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Abstract

Do large firm dynamics drive the business cycle? We answer this question by developing a quan-

titative theory of aggregate fluctuations caused by firm-level disturbances alone. We show that a

standard heterogeneous firm dynamics setup already contains in it a theory of the business cy-

cle, without appealing to aggregate shocks. We offer an analytical characterization of the law of

motion of the aggregate state in this class of models – the firm size distribution – and show that

aggregate output and productivity dynamics display: (i) persistence, (ii) volatility and (iii) time-

varying second moments. We explore the key role of moments of the firm size distribution – and,

in particular, the role of large firm dynamics – in shaping aggregate fluctuations, theoretically,

quantitatively and in the data.
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1 Introduction

Aggregate prices and quantities exhibit persistent dynamics and time-varying volatility. Business cy-

cle theories have typically resorted to exogenous aggregate shocks in order to generate such features

of aggregate fluctuations. A recent literature has instead proposed that the origins of business cycles

may be traced back to micro-level disturbances.1 Intuitively, the prominence of a small number of

firms leaves open the possibility that aggregate outcomes may be affected by the dynamics of large

firms.2 And yet, we lack a framework that enables a systematic evaluation of the link between the

micro-level decisions driving firm growth, decline and churning and the persistence and volatility of

macro-level outcomes.

This paper seeks to evaluate the impact of large firm dynamics on aggregate fluctuations. Building

on a standard firm dynamics setup, we develop a quantitative theory of aggregate fluctuations aris-

ing from firm-level shocks alone. We derive an analytical characterization of the law of motion of

the firm size distribution – the aggregate state variable in this class of models – and show that the

resulting aggregate output and productivity dynamics are endogenously (i) persistent, (ii) volatile

and (iii) exhibit time-varying second moments. We explore the key role of moments of the firm size

distribution – and, in particular, the role of large firm dynamics – in shaping aggregate fluctuations,

theoretically, quantitatively and in the data. Our results imply that large firm dynamics induce size-

able movements in aggregates and account for 30% of aggregate fluctuations.

Our setup follows Hopenhayn’s (1992) industry dynamics framework closely. Firms differ in their

idiosyncratic productivity level, which is assumed to follow a discrete Markovian process. Incum-

bents have access to a decreasing returns to scale technology using labor as the only input. They

produce a unique good in a perfectly competitive market. They face an operating fixed cost in each

period which, in turn, generates endogenous exit. As previous incumbents exit the market, they are

replaced by new entrants.

The crucial difference relative to Hopenhayn (1992) – and much of the large literature that follows

from it – is that we do not rely on the traditional “continuum of firms” assumption in order to charac-

terize the law of motion for the firm size distribution. Instead, we characterize the law of motion for

any finite number of firms. Our first theoretical result shows that, generically, the firm size distribu-

tion is time-varying in a stochastic fashion. As is well known, this distribution is the aggregate state

variable in this class of models. An immediate implication of our findings is therefore that aggregate

productivity, aggregate output and factor prices are themselves stochastic. In a nutshell, we show

1See Gabaix (2011), Acemoglu et al. (2012), di Giovanni and Levchenko (2012), Carvalho and Gabaix (2013), di Giovanni,
Levchenko and Mejean (2014, 2017), Baqaee (2016), Baqaee and Fahri (2017) and Grassi (2017).

2For example, in the fall of 2012, JP Morgan predicted that the upcoming “release of the iPhone 5 could potentially add
between 1/4 to 1/2%-point to fourth quarter annualized GDP growth” (JP Morgan, 2012). Apple’s prominence in the US
economy is comparable to that of a small number of very large firms. For example, Walmart’s 2014 US sales amounted
to 1.9% of US GDP. Taken together, according to Business Dynamics Statistics (BDS) data, the largest 0.02% of US firms
account for about 20% of all employment.



that the standard workhorse model in the firm dynamics literature – once the assumption regarding

a continuum of firms is dropped – already features aggregate fluctuations.

