces outage cost estimations for industry sector 

customers from South Korea (Kim and Cho, 2017). One generic power interruption assessment paper 

has been published for customers from South Africa (Minnaar et al., 2017). Most of the sources follow 

indirect analytical methods, customer surveys or case studies methodologies (Küfeoğlu and 

Lehtonen, 2016). However, in this paper, rather than conventional methods, we would like to adopt 

the directional distance function approach to calculate the shadow pricing of electricity outages. The 

shadow pricing of a production technology through distance function is presented at (Färe et al., 

1993). The directional distance function is introduced in detail at (Chambers et al., 1998). Shadow 

pricing of a product has been calculated for many areas such as; pollution costs in agriculture 

production in US (Färe et al., 2006) and in China (Tang et al., 2016), costs of water cuts in Chile 

(Molinos-Senante et al., 2016), price licenses in salmon farming in Norway (Färe et al., 2009), banking 

inefficiency in Japan (Fukuyamaa and Weber, 2008) and price of CO2, SO2 and NOx in the United 

States coal power industry (Lee and Zhouc, 2015). On the other hand, (Coelli et al., 2013) adopts 

parametric distance function approach to calculate the value of power outages for French DSOs.  

The purpose of this paper is to use shadow pricing technique assess customer interruption costs 

from the DSO perspective. We should note that VoLL or worth of ENS are not in the scope of this 

paper. The following of the paper is organized as follows: Section 2 introduces the methodology of 

the directional distance function and shadow pricing of a production technology. Section 3 presents 

the empirical study and the results of the shadow pricing of power interruption analysis for 78 DSOs 

from Finland. Section 4 provides a conclusion and discussion. 

2. Shadow Pricing of Electric Power Interruptions 

We may assume that the electricity supply has two main states: the continuity of supply 

(supplied energy), and the interruptions (energy not supplied). To estimate the worth of the energy 

not supplied, one can establish an analogy with the directional distance function. The directional 

distance function has desirable (or good) and undesirable (or bad) outputs (Färe et al., 2006). In this 

study, the desirable output will be energy supplied to the customers, while the undesirable output 

will be the total minutes lost in a year, or customer minutes lost (CML). By the aid of the directional 

distance function, we will utilize the shadow price technique to evaluate the costs of power 

interruptions. The shadow price of bad outputs is presented at (Färe et al., 2006). The methodology 

assumes that the production of good outputs brings along the production of bad outputs. It should 

be noted that, to talk about power interruptions in a region, naturally there must be electricity service 

provided in that region in the first place. On the other hand, the shadow price can be obtained via 
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the distance function as well (Shephard, 1970; Färe et al., 1993). However, the main advantage of the 

directional distance function over the distance function is that it enables the expansion of the good 

outputs and the contraction of the bad outputs simultaneously. For the electricity service, both the 

DSOs and the authorities wish to reduce the frequency and the durations of interruptions and 

increase the total amount of energy supplied to the consumers. As a result, it is more convenient to 

adopt the directional distance function to estimate the shadow prices of the value of lost load, or as 

it will be presented in this paper, the value of one minute of interruption. So, the result of the shadow 

pricing will yield the cost of contraction of one unit of bad output (customer minutes lost) and the 

expansion of one unit of good output (energy supplied) simultaneously in terms of operational 

expenses. The main features of the directional distance function can be briefed as follows: 

Let us assume that there are N inputs, M good outputs and J bad outputs, then inputs (x), good 

outputs (y) and bad outputs (b) are denoted respectively by: 

 

 𝑥 = (𝑥1, … , 𝑥𝑁) ∈ 𝑅+
𝑁 (1) 

 𝑦 = (𝑦1, … , 𝑦𝑀) ∈ 𝑅+
𝑀 (2) 

 𝑏 = (𝑏1, … , 𝑏𝐽) ∈ 𝑅+
𝐽  (3) 

 

Let P(x) denote the production technology (Hang et al., 2015), where: 

 

 𝑃(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)} (4) 

 

The directional output distance function serves as the functional representation of the 

technology. The production technology P(x) is represented by the directional distance function Do 

(Chung et al., 1997). Let g = (gy, gb) be a directional vector and β be the maximum expansion of good 

outputs in the direction of gy and the minimum contraction of the bad outputs in the direction of gb, 

then Do is defined as:  

 

 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔𝑦 , 𝑔𝑏) = 𝑚𝑎𝑥{ 𝛽: (𝑦 + 𝛽𝑔𝑦 , 𝑏 −  𝛽𝑔𝑏) ∈ 𝑃(𝑥)}  (5) 

 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦 + 𝛼𝑔𝑦 , 𝑏 − 𝛼𝑔𝑦; 𝑔) = 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) − 𝛼  (6) 

  

