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Abstract

We consider the large-displacement, elastic folding of orthotropic tape-springs—thin-walled curved strips

made from metal and from a woven laminated composite. Bending of the strips leads to a tight localised

fold with a characteristic radius, connected on both sides to straight parts by doubly-curved transition, or

ploy, regions. We calculate the shapes of these consistent features for a range of orthotropic parameters

using geometrically non-linear, compact models. This study is our initial foray into the performance of

tape-springs as safety latching mechanisms for aircraft landing gear.
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1 Introduction

A composite tape-spring is, essentially, a carpenter’s tape (or tape-measure in the UK) made by laying up

flat laminated composite sheets in a cylindrical mould. Conventional heat treatment then follows in order

to set its distinctive singly-curved and open shape, Fig. 1(a).

Being thin-walled shells, they can endure significant elastic deformation. They can be compactly rolled

along their length for efficient stowage—just like their metal counterparts: their shape is effectively inverted,

with the transversely curved width becoming flat and the original axial direction, now uniformly curved to

the same degree as the original open curvature, Figs 1(b) and (c).

Unlike metal tape-measures, however, the rolled-up shape can be load-free which, when coupled to the

initial shape, results in a bistable shell, Fig 1. Bistability can also prevail when the tape is discretely folded

away from either end to produce a non-overlapping rolled region connected to mainly straight parts on either

side, Fig. 1(d).

(a) (b) (c) (d)

Figure 1: Woven laminated composite tape-spring: length 200 mm, transverse radius 12.5 mm, thickness 0.65 mm.
(a) Initial extended configuration; (b) partially coiled; (c) fully wound and bistable; (d) folded tape.

The folded tape now behaves as a frictionless hinge, according a free, relative rotation between its ends.
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Indeed, it is the absence of holding forces or moments that makes bistability an attractive property for

stowage, where the tape will not spontaneously unravel or prematurely straighten.

The factors governing bistable behaviour are a mixture of material constitutive behaviour, initial geomet-

rical proportions, and geometrically non-linear structural behaviour. These have been well documented in,

for example [1, 2, 3], where compact but effective conditions for achieving other stable shapes are revealed

for orthotropic materials.

We deal with the folded shape of short composite tape-springs proposed for secondary latching structures

in aircraft landing gear1. Tape-springs are a natural choice because they can be folded at low loads when

the gear is retracted and housed, and can straighten during its deployment to prevent accidental retraction

of other parts at much higher loads. They are ideally bistable and hence more reliably stowed; at the same

time, they must withstand the loading rigours of landing itself. In their design, their folded shape and their

structural properties must therefore be considered equally.

To focus the breadth of study initially, we consider the folded shape properties, especially the folded

radius and the side regions whose length-wise boundary conditions must comply with the fold and the end

casings. These so-called ploy regions have a natural length scale of minimal deformation, LP, just as the fold

has a natural radius of curvature, r, Fig. 2(a.ii).

These lengths, however, may not be able to properly form if the connected tape is too short: it becomes

over-confined and liable to damage during folding—whether or not it is bistable, affecting its potential

latching operation. Our aim here is to reliably calculate these natural shape properties; for a degree of

simplicity, we deliberately avoid bistable tapes by choosing appropriate material parameters for a monostable

bending response. Continuing study will deal later with the interaction between shape, applied loads and

bistability.

In presenting this paper, we align ourselves to Norman Fleck’s interests in characterising composite

materials [4, 5, 6, 7, 8] and their subservience to the design, performance and capacity of the structure, for

yielding exciting and novel properties not achieved with traditional engineering materials. We shall not be

concerned with Fleckian failure modes although we foresee their relevance; already our tapes can pinch and

become damaged during folding if the glass-fibre density is too coarse.

Even though they are much thicker than their metal counterparts, our tapes behave elastically despite

large changes in geometry, which speaks again to the remarkable prescience of composites, in general. Our

project also showcases a “compliant” application for composites, beyond traditional metrics of maximal

stiffness and strength.

In Section 2 we briefly describe how we make our metal and composite tape-springs, and we present

their constitutive material behaviour, strain energy densities and bending moment expressions. We then

introduce folding experiments in Section 3, where torsional buckling occurs before the tapes “settle” into

1See Acknowledgments.
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their folded shape. Torsional buckling can be avoided if tapes are bent in their “hard” directions but this

produces delamination in composites; it is also more complex to model analytically, with the exception of

Mansfield’s early work on metallic tapes [9]. Many studies therefore side-step torsional buckling despite its

inevitability; we cannot and, thus, begin to study its effect using a simple experimental scheme. We then

compare the fully-formed folded radii from finite element analysis to predictions in Section 4: we then assess

the ploy shape, first, in dimensional terms in Section 5 before quantifying its length, LP, in Section 6. This

study then concludes.