We then specialize our model to the case of random growth dynamics at the firm level. Given our

focus on large firm dynamics, the evidence put forth by Hall (1987) in favor of Gibrat’s law for large

firms makes this a natural baseline to consider.3 With this assumption in place, our second main

theoretical contribution is to solve analytically for the dynamics of aggregate productivity, up to the

contribution of entry and exit. This characterization is key to our analysis and enables us to provide

a analytical results on the equilibrium firm size distribution and the dynamics of aggregates.

Our third theoretical result is to show that the steady-state firm size distribution is Pareto distributed.

We discuss the role of random growth, entry and exit and decreasing returns to scale in generating

this result. The upshot of this is that our model can endogenously deliver a first-order distributional

feature of the data: the co-existence of a large number of small firms and a small, but non-negligible,

number of very large firms, orders of magnitude larger than the average firm in the economy.

Our final set of theoretical results sheds light on the micro origins of aggregate persistence, volatility

and time-varying uncertainty. Leveraging on our characterization of the law of motion of the ag-

gregate productivity we are able to show, analytically, that: (i) persistence in aggregate output is in-

creasing with firm-level productivity persistence and with the share of economic activity accounted

by large firms; (ii) aggregate volatility decays only slowly with the number of firms in the economy,

and that this rate of decay is generically a function of the size distributions of incumbents and en-

trants, as well as the degree of decreasing returns to scale and (iii) aggregate volatility dynamics are

endogenously driven by the evolution of the cross-sectional dispersion of firm sizes.

Taken together, our theoretical results also deliver a simple economic intuition for why large firm

dynamics may drive the business cycle. Answering this question requires answering why, following

an idiosyncratic shock to a very large firm (say, G.M.), its competitors (say, Ford) do not increase

their scale and gain market share. If this were to happen, production would merely be reallocated

from G.M. to Ford, rather than reduced in the aggregate. After all, if the shock is purely idiosyncratic

to G.M., demand for auto-mobiles would be unaffected while primary input prices (e.g. wages in

Detroit) should decline as G.M. sheds workers. What our quantitative results imply is that this real-

location effect is second order: under a Pareto firm size distribution, the productivity gap between

G.M. and Ford is large enough such that: (i) the shock to G.M. does have aggregate consequences

3There is a large literature assessing the empirical validity of Gibrat’s law in data. Across all firms, the evidence on the
relationship between firm size and firm growth is mixed. Hall (1987) and, more recently, Haltiwanger et al (2013), show
that rejections of Gibrat’s law in the data are attributable to the dynamics of small entrants and that there is no systematic
relation between firm size and firm growth among large firms. See also Evans (1987) and the discussion in Luttmer (2010).
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and auto-worker wages do decline but, (ii) Ford is unproductive enough relative to G.M. such that,

under decreasing returns to scale, the amount of reallocation is limited.4, 5

We then explore the quantitative implications of our setup. Due to our characterization of aggregate

state dynamics, our numerical strategy is substantially less computational intensive than that tra-

ditionally used when solving for heterogeneous agents’ models. This allows us to solve the model

featuring a very large number of firms and thus match the firm size distribution accurately.

Our first set of quantitative results shows that the standard model of firm dynamics with no ag-

gregate shocks is able to generate sizeable fluctuations in aggregates: aggregate output (aggregate

productivity) fluctuations amount to 30% (24%, respectively) of that observed in the data. These

fluctuations have their origins in large firm dynamics. In particular, we show how fluctuations at the

upper end of the firm size distribution – induced by shocks to very large firms – lead to movements

in aggregates. We supplement this analysis by showing that the same correlation holds true empir-

ically: aggregate output and productivity fluctuations in the data coincide with movements in the

tail of the firm size distribution.