Our aim is to increase the amount of energy supplied to the customers, while decreasing the 

amount of energy not supplied via reducing the CML. The directional vectors of gy > 0 mean the 

expansion of desirable output, while gb > 0 mean the contraction of the undesirable output. The 

relationship between the directional distance function and the revenue function reveals the shadow 

price for the undesirable outputs (Färe et al., 2006). Let p indicate the good output prices and q 

indicate the bad output prices. These are represented as: 

 

 𝑝 = (𝑝1 , … , 𝑝𝑀) ∈ 𝑅+
𝑀  (7) 

 𝑞 = (𝑞1, … , 𝑞𝐽) ∈ 𝑅+
𝐽  (8) 

 

The revenue function is then introduced to account for the negative revenue generated by the 

bad outputs. The negative revenue due to the undesirable output (CML) is defined by the revenue 

function as follows: 

 𝑅(𝑥, 𝑝, 𝑞) = 𝑚𝑎𝑥𝑦𝑏{𝑝𝑦 − 𝑞𝑏 ∶ (𝑦, 𝑏) ∈ 𝑃(𝑥)}  (9) 
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The revenue function, R(x,p,q), gives the largest feasible revenue that can be obtained from 

inputs, x, when the production technology, electricity in our case, has good output prices, p, and bad 

output prices, q. The desirable output prices (p) and the undesirable output prices (q) can be used to 

calculate the largest feasible revenue in terms of the directional distance function Do as: 

 

 𝑅(𝑥, 𝑝, 𝑞) ≥ (𝑝𝑦 − 𝑞𝑏) + 𝑝. 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔). 𝑔𝑦 + 𝑞. 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔). 𝑔𝑏  (10) 

 

The left-hand side of the equation stands for the maximum revenue, while the right-hand side 

is equal to the actual revenue (py – qb) plus the revenue gain from the elimination of technical 

inefficiency. The gain in revenue from the elimination of technical inefficiency has two components: 

the gain due to an increase in good outputs (𝑝. 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔). 𝑔𝑦) and the gain due to a decrease in 

bad outputs (𝑞. 𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔). 𝑔𝑏), since the cost of bad outputs is subtracted from good revenues. 

Rearranging (10), the directional output distance function and the maximal revenue function are 

related as: 

 

 
𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) ≤

𝑅(𝑥, 𝑝, 𝑞) − ((𝑝𝑦 − 𝑞𝑏))

𝑝𝑔𝑦 + 𝑞𝑔𝑏
 

  (11) 

 

The directional output distance function given in (5) can also be recovered from the revenue 

function as: 

 
𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) = 𝑚𝑖𝑛𝑝,𝑞 {

𝑅(𝑥, 𝑝, 𝑞) − ((𝑝𝑦 − 𝑞𝑏))

𝑝𝑔𝑦 + 𝑞𝑔𝑏
} 

(12) 

 

Applying the envelope theorem twice to (12) yields our shadow price model: 

 
∇𝑦𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) =

−𝑝

𝑝𝑔𝑦 + 𝑞𝑔𝑏
 

 (13) 

 
∇𝑏𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔) =

𝑞

𝑝𝑔𝑦 + 𝑞𝑔𝑏
 

  (14) 

The details of the physical meaning of the shadow pricing technique is explained in (Färe et al., 

2006) in detail. By assuming that we know the m-th price of the good output (in our case the 

operational expenses of the DSOs), then the j-th nominal bad output price (the price of one minute of 

interruption) can be calculated as (Luenberger, 1992): 

 

𝑞𝑗 = −𝑝𝑚

(

 
 
𝜕𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔)

𝜕𝑏𝑗

𝜕𝐷0⃗⃗ ⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔)
𝜕𝑦𝑚 )

 
 
, 𝑗 = 1,… , 𝐽. 

 

(15) 

The references (Chambers et al., 1998) and (Wei et al., 2013) parameterize the directional distance 

function through a quadratic function. At this point we are supposed to choose our directional vector 

g, so that we can increase the amount of energy provided to the customers and decrease the customer 

interruptions in a year. 1, 0 and -1 within the vector g means increase, no change and decrease in the 

outputs respectively. For example, g = (1, 0) means expanding the desirable outputs, while keeping 

the undesirable outputs the same. Since our aim is to increase the good outputs and decrease the bad 

outputs simultaneously, the directional vector g = (1, 1) is set. We assume that there are k = 1, ..., K 

DSOs, then the quadratic distance function for the k-th DSO is shown in equation (16): 

 

Where,  

l: the constant of the quadratic directional distance function,  
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αn: the input coefficients, 

βm: the desirable output coefficients,  

γj: the undesirable output coefficients,  

αmn': the quadratic of input coefficients, 

βmm': the quadratic of desirable output coefficients, 

γjj': the quadratic of undesirable output coefficients, 

δnm: the product of the inputs and desirable outputs coefficients, 

ηnj: the product of the inputs and undesirable outputs coefficients, 

μmj: the coefficients of the product of the desirable and undesirable outputs. 