2 Tape-Spring Manufacture and Material Characterisation

Every undeformed tape-spring is characterised by its transverse curvature R, uniform thickness t, subtended

angle ξ and length L: the arc-length, b, is Rξ, Fig. 2(a.i). Carpenters’ tapes can be re-purposed for steel

versions (E = 210 GPa) by simply cutting a straight length; or thin flat strips of beryllium copper (E =

131 GPa) can be age-hardened inside a heated cylindrical former [10]. Typical thicknesses are around 0.1 mm,

setting the range for R/t ≈ 50 ∼ 200.

Composite tape-springs are fabricated from “laying-up” three polypropylene sheets with plain-woven

reinforcing glass fibres arranged at ±45◦ to the axial and transverse directions. The typical volume fraction

of fibres is 30%, and the final thickness is approximately 0.65 mm compared to an initial radius of 12.5 mm.

The lay-up is then wrapped around a cylindrical former and secured using heat-shrink tape over a PTFE-

coated glass fabric layer, before placing in a fan-assisted oven at 225◦C for four hours. Afterwards, each

sample is manually cut to the correct length for testing.

Because the lay-up is effectively symmetrical, there is no evident material coupling between bending

and extension, which sets the traditional coupling constitutive matrix, B, to be zero. There is also no

local anisotropy i.e. no coupling between bending and twisting, nor extension and shearing, which affords

the simplest orthotropic description: testing of flat strips then reveals almost identical axial and transverse

Young’s moduli with a value of 14.5 GPa, a Poisson’s ratio of 0.14, and a shear modulus of 0.824 GPa [11].

Following the orthotropic specification in Seffen [12], we also assume plane-stress behaviour, where direct

in-plane stresses and strains are denoted as usual by σ and ǫ. A single subscript indicates the coordinate

(x, y) direction, with x aligned length-wise and y transverse, always.

Ex and Ey are the orthogonal Young’s moduli in ratio β: even though our composite tapes exhibit roughly

the same values, we can examine in theory, at least, the effects of a modular difference. The corresponding

Poisson’s ratios are νxy and νyx, which are correlated from the Reciprocal Theorem by νxy/Ex = νyx/Ey.

Defining other constants for brevity, the complete specification is written:

Ex = E, Ey = βE, G = ρE, νyx = ν, νxy =
ν

β
(1)
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The shear modulus is G with ρ = 1/2(1 + ν) for isotropic behaviour (β = 1). An homogenous material

response through the thickness is fairly assumed for thin laminates, with in-plane orthogonal strains now

given by:

ǫx =
σx

E
−

νσy

βE
, ǫy = −

νσx

βE
+

σy

βE
, γxy =

τxy
ρE

(2)

along with γxy and τxy, the shear strain and its stress. The above can be inverted to give explicit stresses,

σx = E · (ǫx + νǫy)/(1− ν2/β) etc., if desired.

Bending and stretching of any tape-spring is expressed by the deformation of its internal middle surface.

When in-plane behaviour correlates to the above stresses and strains, the corresponding stretching strain

energy density per unit surface area can be written as:

US =
t

2
· [σxǫx + σyǫy + τxyγxy] =

t

2E
·

[

σ2
x +

σ2
y

β
−

2νσxσy

β
+

τ2xy
ρ

]

(3)

When there are changes in curvature of the middle surface, χx and χy, and any change in twisting curva-

ture, χxy, the strains vary linearly with material height z through the thickness from Kirchoff’s hypothesis

[13], setting ǫx = zχx, ǫy = zχy and γxy = 2zχxy. We take χxy to be the engineering version of twist, and

χ generally expresses the difference between the current curvature, κ, and any initial, stress-free value, κ0,

thus χ = κ− κ0.

Bending moment stress resultants follow with Mx =
∫

σxdz, and so forth, through the thickness (and

per unit in-plane length), to yield the set of generalised Hooke’s laws for orthotropic bending:

Mx =
Et3

12(1− ν2/β)
· [χx + νχy] , My =

Et3

12(1− ν2/β)
·
[

χy +
νχx

β

]

, Mxy =
Et3ρ

6
χxy (4)

The corresponding strain energy density in bending is equal to (1/2) · (Mxχx +Myχy + 2Mxyχxy), i.e.