We then focus on the origins of time-varying aggregate volatility. Consistently with our analytical

characterization, our quantitative results show that the evolution of aggregate volatility is deter-

mined by the evolution of the cross-sectional dispersion in the firm size distribution. Unlike the

extant literature, the latter is the endogenous outcome of firm-level idiosyncratic shocks and not the

result of exogenous aggregate second moment shocks. Again, we compare these results against the

data and find consistent patterns: aggregate volatility is high whenever cross-sectional dispersion is

high.

The paper relates to two distinct literatures: an emerging literature on the micro-origins of aggre-

gate fluctuations and the more established firm dynamics literature. Gabaix’s (2011) seminal work

introduces the “Granular Hypothesis”: whenever the firm size distribution is fat tailed, idiosyncratic

shocks average out at a slow enough rate that it is possible for these to translate into aggregate fluc-

tuations. Relative to Gabaix (2011), our main contribution is to ground the granular hypothesis in a

well specified firm dynamics setup: in our setting, firms’ entry, exit and size decisions reflect optimal

forward-looking choices, given firm-specific productivity processes and (aggregate) factor prices.

Further, the firm size distribution is an equilibrium object of our model.6 This allows us to both gen-

eralize the existent theoretical results and to quantify their importance. The recent contribution of

4That is, with Ford’s productivity unchanged, and facing lower input costs, Ford would indeed increase its scale. How-
ever, in doing so, Ford’s marginal productivity would decline given decreasing returns to scale thus limiting the amount of
reallocation.

5This is consistent with the spirit of Hulten (1978)’s theorem, even though the latter cannot be directly apply to our setup
because of endogenous entry and exit. Clearly, one could think of additional real frictions – such as imperfect substitutabil-
ity between the goods of different firms or adjustment costs – that could stand in the way of such reallocation dynamics,
resulting in environments that are even further away from the frictionless, efficient benchmark of Hulten (1978). Here we
eschew this possibility and explore the simplest benchmark environment – firms produce a single homogeneous good and
can adjust their scale freely.

6The interplay between the micro-level decisions of firms and the equilibrium size distribution is also the object of
analysis in Luttmer (2007, 2010 and 2012). Relative to this body of work, our contribution is to focus on the implications of
firm dynamics on aggregate fluctuations rather than long-run growth paths.
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di Giovanni, Levchenko and Mejean (2014) provides an empirical benchmark to this literature and,

in particular, to our quantification exercise discussed above. Working with census data for France,

they estimate the contribution of firm specific volatility to aggregate sales growth volatility. Our

quantitative results show that the magnitude of aggregate fluctuations implied by our firm dynam-

ics environment account for about 38% of this contribution.

This paper is also related to the firm dynamics literature that follows from the seminal contribu-

tion of Hopenhayn (1992).7 Some papers in this literature have explicitly studied aggregate fluctua-

tions in a firm dynamics framework (Campbell and Fisher (2004), Lee and Mukoyama (2008,2015) ,

Clementi and Palazzo (2016) and Bilbiie et al. (2012)). A more recent strand of this literature has fo-

cused on the time-varying nature of aggregate volatility and its link with the cross-sectional distribu-

tion of firms (e.g. Bloom et al, 2018). Invariably, in this literature, business cycle analysis is restricted

to the case of common, aggregate shocks which are superimposed on firm-level disturbances. Rela-

tive to this literature, we show that its standard workhorse model – once the assumption regarding a

continuum of firms is dropped and the firm size distribution is fat tailed – already contains in it a the-

ory of aggregate fluctuations and time-varying aggregate volatility. We show this both theoretically

and quantitatively in an otherwise transparent and well understood setup. We eschew the myriad of

frictions - capital adjustment costs, labor market frictions, credit constraints or limited substitution

possibilities across goods - that Hopenhayn’s (1992) framework has been able to support. We do this

because our focus is on large firm dynamics which are arguably less encumbered by such frictions.