 

The parameters of (16), l, αn, αmn', βm, βmm', γj, γjj', δnm, ηnj, μmj, are chosen to minimize the sum of 

the deviations of the directional distance function value from the frontier technology (in our case the 

electric power supply). The coefficients of (16) are calculated via solving (17) with Python by adopting 

the directional vector as g = (1, 1). Equation (18) requires the output–input vector to be feasible. 

Equation (19) and (20) impose the monotonicity conditions of (13) and (14). Equation (21) imposes 

positive monotonicity on the inputs for the mean level of input usage. That is, at the mean level of 

inputs, x¯, an increase in input usage holding good and bad outputs constant, causes the directional 

output distance function to increase, implying greater inefficiency. Equation (22) is due to the 

translation property of (6). 

 

 
𝐷0⃗⃗ ⃗⃗ = (𝑥𝑘 , 𝑦𝑘 , 𝑏𝑘; 1, 1) = 𝑙 +∑𝛼𝑛𝑥𝑛𝑘

𝑁

𝑛=1

+ ∑ 𝛽𝑚𝑦𝑚𝑘

𝑀

𝑚=1

+∑𝛾𝑗𝑏𝑗𝑘

𝐽

𝑗=1

+
1

2
∑ ∑ 𝛼𝑚𝑛′𝑥𝑛𝑘𝑥𝑛′𝑘

𝑁

𝑛′=1

𝑁

𝑛=1

 

 +
1

2
∑ ∑ 𝛽𝑚𝑚′𝑦𝑚𝑘𝑦𝑚′𝑘

𝑀

𝑚′=1

𝑀

𝑚=1

+
1

2
∑∑ 𝛾𝑗𝑗′𝑏𝑗𝑘𝑏𝑗′𝑘

𝐽

𝑗′=1

𝐽

𝑗=1

+∑∑ 𝛿𝑛𝑚𝑥𝑛𝑘𝑦𝑚𝑘

𝑀

𝑚=1

𝑁

𝑛=1

+∑∑𝜂𝑛𝑗𝑥𝑛𝑘𝑏𝑗𝑘

𝐽

𝑗=1

𝑁

𝑛=1

+ ∑∑𝜇𝑚𝑗𝑦𝑚𝑘𝑏𝑗𝑘

𝐽

𝑗=1

𝑀

𝑚=1

 

 

 

 

 

(16) 

 

Then, an optimization model is established which minimize the sum of the deviations of the 

directional distance function value from the frontier technology (in our case the electric power 

supply), see from (17) to (23). Moreover, the decision variables in the optimization model are l, αn, 

αmn', βm, βmm', γj, γjj', δnm, ηnj, μmj and they are solved with Python. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑[𝐷0⃗⃗ ⃗⃗ (𝑥𝑘 , 𝑦𝑘 , 𝑏𝑘; 1, 1) − 0]

𝐾

𝑘=1

 

(17) 

 

Subject to, 

 𝐷0⃗⃗ ⃗⃗ (𝑥𝑘 , 𝑦𝑘 , 𝑏𝑘; 1, 1) ≥ 0, 𝑘 = 1,… , 𝐾 (18) 

 𝜕𝐷0⃗⃗ ⃗⃗ (𝑥𝑘 , 𝑦𝑘 , 𝑏𝑘; 1, 1)

𝜕𝑏𝑗
≥ 0, 𝑗 = 1,… , 𝐽; 𝑘 = 1,… , 𝐾 

(19) 

 𝜕𝐷0⃗⃗ ⃗⃗ (𝑥𝑘 , 𝑦𝑘 , 𝑏𝑘; 1, 1)

𝜕𝑦𝑚
≤ 0,𝑚 = 1,… ,𝑀; 𝑘 = 1,… , 𝐾 

(20) 

 𝜕𝐷0⃗⃗ ⃗⃗ (𝑥̅, 𝑦𝑘 , 𝑏𝑘; 1, 1)

𝜕𝑥𝑛
≥ 0, 𝑛 = 1,… , 𝑁 

(21) 

 

∑𝛽𝑚

𝑀

𝑚=1

−∑𝛾𝑗 = −1;  

𝐽

𝑗=1

  ∑ 𝛽𝑚𝑚′

𝑀

𝑚′=1

−∑𝜇𝑚𝑗 = 0,𝑚 = 1,… ,𝑀; 

𝐽

𝑗=1

 

 

(22) 
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∑ 𝛾𝑗𝑗′

𝐽

𝑗′=1

− ∑ 𝜇𝑚𝑗 = 0, 𝑗 = 1,… , 𝐽;  