UB =
D

2
·
[

χ2
x + βχ2

y + 2νχxχy + 2αχ2
xy

]

(5)

with D as the flexural rigidity, Et3/12(1−ν2/β), and α as the dimensionless torsional rigidity, 4(1−ν2/β)ρ,

equal to (1− ν) for isotropic materials. For our composite tapes specifically, α ≈ 0.11.

3 Folding Experiments

When a tape-spring is bent uniformly by equal and opposite end moments, M , the curved cross-section

flattens before eventually localising into a fold of constant radius, r, over an axial length equal to 2rθ. On

either side the fold is connected to virtually straight parts by initial ploy regions which re-acquire the original

transverse curvature over a length LP, Fig. 2(a.ii).
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When r and R lie on same surface side of the tape, we have so-called equal-sense bending [14], Fig. 2(b.i),

and vice versa for opposite-sense bending, Fig. 2(b.ii). Using the commercial finite element analysis (FEA)

software package ABAQUS [15], we can simulate a typical moment-rotation response, shown in Fig. 2(c)

for a metal tape made of four-noded, reduced integration thin-shell elements. Geometrically non-linear

large displacements are enabled, and the solution scheme uses a default stabilisation protocol to enable

convergence.

M is linear initially in both directions but quickly succumbs to either flattening and snapping (opposite

sense, M > 0) or to softer torsional buckling (equal sense, M < 0). Around end rotations of 0.3 and 0.5

radians (17◦ and 29◦), respectively, the moments reach similar, steady values M+
∗ and M−

∗ as the folds

become established. Even though θ increases, the moments remain constant as the fold region “grows” in

length.
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Figure 2: (a.i) Tape-spring geometry via R, t, L, ξ, and b (= Rξ); (a.ii) uniformly folded tape-spring via finite
element analysis (FEA): fold radius is r and subtends angle 2θ, and the transitional ploy region extends from each
fold end by LP to practically undeformed parts; contours are Mises stresses. (b.i) Equal- and (b.ii) opposite-sense
folding with constant end moments, M−

∗
and M+

∗
. (c) Typical FEA moment-rotation (M, θ) response for R = 10 mm,

t = 0.2 mm, L = 100 mm and ξ = 90◦ (isotropic material).

Performing a similar practical experiment necessitates a bespoke and, hence, expensive bending rig, able

to apply precise uniform bending moments and end rotations [10]. Because the ends must be securely held,

the scope for torsional buckling during equal-sense bending, manifestly apparent during manual bending of

a lengthy tape, is clearly reduced.

We pursue instead a simpler three-point bending arrangement, shown schematically in Fig. 3(a). Miniature

holes are drilled into a horizontal tape at collinear points A, B and C, very close to the ends and in the

middle, in order to secure long vertical wires. The outer two are anchored downwards, and the middle one

pulls upwards to generate a force, F , and mid-point displacement, δ, Fig. 3(a.iii).

Because the ends are free to twist and rotate, torsional deformation during equal-sense bending is unim-

peded, Fig. 3(b.i). When the same tape geometry and boundary conditions are simulated in the FEA, there
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is a remarkable one-to-one correspondence in deformed shape, Fig. 3(b.ii); note that the tape is not perfectly

circular throughout but has flat flanks, Fig. 3(a.ii).

(a.i)

(a.ii)

(a.iii)

(b.i) (b.ii)

A

B
C

F

F

F/2

F/2

δ

12.0

4.6
75◦

Figure 3: (a.i) Schematic three-point bending test for tape-spring: collinear and central wire attachment points,
A, B and C; (a.ii) cross-sectional geometry [mm] of steel carpenter’s tape; (a.iii) measured force, F , and vertical
displacement, δ, at centre-point. (b.i) Typical coupled equal-sense bending and twisting deformation; (b.ii) matching
FEA simulations, where contours are Mises stresses.

Formal measurements for a composite tape-spring of length 200 mm and subtended angle ξ = 180◦

(R = 12.5 mm, t = 0.65 mm from Section 2) are indicated in Fig. 4. There are four clear stages of robustly

repeatable deformation, which are observed also for metal tapes, and highlighted schematically. Stage I is

initial, symmetrical equal-sense bending followed by buckling at F = Fcrit into a global torsional mode at

the onset of stage II, with a drop in stiffness viz. gradient. During stage III, deformation begins to localise

centrally with increased curving at the expense of twisting and a declining force; by stage IV, the untwisted

fold has fully formed and the force increases again. Note that because F is non-zero throughout deformation,

the tape cannot be bistable.