𝑀

𝑚=1

∑ 𝛿𝑛𝑚

𝑀

𝑚=1

−∑𝜂𝑛𝑗 = 0, 𝑛 = 1,… , 𝑁 

𝐽

𝑗=1

 

 

 𝛼𝑚𝑛′ = 𝛼𝑛′𝑛 ,   𝑛 ≠ 𝑛
′ ;    𝛽𝑚𝑚′ = 𝛽𝑚′𝑚 ,   𝑚 ≠ 𝑚

′ ;    𝛾𝑗𝑗′ = 𝛾𝑗′𝑗  ,   𝑗 ≠ 𝑗
′ (23) 

 

3. Empirical Study and Results 

3.1. Empirical Study 

This paper targets Finland for the empirical study. In our study, we made use of 78 Finnish DSOs 

and their data for 2013, 2014 and 2015. Since some of the DSOs have not announced their interruption 

statistics yet for 2016 (The Energy Market Authority, 2017), it is not included in this paper. As useful 

data for the directional distance function, from the Finnish Energy Market Authority 

(Energiavirasto), we selected energy supplied, number of customers, share of underground cabling, 

operational expenses and System Average Interruption Duration Index (SAIDI) for each DSO. SAIDI 

is calculated as: 

 
𝑺𝑨𝑰𝑫𝑰 =

𝒔𝒖𝒎 𝒐𝒇 𝒂𝒍𝒍 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓 𝒊𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕𝒊𝒐𝒏𝒔 𝒊𝒏 𝒂 𝒚𝒆𝒂𝒓

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔 𝒔𝒆𝒓𝒗𝒆𝒅
  (𝒉) 

(24) 

Sum of all customer interruptions in a year can also be defined in terms of customer minutes 

lost (CML) in a year. Therefore, CML is calculated as: 

 𝑪𝑴𝑳 = 𝑺𝑨𝑰𝑫𝑰 𝒙 𝟔𝟎 𝒙 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔  (𝒎𝒊𝒏) (25) 

Even though Finland has a robust electric power infrastructure, the security of supply is being 

threatened by extreme weather events (Küfeoğlu et al., 2014). Natural events, especially storms, are 

the leading causes of the power interruptions in Finland (Küfeoğlu et al., 2014). These events might 

cause long lasting outages which eventually drive Finnish DSOs to invest and spend more money on 

operational and maintenance expenses. Overhead lines are obviously more prone to these harsh 

weather-related accidents than underground cables. Therefore, the share of underground cabling in 

distribution lines (SC in %) and the operational expenses (OPEX in euros) have been chosen as inputs, 

while energy supplied to the low voltage customers (ES in GWh) and the customer minutes lost (CML 

in minutes) have been designated as desirable and undesirable outputs respectively. The descriptive 

statistics of the input and output variables are shown in Table 1 by specifying the mean, standard 

deviation, minimum and maximum values of each data set for 2013, 2014 and 2015 for the 78 Finnish 

DSOs. A total of 936 sample observations have been used in the analysis. OPEX and CML are 

represented in thousand euros and thousands of minutes respectively. In addition, energy supplied 

is tabulated in GWh. 

3.2. Results 

Within this optimization model, the objective function (17) has been solved using constraints 

(18-23) by Python programming language to optimize the problem, and the following coefficients 

have been calculated and presented in Table 2. When Linear Programming variables are assigned, 

free "Continuous" form has been selected to get relaxed solution. 1176 constraints equations have 

been created with the script using (18-23) and they were added to problem to find the optimal 

solution. Even though this depends on the computer's hardware, it takes around 1-2 minutes with a 
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laptop which has 8gb Ram, and 4 core processor. Thus, it is quite fast for solving the problem. We 

used "pandas" and "PuLP" packages for Python script. Basically, the algorithm is as follows: script 

reads the stored data from excel, creates the optimization problem, and constraints then solves it 

using "CBC" solver. After calculating the coefficients, (15) is solved where p is taken as 5.5 € cents as 

the average electricity distribution price in Finland (Energy Market Authority, 2017) and the results 

are summarized in Table A in the Appendix. Table B in the Appendix provide the summary of the 

SAIDI for the Finnish DSOs. SAIDI figures include all planned and unplanned interruptions which 

last longer than 1 minute.  

Table 1. Descriptive Statistics for Pooled Sample Observations, 2013–2015 

 Inputs 

Desirable 

output 

Undesirable 

output 

 SC (%) OPEX (k €) ES (GWh) CML (k mins) 

2013         

Mean 47.27 3,015.51 619.92 14,299.67 

Stdev. 25.60 5,674.63 1,200.07 45,908.75 

Minimum 3.04 35.35 16.67 0.81 

Maximum 100.00 32,156.33 7,492.00 300,711.21 

2014     

Mean 48.65 2,891.61 616.07 5,367.14 

Stdev. 25.46 5,021.57 1,189.88 14,184.51 

Minimum 3.23 55.30 16.38 1.90 

Maximum 100.00 25,616.35 7,425.00 85,712.50 

2015     

Mean 50.34 3,134.97 613.64 14,575.97 

Stdev. 25.27 5,857.64 1,177.45 56,013.63 

Minimum 3.30 71.00 15.84 6.18 

Maximum 100.00 29,906.08 7,283.00 448,823.76 

 

Table 2. Coefficients Of (16) Per Year 

 
2013 2014 2015 

l 16.3252 0.007764978 0.017882857 

α1 0 0 0 

α2 -7E-10 0.24284221 0.27902876 

β1 -1 -0.99987881 -1 

γ1 0 0.000121188 0 

α11 0 0 0 

α22 -1E-10 0.050119522 0.020527845 

β11 0 -1.977E-07 0 

γ11 0 -1.977E-07 0 

α12 0 0 0 

δ11 0 0 0 
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δ21 0 0.000204027 0 

η11 0 0 0 

η21 0 0.000204027 0 

μ11 0 -1.977E-07 0 

The shadow price for each DSO stands for the price of one minute of interruption in terms of 

operational expenses. At this point, the main idea is to increase the desirable output by one unit while 

decreasing the undesirable output by one unit at the same time. The shadow price of electricity 

outages in 2015 is shown in Figure 1. As it can be seen from Figure 1, in 2015, Muonion 

Sähköosuuskunta (0.035 € cents), PKS Sähkönsiirto Oy (0.066 € cents), Valkeakosken Energia Oy 

(0.108 € cents), and Vetelin Sähkölaitos Oy (0,135 € cents) have least shadow prices, while Forssan 

Verkkopalvelut Oy, LE-Sähköverkko Oy, Helen Sähköverkko Oy and JE-Siirto Oy have the highest 

shadow prices with a figure of 0.482 € cents/minute each. As a result of the analysis, we see that 

shadow prices of one minute of outage for the majority of the DSOs change between 0.4 – 0.5 € cents 

for 2013 – 2015. It should be noted that as CML decreases incrementally, the shadow price will 

increase. Therefore, the findings of this analysis give the lowest costs incurred due to the 

interruptions. This is valuable information since it provides the lowest boundary for the cost 

estimations for the network operators. In addition, as we mentioned in the methodology, the shadow 

prices are determined according to the directional vector g. The vector shows the incremental 

expansion or contraction of the outputs. Shadow prices will be affected by changing directional 

vectors. In this analysis, we only used g (1,1). However, the directional vectors g (1,0) and g (0,-1) 

could also be used depending on the purpose whether the outputs will expand, contract or remain 

the same. 

In Finland, by law, DSOs are obligated to pay certain customer compensations varying by annual 

customer interruption times (Electricity Market Act, 2017). According to this legislation, in case of a 

single outage event exceeds the allowable limit, the operator is supposed to pay the corresponding 

percentage of the annual electric power delivery fee back to the customer. The maximum amount of 

compensation to be paid to a single customer is limited to 1,200 €/year. Table 3 summarizes the 

standard customer compensation scheme applied in Finland. In theory, the amount of compensation 

should not be lower than the bad revenue (in our case the cost of power outage) which is calculated 

by shadow price of undesirable output times the undesirable output (CML) as in (26). 

 𝑅 = 𝑞b (26) 

To suggest a simpler comparison between the shadow pricing of power interruptions and 

standard compensations, let us define compensation price as follows: 

 

 
𝑐𝑜𝑚𝑝 =

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐷𝑆𝑂

𝐶𝑀𝐿
 

(27) 

 

The compensation cost is calculated in euros per each minutes-lost as an interruption. The result 

for 2015 is summarized in Figure 2. We can see that majority of the Finnish DSOs did not pay any 

compensations at all during 2015 in accordance with the legislation in Table 3. Most of the 

compensation prices range from 0.1€ cent/outage minutes to 1 € cent/outage minutes, while for 

Rantakairan Sähkö Oy compensation price exceeds 5 € cents. Finally, to see that results better, the 

comparison between the shadow prices and the compensation prices for Finnish DSOs in 2015 is 

presented in Figure 3. Figure 2 shows us that among 78 Finnish DSOs, only 35 of those paid 

compensations during 2015. This observation is directly related to the fairness concerns of the 

customer compensation scheme in Finland. 
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Figure 1. Shadow Price (€ in cents) of One Minute of Interruption for 2015 
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Table 3 The Standard Customer Compensations According to the Legislation Accepted In 2013 

Standard Customer Compensation 

Outage duration (h) Compensation (%) 

12-24 10 

24-72 25 

72-120 50 

120-192 100 

192-288 150 

>288 200 

 

 

Figure 2. Compensation Price of One Minute of Interruption for 2015 (€ cents) 
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Figure 3. Comparison of Compensation price vs. Shadow price 
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of the same sector such as textile, construction, chemical, pharmaceuticals etc. within the industry 

sector. To reach customer specific outage cost estimations, the network operators should share sector 

and customer specific energy consumption data. 