Finite element analysis also reveals the same traits, where the composite is simulated at the level of

individual plies using Naik’s model [16]: their woven nature is captured by one isotropic “matrix” layer and

two uni-directional laminates for each ±45◦ direction, all constructed with the same S4R elements as per

metal tapes. Geometrical non-linearity is also permitted, and a damping factor of 1 × 10−6 is specified for

stabilisation. Preliminary convergence studies have shown that an element edge length no more than 1% of

the tape length is sufficient for accuracy.

The black curve retains the movement of supports A, B and C, Fig. 2(a.i), in a vertical plane, which

converges straightforwardly. In reality, these points move in and out of plane to yield the grey curve,

where convergence has to be more stringently enforced. The grey curve better follows the earlier stages, in

particular the size of the peak moment, Fmax, and the latter variations of both curves approximate well the
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Figure 4: Force-displacement curves from three-point equal-sense bending of composite tape, with R = 12.5 mm,
t = 0.65 mm, L = 200 mm and ξ = 180◦. Left, blue curve is experimental test, repeated twice (red/green dots):
grey curve is FEA for wire supports able to move out of plane in Fig. 3(a.i) and black curve has supports always
coplanar. Right, schematic (F, δ) response: (I) linear bending, (II) torsional buckling, (III) localisation, (IV) folding.

experimental response of the nascent fold.

The overlapping region of stages II and III is however discrepant, with the experimental force diminishing

more quickly after buckling commences. Although difficult to see from the inset figures, the buckling mode

produces “pinching” of the free edges in practice rather than the locally smooth distortion seen in the FEA.

Pinching seems to arise from local buckling or compressive damage of the matrix between fibres along the

free edge. Even though it initiates because of torsional buckling, the response of the softer matrix then

controls the post-buckling behaviour by lowering the applied forces prematurely, we surmise.

The inset figure also shows a rotated fold axis during stage IV, which diminishes for large fold angles but

not altogether. Again, pinching causes some of the earlier twist to become “locked in” to the folded shape,

which is clearly different from the FEA fold, which quickly loses its initial rotation. Note that opposite-

sense bending is amenable to the same experimental scheme, where a snap-though response follows the

peak moment for metal tapes; the much larger subtended angle of our composite tapes precludes a similar

undamaged response.

The equal-sense performances have encouragingly similar features but there also notable differences during

stages II and III that require additional study. The formation of a fold and ploy regions is evident but in

order to study the properties of a “well-developed” and uniform fold, we revert to uniform tape bending

using FEA in the following section.
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4 Large Displacement Folding

Figure 5 shows four folded tapes with different orthotropic modular ratios, β, but all with the same E, ν, and

G, and radius R = 10 mm, subtended angle ξ = 90◦, and thickness t = 0.2 mm. Each has been uniformly

bent, c.f. Fig. 2(b), in order to establish uniform r throughout the fold region, as shown; opposite-sense

bending is preferred only because the fold becomes well-developed much earlier; as we shall see, its radius

does not depend on the direction of bending.
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Figure 5: Uniform opposite-sense folded tapes from FEA where contours are Mises stresses. Right, measured fold
radii, r (blue) vs predictions (red). Inset: power-law fit for measured values (blue) equal to 11.47β−0.51, which is
plotted dashed (blue) in main figure; the green line has a slope of -1/2 for comparison. R = 10 mm, ξ = 90◦,
t = 0.2 mm, E = 131 GPa, ν = 0.3, α = 1− ν for all tapes.

The data are almost exactly fitted by the curve 11.47β−0.5051, with an exact index of −1/2 being assured.

Given that no other parameters are varied, the data are consistently 14.7% larger than R. In the isotropic

case, β = 1, the fold radius is often cited as being equal to R but an early study reported a regular difference

up to 15% from other simulations [17]. It would seem the same disparity applies for orthotropic tapes, which

is being studied further.

The axial curvature of a uniformly bent fold appears to depend on β1/2, amongst other things, but not the

relative rotation between the ends of tape: the same tightening of radius is observed, somewhat informally,

in the latter stages of our three-point bending tests.

For uniform bending, it is usual to assume that any changes in strain energy in a folded tape-spring are

due to the fold alone and not to the ploy regions, which maintain a fixed shape. Because the shape of fold

has changed from one type of open cylinder to another, there is only developable bending deformation and

negligible stretching [18]. The developable assumption coupled to uniform curvatures also allows us to treat

tapes with large subtended angles as being shallow shells in view of the strain energy stored, Eqn 5, because

it is written in terms of curvature changes.