This study makes use of analytical data shared by 78 Finnish DSOs which provide 99% of the 

energy to the low voltage customers in Finland. There are numerous studies in the literature that 

evaluate the interruption costs phenomenon from the customer point of view. However, this paper 

evaluates the problem from the DSO perspective, so that each DSO will be able to have an idea about 

their interruption losses in a fast and straightforward manner. This information is needed for future 

planning of power system, enhancing the existing infrastructure and paying the standard 

compensations purposes. In some countries such as United Kingdom, and Finland, to protect the 

customers, the DSOs are obliged to pay certain compensations in case of interruptions. In Finland, 

the electricity law states that if a single time interruption event is between 12 – 24 hours, then the 

DSO pays 10% of the annual electricity delivery fee back to the customer. Let’s assume that a typical 

Finnish household’s annual delivery fee be around 94 euros per year (Helen, 2018). In case of a 20-

hour interruption, the value of one minute of interruption will be 0.78 € cents / minute. We should 

note that the customers experiencing single time interruption events less than 12 hours receive no 

compensation at all. When we have a look at the actual compensations paid from Figure 2, we see 

that only 11 DSOs pay more than 1 cent / minute. In this paper, we propose that to reduce one minute 

of interruption, in terms of OPEX, the cost will be around 0.5 € cents.  

Another study of shadow pricing of power reliability, which targeted 92 DSOs in France (Coelli 

et al., 2013), follows a similar approach, but used a distance function but not a directional distance 

function. We use the number of interruption events rather than customer minutes lost as the bad 

output and suggests that one customer interruption (>3 minutes) has a shadow price of 4.9 € of OPEX 

costs for rural regions, while it costs 7.5 € for urban areas. We should remind that one interruption 

event might last days or weeks depending on the fault type and repair efforts. Therefore, we believe 

targeting the cost of CML is much more useful than targeting the cost of number of interruption 

events. From the results we can see that even though the outage minutes correspond to certain 

amount of losses, some DSOs did not pay any compensation at all because of the standard 

compensation calculation method summarized in Table 3. If a single-time outage event does not 

exceed 12 hours, the operator is not forced to pay a fine to the consumers. On the other hand, when 

we look at the Figure 3, the DSOs which exceed the allowed outage durations pay much more amount 

of compensation than the calculated amount through shadow pricing method. Based on these 

observations, we can conclude that in Finland while some of the DSOs did not offer enough 

compensation for the power interruptions, some DSOs over-compensated the electricity outages. The 

main principle of the Finnish authorities is to protect consumer rights and introduce them higher 

quality of services. However, it should be noted that another major principle is fairness and Finnish 

DSOs should be treated fairly by designing a better standard compensation scheme which will be 

more cost reflective. Price signals are crucial in terms of providing continuous service quality and 

affecting future investments. The authors will continue doing further analysis in relation to the 

customer interruption costs and standard customer compensations. 
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Appendix A 

Table A. Shadow Prices of One Minute of Interruption (€ Cents), 2013-2015 

 

DSO 2013 2014 2015 DSO 2013 2014 2015 

Äänekosken Energia Oy 0.454 0.449 0.457 Lehtimäen Sähkö Oy 0.457 0.461 0.443 

Alajärven Sähkö Oy 0.447 0.466 0.278 Leppäkosken Sähkö Oy 0.457 0.470 0.468 

Caruna Espoo Oy 0.462 0.472 0.474 LE-Sähköverkko Oy 0.477 0.481 0.482 

Caruna Oy 0.348 0.447 0.439 Mäntsälän Sähkö Oy 0.458 0.474 0.467 

Ekenäs Energi Ab 0.477 0.470 0.471 
Muonion 

Sähköosuuskunta 
0.426 0.343 0.035 

Elenia Oy 0.295 0.445 0.209 Naantalin Energia Oy 0.479 0.479 0.481 

Enontekiön Sähkö Oy 0.000 0.357 0.337 
Nurmijärven Sähköverkko 

Oy 
0.463 0.474 0.469 

ESE-Verkko Oy 0.480 0.482 0.479 Nykarleby Kraftverk Ab 0.429 0.422 0.426 

Esse Elektro-Kraft Ab 0.416 0.452 0.286 
Oulun Energia Siirto ja 

Jakelu Oy 
0.468 0.470 0.472 

Etelä-Suomen Energia Oy 0.364 0.399 0.433 
Oulun Seudun S. 

Verkkopalvelut Oy 
0.452 0.467 0.443 

Forssan Verkkopalvelut Oy 0.481 0.482 0.482 Outokummun Energia Oy 0.457 0.432 0.462 

Haminan Energia Oy 0.478 0.480 0.476 Paneliankosken Voima Oy 0.414 0.472 0.466 

Haukiputaan 

Sähköosuuskunta 
0.471 0.474 0.478 Parikkalan Valo Oy 0.179 0.444 0.349 

Helen Sähköverkko Oy 0.483 0.483 0.482 Pellon Sähkö Oy 0.465 0.449 0.440 

Herrfors Nät-Verkko Oy Ab 0.347 0.433 0.384 PKS Sähkönsiirto Oy 0.376 0.376 0.066 

Iin Energia Oy 0.477 0.478 0.459 
Pori Energia Sähköverkot 

Oy 
0.386 0.440 0.449 

Imatran Seudun Sähkönsiirto 

Oy 
0.268 0.448 0.394 Porvoon Sähköverkko Oy 0.399 0.439 0.449 

Järvi-Suomen Energia Oy 0.242 0.438 0.319 Raahen Energia Oy 0.482 0.480 0.481 

Jeppo Kraft Andelslag 0.454 0.453 0.445 Rantakairan Sähkö Oy 0.465 0.466 0.456 

JE-Siirto Oy 0.481 0.480 0.482 Rauman Energia Oy 0.445 0.475 0.463 

Jylhän Sähköosuuskunta 0.457 0.474 0.435 Rovakaira Oy 0.413 0.452 0.431 

Karhu Voima Oy 0.481 0.477 0.464 Rovaniemen Verkko Oy 0.480 0.480 0.474 

Kemin Energia Oy 0.478 0.479 0.467 Sallila Sähkönsiirto Oy 0.434 0.466 0.465 

Keminmaan Energia Oy 0.446 0.478 0.371 Savon Voima Verkko Oy 0.175 0.287 0.146 

KENET Oy 0.469 0.473 0.476 Seiverkot Oy 0.470 0.475 0.476 

Keravan Energia Oy 0.472 0.468 0.479 
Tampereen Sähköverkko 

Oy 
0.449 0.478 0.450 

Keuruun Sähkö Oy 0.355 0.414 0.378 Tenergia Oy 0.405 0.427 0.391 

Koillis-Lapin Sähkö Oy 0.371 0.445 0.447 Tornion Energia Oy 0.469 0.473 0.447 
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Koillis-Satakunnan Sähkö Oy 0.441 0.443 0.415 Tornionlaakson Sähkö Oy 0.418 0.463 0.436 

Kokemäen Sähkö Oy 0.425 0.466 0.468 Tunturiverkko Oy 0.443 0.451 0.412 

Köyliön-Säkylän Sähkö Oy 0.452 0.469 0.473 
Turku Energia 

Sähköverkot Oy 
0.469 0.481 0.481 

Kronoby Elverk Ab 0.440 0.410 0.459 Vaasan Sähköverkko Oy 0.417 0.430 0.434 

KSS Verkko Oy 0.454 0.455 0.470 Vakka-Suomen Voima Oy 0.352 0.458 0.430 

Kuopion Sähköverkko Oy 0.481 0.481 0.478 Valkeakosken Energia Oy 0.476 0.476 0.108 

Kuoreveden Sähkö Oy 0.445 0.468 0.418 
Vantaan Energia 

Sähköverkot Oy 
0.479 0.480 0.481 

Kymenlaakson Sähköverkko 

Oy 
0.375 0.426 0.391 Vatajankosken Sähkö Oy 0.419 0.455 0.451 

Lammaisten Energia Oy 0.457 0.473 0.475 Verkko Korpela Oy 0.323 0.253 0.378 

Lankosken Sähkö Oy 0.274 0.410 0.384 Vetelin Sähkölaitos Oy 0.431 0.474 0.135 

Lappeenrannan 

Energiaverkot Oy 
0.401 0.455 0.437 Vimpelin Voima Oy 0.359 0.446 0.360 

 

Table B. SAIDI figures of DSOs (hours), 2013-2015 

 

DSO 2013 2014 2015 DSO 2013 2014 2015 

Äänekosken Energia Oy 1.87 2.20 1.68 Lehtimäen Sähkö Oy 1.66 1.44 2.57 

Alajärven Sähkö Oy 2.29 1.10 13.29 Leppäkosken Sähkö Oy 1.67 0.87 1.02 

Caruna Espoo Oy 1.37 0.74 0.60 LE-Sähköverkko Oy 0.42 0.17 0.11 

Caruna Oy 8.69 2.30 2.85 Mäntsälän Sähkö Oy 1.62 0.65 1.07 

Ekenäs Energi Ab 0.41 0.85 0.80 
Muonion 

Sähköosuuskunta 
3.35 9.00 30.21 

Elenia Oy 12.16 2.41 17.93 Naantalin Energia Oy 0.32 0.29 0.20 

Enontekiön Sähkö Oy 32.80 8.10 9.35 
Nurmijärven Sähköverkko 

Oy 
1.32 0.60 0.96 

ESE-Verkko Oy 0.22 0.09 0.31 Nykarleby Kraftverk Ab 3.46 3.91 3.65 

Esse Elektro-Kraft Ab 4.31 2.01 12.78 
Oulun Energia Siirto ja 

Jakelu Oy 
0.98 0.84 0.76 

Etelä-Suomen Energia Oy 7.62 5.39 3.22 
Oulun Seudun S. 