The specific change in axial curvature, χx, is 1/r, there is no twisting curvature, and χy = ±1/R, where R

is the original transverse radius of curvature: the ± sign accords opposite/equal-sense bending, respectively.
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The total strain energy in bending, ŪB, multiplies the energy density, Eqn 5, by the surface area of fold:

ŪB = 2rθb ·
D

2

[

χ2
x + βχ2

y + 2νχxχy

]

= Dbθ

[

1

r
+

βr

R2
∓

2ν

R

]

(6)

A minimal energy configuration sets ∂ŪB/∂r equal to zero, which returns r = R/
√
β for bending in both

directions. The index of one-half is confirmed and the expression for r matches that first postulated in [19],

then in [20] for carbon-fibre reinforced plastic (CFRP) tapes, with both written using different notation.

This expression may also be used to validate the axial bending moment required to sustain the folded

shape, M±
∗ , using the expressions from Eqn 4. Multiplying them by the flattened width b expresses the

total moment:

M±

∗ =
b

R
·

Et3

12(1− ν2/β)

[

√

β ± ν
]

(7)

after substituting for χx and χy: the same expression is returned by differentiating Ū with respect to θ.

M+
∗ values from Eqn 7 are superposed onto the (M, θ) curves from the FEA in Fig. 6 over the same

rotation range. The correlation is very good throughout with Eqn 7 being no more than 10% larger on closer

inspection: the size of this discrepancy would seem to fit with the differences expressed between the radii

predictions in Fig. 5, and is also recorded in [20] for their CFRP tapes. Note that we would also expect M±
∗

to increase linearly with subtended angle, given the proportional relationship to b in Eqn 7; but since r does

not appear to depend on ξ, we do not formally confirm this expectation.

0
0

0
0

0
0

0
0 1111 2222

200
200

400
400 600

600 800

500
1000

1000

2000

θ [rad]θ [rad]θ [rad]θ [rad]

M
[N

m
m
]

β = 1 β = 2 β = 5 β = 10

Figure 6: Opposite-sense orthotropic moment-rotation response from FEA for the same tapes from Fig. 5. Red
lines are constant M+

∗
predictions from Eqn 7.

5 Ploy Shape: Dimensional Expectations

The ploy regions extend for a length many times larger than the thickness t and on the scale of the original

transverse radius of curvature R. Such behaviour is purported to be a long-wave solution within the classical

Donnell equations for deformation of an initially cylindrical shell [13]. The pair of variables in that case are
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the radial displacement, w, and the Airy Stress function, φ, tantamount to in-plane forces, which both vary

in the x (axial) and y (circumferential) directions.

The cylindrical nature assumes a closed shell but our open cylindrical tape is governed equivalently

provided we reflect the same boundary conditions along its edges—as if having excised a strip from the original

closed shell with no edge loading. The w and φ functions adopted in [13] both multiply an eigenfunction,

sin (πy/b), by separate x-wise variations before being submitted to Donnell’s equations: our strip conforms

exactly to the required edge conditions if it has a transverse arc-length of b.

The long-wave solution is dominated by axial stretching and circumferential bending, which allows us

to “switch off” certain parts within the Donnell set, as carefully laid out in [13]. The resulting pair of

coupled differential equations in w and φ are simplified approximations of geometrical compatibility and

equilibrium for bending and stretching together; similar forms have been obtained elsewhere, for example,

when describing the “persistence” of end-wise pinching of an isotropic pipe [21].

If we repeat the long-wave derivation in [13], however substituting for our orthotropic material laws, we

ultimately arrive at the equivalent pair of governing second-order differential equations:

π4

b4
· φ−

E

R

d2w

dx2
= 0, Dβ

π4

b4
· w +

t

R

d2φ

dx2
= 0 (8)

These differ from Donnell’s original in two ways. The modular ratio, β, is now present; our φ is a stress

function, differing from φ in [13], a force function, by a factor of thickness, t, which makes no difference to

the outcome shortly.

Substituting φ from the first equation into the second, and differentiating twice with respect to x, produces

a fourth-order equation in w alone:

d4w

dx4
+

DR2βπ8

Etb8
· w = 0 (9)

Writing the pre-factor of w as 4k4, we can establish a characteristic length scale, l, equal to π/k, from the

general solution. Equating terms and re-arranging in terms of l, we arrive at:

l =
b2

πR1/2

[

4Et

Dβ

]1/4

→ l =
2

π
·
[

3(1− ν2/β)

β

]1/4

·
b2

R1/2t1/2
(10)

The particular boundary conditions at both ends of the ploy region ultimately dictate the numerical scale

of this expression, making 2 · 31/4 . . . /π irrelevant for now. If β >> ν2, the essential dimensional variation

of l goes with b2 · R−1/2 · t−1/2 · β−1/4. For a fixed width and material, l ∼ 1/
√
Rt, which is precisely

the inverse relationship observed when dealing with “short-wave” solutions i.e. boundary layer effects of