Verkkopalvelut Oy 
1.99 1.05 2.56 

Forssan Verkkopalvelut Oy 0.19 0.09 0.10 Outokummun Energia Oy 1.69 3.25 1.34 

Haminan Energia Oy 0.35 0.27 0.49 Paneliankosken Voima Oy 4.38 0.73 1.10 

Haukiputaan 

Sähköosuuskunta 
0.82 0.59 0.38 Parikkalan Valo Oy 19.99 2.49 8.62 

Helen Sähköverkko Oy 0.08 0.06 0.11 Pellon Sähkö Oy 1.18 2.18 2.74 

Herrfors Nät-Verkko Oy Ab 8.71 3.22 6.31 PKS Sähkönsiirto Oy 6.86 6.85 27.96 
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Iin Energia Oy 0.44 0.40 1.56 
Pori Energia Sähköverkot 

Oy 
6.22 2.76 2.20 

Imatran Seudun Sähkönsiirto 

Oy 
13.98 2.26 5.67 Porvoon Sähköverkko Oy 5.38 2.80 2.21 

Järvi-Suomen Energia Oy 15.73 2.87 10.54 Raahen Energia Oy 0.12 0.27 0.18 

Jeppo Kraft Andelslag 1.90 1.95 2.41 Rantakairan Sähkö Oy 1.16 1.11 1.74 

JE-Siirto Oy 0.20 0.26 0.13 Rauman Energia Oy 2.44 0.55 1.30 

Jylhän Sähköosuuskunta 1.67 0.59 3.09 Rovakaira Oy 4.44 2.00 3.33 

Karhu Voima Oy 0.19 0.40 1.24 Rovaniemen Verkko Oy 0.22 0.24 0.63 

Kemin Energia Oy 0.39 0.33 1.03 Sallila Sähkönsiirto Oy 3.12 1.13 1.21 

Keminmaan Energia Oy 2.36 0.37 7.16 Savon Voima Verkko Oy 20.28 12.66 22.32 

KENET Oy 0.92 0.69 0.49 Seiverkot Oy 0.86 0.57 0.52 

Keravan Energia Oy 0.73 0.97 0.32 
Tampereen Sähköverkko 

Oy 
2.17 0.37 2.12 

Keuruun Sähkö Oy 8.20 4.38 6.71 Tenergia Oy 5.00 3.60 5.86 

Koillis-Lapin Sähkö Oy 7.20 2.42 2.32 Tornion Energia Oy 0.95 0.68 2.29 

Koillis-Satakunnan Sähkö Oy 2.71 2.59 4.37 Tornionlaakson Sähkö Oy 4.17 1.28 3.01 

Kokemäen Sähkö Oy 3.68 1.15 1.00 Tunturiverkko Oy 2.57 2.08 4.52 

Köyliön-Säkylän Sähkö Oy 1.99 0.91 0.69 
Turku Energia 

Sähköverkot Oy 
0.96 0.17 0.16 

Kronoby Elverk Ab 2.77 4.69 1.57 Vaasan Sähköverkko Oy 4.24 3.40 3.17 

KSS Verkko Oy 1.86 1.81 0.86 Vakka-Suomen Voima Oy 8.41 1.64 3.36 

Kuopion Sähköverkko Oy 0.19 0.19 0.35 Valkeakosken Energia Oy 0.48 0.47 25.00 

Kuoreveden Sähkö Oy 2.45 0.98 4.14 
Vantaan Energia 

Sähköverkot Oy 
0.31 0.27 0.17 

Kymenlaakson Sähköverkko 

Oy 
6.88 3.63 5.87 Vatajankosken Sähkö Oy 4.08 1.78 2.09 

Lammaisten Energia Oy 1.67 0.67 0.53 Verkko Korpela Oy 10.33 14.93 6.73 

Lankosken Sähkö Oy 13.56 4.67 6.31 Vetelin Sähkölaitos Oy 3.33 0.65 23.08 

Lappeenrannan 

Energiaverkot Oy 
5.27 1.78 2.96 Vimpelin Voima Oy 7.95 2.36 7.91 
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