Donnell’s equations. We can of course shorten the expression by writing b as a proportion of R, setting

l ∼ R3/2 · t−1/2 · β−1/4, as in [21], giving fewer parameters to vary when characterising l experimentally.
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This long-wave approach is essentially a leading-order solution, now being deployed more frequently in

highly-deformable plates and shells problems, and doubtless inspired by the “French” school of thought; for

example see [22, 23]. As noted, circumferential bending and axial stretching are pre-eminent physical effects

in Donnell’s equations, expressed by the highest variations in w and φ.

Equivalently, the axial variation of the y-wise curvature “leads”, compared to the changes in the x-wise

curvature or in the twisting curvature; as do the axial strains compared to the rest. Switching to a lower

order kinematical variable such as curvature (compared to w) permits some reductions in complexity of

solution if we adopt instead a strain energy formulation; and in turn, enables us to quantify the boundary

conditions more simply, for a corresponding ploy length (approaching these from a stress resultant viewpoint

is certainly more involved: see [13].)

6 Ploy Shape: Size

The numerical pre-factor in Eqn 10 has a value close to unity, around 0.8 for ν = 0.3 and β = 1. From

finite element simulations shown momentarily, this tends to overshoots by some way. As ever, assuming that

certain kinematic terms are dominant in Donnell’s equations subtracts from the general application of the

long-wave result; that the ploy length is somewhere between long and short.

A more general and direct analysis was originally produced by Jain and Rimrott in 1971 on the closely

related subject of STEMS—Storable Tubular Extendable Members [24] . These are metal tape-spring slit

tubes enveloping nearly 2π radians of cross-section, capable of being wound onto a drum and then deployed

on a spacecraft for gravity compensation, instrument positioning etc.

From the outset, they deal with changes of curvatures, χ, in the ploy region, assuming that one end has

been completely flattened, the other being fully rounded and unstressed, see Fig. 7. Transverse moment

equilibrium is simplified crucially by assuming that the double rate of change of transverse curvature along

the STEM, ∂2χy/∂x
2 dominates, as per Donnell; but that the equivalent rate for the change in curvature

along, ∂2χx/∂x
2, is some fixed proportion, a, of the principal rate.

(a) (b) (c)

x

y

Figure 7: Ploy length assessment via FEA. (a) Initial geometry; (b) intermediate flattening of far-field edge; (c)
edge flattened. Contours are Mises stresses, and bottom views are in elevation. Geometry: R = 10 mm, t = 0.2 mm
and ξ = 60◦. The modular ratio, β, is equal to ten, in order to highlight a more rapid decay compared to an isotropic
tape.

Employing the Codazzi-Mainardi compatibility equations, they arrive at a final governing equation for
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χy:

∂2χy

∂x2
+ k2

∂2χy

∂y2
= 0 (11)

where k =
√
1 + a and ultimately is a decay parameter.

Jain and Rimrott employ a Fourier series solution for χy, which sums to a uniform −1/R at the flat end,

and to zero at x equal to “infinity”, for simplicity: only opposite sense flattening is dealt with but the result

can be extended easily for χy = +1/R at x = 0. They are then able to find the corresponding changes in

transverse curvature, χx, and twisting curvature, χxy.

If instead we take a leading order solution for χy, equal to f(x) cos(πy/b) and substitute into Eqn 11,

then

d2f

dx2
−

k2π2

b2
f = 0 → χy = −

1

R
· exp (−kπx/b) cos (πy/b) (12)

which complies with the earlier boundary conditions. The other changes in curvature follow from the

Codazzi-Mainardi equations again, with

χxy =
k

R
· exp (−kπx/b) sin (πy/b), χx = −

k2

R
· exp (−kπx/b) [1− cos (πy/b)] (13)

Jain and Rimrott acknowledge that because the bending solution foists a change in Gaussian curvature,

there is also in-plane stretching primarily along the ploy length—again, in the same direction in Donnell’s

cylinders.

The expression for the former in terms of curvature changes (rather than absolute terms, Eqn ??) is

shown to be −χ2
xy + χxχy + χx/R in [24]. Considering Eqns 12 and 13, the order in size of contributions

from all changes in curvature are the same, and all must be included in the relationship to ∂2ǫx/∂y
2. We

may therefore write, substitute and calculate:

∂2ǫ

∂y2
= χ2

xy − χxχy −
χx

R
=

k2

R2
· [exp (−kπx/b) + exp (−2kπx/b)] · [1− cos (πy/b)] (14)

This expression is then integrated twice with respect to y to give the strain and thence axial stress. The

constants of integration follow from setting the nett axial force to be zero i.e.
∫

ǫxdy = 0 between limits of

±b/2. For our solution, it can be shown:

ǫx =
k2

R2
· [exp (−kπx/b) + exp (−2kπx/b)] ·

[

y2

2
+

b2

π
· cos (πy/b)−

b2

24
+

2b2

π3

]

(15)

To find k, the usual strain energy components from bending and stretching are assembled. In the case

of bending, Eqn 5, the dominant product term is χ2
y, which varies with 1/R2; for the others, (χ2

xy, χxχy) ∼

12



k2/R2 and χ2
x ∼ k4/R2, which are much smaller because k is usually less than unity. The final total energy

expression is thus:

Ū = ŪB + ŪS =

∫ ∫

UB + US dxdy =

∫ +b/2

−b/2

∫ inf

0

1

2

[

Dβχ2
y + Etǫ2x

]

dxdy (16)

Substituting for χy and ǫx, and performing the integration, we arrive at:

ŪB = B ·
Dβb2

R2k
, ŪS = S ·

Etb6k3

R4
(17)

where B is a constant equal to 1/8π ≈ 0.039, and S = 9.18× 10−6. The proper value of k minimises Ū by

differentiating with respect to k and setting equal to zero, i.e.

k4 =
B

3S
·
Dβ

E
·
R2

tb4
→ k4 =

B

36S
·

β

1− ν2/β
·
t2R2

b4
(18)

Returning to Eqn 12, the characteristic length of decay and thus ploy length, denoted now as LP in

accordance with Fig. 2(a.ii), is set by the index of the exponent. To compare directly with Donnell’s

solution, Eqn 10, we set LP = b/πk to give:

LP =

[

1− ν2/β

β
·
36S

π4B

]1/4
b2

R1/2t1/2
(19)

For ν = 0.3 and β = 1, the numerical pre-factor is around 0.093: this is considerably smaller than the

prediction from Eqn 10 because all curvature terms now contribute to the level of Gaussian curvature.

But it seems self-defeating to declare a specific ploy length in view of the decaying nature of the problem;

an index equal to -1 lends a reduction in parameter values of only 63%. We can, of course, compare different

predictions of LP for the same measure, but it is better to compare the decaying variation due to k originally.

Comfortingly, there is the same long-wave dependency of LP on b2 ·R−1/2 · t−1/2 ·β−1/4 as in l from Donnell.

We shall see that our decay profiles tend to fit simulations generally better but are not always accurate.

If this is due to employing a single leading-order term for each of our curvature changes, we can reconsider

the Fourier series solution for χy given by Jain and Rimrott [24]:

χy = −
inf
∑

n=1,3,5...

4

nπR
· (−1)(n−1)/2 · exp (−knπx/b) · cos (nπy/b) (20)

with the other curvatures being similarly expressed.

Although the change in Gaussian curvature and bending strain energy can be found in closed form

despite the infinite sum, ǫx and the stretching component of U cannot—requiring numerical integration for

a very large number of n terms towards finding k. Because we wish to include the effects of the orthotropic

parameter, β, we are obliged to do the same.

13



No matter the number of terms, n, taken for χy etc., ŪB and ŪS can always be expressed in the same

dimensional form of Eqns 17: this point is missed for ŪS in [24], which is returned as a curve for certain

choices of physical properties.

We therefore evaluate the integrations for Ū symbolically using MATLAB [25] for n increasing, in order

to extract the pre-factors B and S. Consequently: (B,S) = (0.0645, 1.842 × 10−5) for n = 1, (B,S) =

(0.0669, 8.2657× 10−6) for n = 3 and (B,S) = (0.0674, 8.053× 10−6) for n = 5. For higher values of n, the

evaluations fail to converge owing to the sheer length of expressions.

Notwithstanding, the values of B and S appear to quickly settle to steady values, with their ratio, B/S,

moving from our very first value of 0.039/9.18× 10−6 = 4336 to around 0.0674/8.053× 10−6 = 8370, which

is almost doubled (1.93). Because of the fourth/quarter power relationships in Eqns 18 and 19, k decreases

by 1.931/4 ≈ 18% with L increasing by the same to around 0.093×1.19b2/
√
Rt ≈ (1/9) ·b2/

√
Rt for isotropic

materials. A more sophisticated analysis brings marginal (but welcome nevertheless) changes in the ploy

length.

Finally, we note the outcome of a more recent study of the problem “in reverse”: of the persistence of

an end-wise transverse curvature applied to an originally flat strip [26]. Curving the end as such allows the

floppy strip to remain straight up to where the transverse curvature disappears, causing it to droop beyond

if held aloft. The same action can be demonstrated readily using a pizza slice, indeed, it is expeditious for

(moderately) elegant eating.

The mechanical essence of the problem is similar to here, invoking an energetic solution of axial stretching

and transverse bending but where the change in Gaussian curvature is assumed to be dominated by the

twisting curvature χxy alone. At a given axial position, the transverse curvature is also assumed to be

uniform, and calculus of variations produces a quadratic solution for its axial variation rather than an

exponential decay.

Repeating their analysis to include our orthotropic parameter, β, we equate the persistence length to our

ploy length, and find:

LP =
1√
70

·
1

β1/4
·

b2

R1/2t1/2
(21)

The numerical pre-factor is exact and equal to 0.119: compare this to the value of 1/9 = 0.111 just found for

our three-term Fourier series approach. But this LP is a definitive length at which χy is exactly zero—unlike

our decaying χy.

We can however compare this LP to our decaying profiles from the FEA; practical measurements are

currently in development. We do this by first plotting the transverse curvature variation along the centreline;

we superimpose the solutions from Eqn 12 and Eqn 20 for a large number (n = 51) of terms according to

the value of k obtained from the three-term Fourier series solution. Equation 21 is then plotted as a single
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point on the ordinate for comparison.

Eight different tapes are presented in Fig. 8, whose performances are all rather good—in view of decay

trends. Even when the modular ratio is excessive, β = 100, there is a fair comparison; we have not, however,

varied the torsional rigidity, which remains isotropic (1 − ν). The thickness ranges are set about those of

metal tapes, and all initial radii are 10 mm. Provided we conserve ratios of R/t if R is changed, the same

reasonable fit is seen.

But by far the most influential parameter is b, wrought by changes in cross-sectional angle. For ξ larger

than 60◦, theoretical decay rates are significantly smaller than those from the FEA. Using a projected width

for b instead of arc-length does not improve matters. The underlying long-wave solution assumptions begin

to falter.

Of course we must collate more data, in order to establish which combinations of parameters do best.

There is also a need to confirm matters experimentally, which is part of on-going research.
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Figure 8: Transverse curvature change, χy, in ploy regions from FEA (blue) vs Eqn 12 (red), and Eqn 20 (green)
with n = 51, both using k from Eqn 18 with (B, S) = (0.0674, 8.053 × 10−6): purple circles are Eqn 21. All
tape-springs have radius 10 mm, thickness 0.2 mm and β = 1 unless otherwise indicated.

7 Conclusions

We have considered the shape of folded orthotropic tape-springs using finite element analysis, some simple

experiments and compact analytical models. The folding process itself is highly non-linear, and differs

depending on the direction of bending; there is buckling, either snap-through or torsional, and localisation.
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Once folded, the shape is clearly defined: there is an almost developable cylindrical region as the main

fold, connected by ploy regions where axial strains and transverse curvature changes are dominant. These

properties are consistently observed for isotropic and orthotropic materials, which are demonstrated here for

metals and a woven laminated composite. Our study brings together materials and structural mechanics in

order to design (provisionally) a multi-functional deployable structure for the aerospace industry.

We have focussed on predicting the radius of the fold, r, and the axial extent of the ploy regions, LP.

The former has been shown to depend on the ratio of the Young’s moduli, which informs the general trend

well, but absolute values of fold radius differ by a few percent when predictions are compared to FEA.

The ploy length complies with a classical long-wave solution in the theory of deformed shells, with a more

extensive dependency on the arc-width (b2), transverse radius (R−1/2) and thickness (t−1/2): the orthotropic

specification enters the pre-factor for LP, which we have determined numerically from energy considerations.

Our study continues with the broader collation of shape data from finite element analysis as well as

physical specimens and digital imaging techniques. It is clear that there are shortfalls in our models for

different, possibly attractive combinations of geometry and material for alternative composite tape-springs.

Rather than exclude these because we cannot predict their folded shapes accurately, we will re-explore our

modelling assumptions and devise new insight.

We must also return to the question of how these shapes are affected by the tape-spring being already

bistable—which we have excluded here. Finally, we are developing a broader understanding of the structural

features, for these govern the ability of the tape to be folded and stowed as part of its landing gear function:

given that tapes must also bear compression once deployed and straight, we will be conducting “standard”

structural tests of axially loaded, orthotropic thin-walled open tubes.
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