The paper is organized as follows. Section 2 presents the basic model setup. Sections 3 and 4 develop

our theoretical results. Section 5 describes the calibration of the model, our quantitative results and

our empirical exercises. Finally, Section 6 concludes.

2 Model

We analyze a standard firm dynamics setup (Hopenhayn, 1992) with a finite but possibly large num-

ber of firms. We show how to solve for and characterize the evolution of the firm size distribution

without relying on the usual law of large numbers assumption. We prove that, in this setting, the firm

size distribution does not converge to a stationary distribution, but instead fluctuates stochastically

around it. As a result, we show that aggregate prices and quantities are not constant over time as

the continuum assumption in Hopenhayn (1992) - repeatedly invoked by the subsequent literature

- does not apply. To do this, we start by describing the economic environment. As is standard in this

class of models, this involves specifying a firm-level productivity process, the incumbents’ problem

and the entrants’ problem.

7See, for example, Campbell (1998), Veracierto (2002), Clementi and Hopenhayn (2006), Rossi-Hansberg and Wright
(2007), Khan and Thomas (2008) and Acemoglu and Jensen (2015). See also Weintraub et al (2008, 2011) for an analysis
comparing Hopenhayn’s framework to that of Ericson and Pakes (1995) through the concept of “Oblivious Equilibrium”.
Interestingly, they note that if the firm productivity distribution is thin-tailed the two frameworks yield the same results
asymptotically. In our paper, this condition is not satisfied.
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2.1 Model Setup

The setup follows Hopenhayn (1992) closely. Firms differ in their productivity level, which is as-

sumed to follow a discrete Markovian process. Incumbents have access to a decreasing returns to

scale technology using labor as the only input. They produce a unique good in a perfectly compet-

itive market. They face an operating cost at each period, which in turn generates endogenous exit.

There is also a large (but finite) number of potential entrants that differ in their productivity. To op-

erate next period, potential entrants have to pay an entry cost. The economy is closed by specifying

a labor supply function that increases with the wage.

Productivity Process

We assume a finite but potentially large number of idiosyncratic productivity levels. The productiv-

ity space is thus described by a S-tuple Φ := {ϕ1, . . . , ϕS} with ϕ > 1 such that ϕ1 < . . . < ϕS . The

idiosyncratic state-space is evenly distributed in logs, where ϕ is the log step between two produc-

tivity levels: ϕs+1

ϕs = ϕ. A firm is in state (or productivity state) s when its idiosyncratic productivity

is equal to ϕs. A firm’s productivity level is assumed to follow a monotone Markov chain with a tran-

sition matrix P .8 We denote F (.|ϕs) as the conditional distribution of the next period’s idiosyncratic

productivity ϕs′ given the current period’s idiosyncratic productivity ϕs.9

Incumbents’ Problem

The only aggregate state variable of this model is the distribution of firms on the set Φ. We denote

this distribution by a (S × 1) vector µt giving the number of firms at each productivity level s at

time t. For the current setup description, we abstract from explicit time t notation, but will return

to it when we characterize the law of motion of the aggregate state. Given an aggregate state µ, and

an idiosyncratic productivity level ϕs, the incumbent solves the following static profit maximization

problem:

π∗(µ,ϕs) = Max
n

{ϕsnα − w(µ)n − cf}

where n is the labor input, w(µ) is the wage for a given aggregate state µ, and cf is the operating cost

to be paid in unit of output every period. It is easy to show that π∗ is increasing in ϕs and decreasing

inw for a given aggregate state µ.10 The output of a firm is then y(µ,ϕs) = (ϕs)
1

1−α

(
α

w(µ)

) α

1−α

. In what

follows, the size of a firm will refer to its output level if not otherwise specified.

8To find a definition of monotonicity for discrete processes see, for example, Keilson and Kester (1977).
9That is, for a given productivity level ϕs, the distribution F (.|ϕs) is given by the sth-row vector of the matrix P .

10To be precise, the profit function defined here is a function of µ and ϕs, formally, π∗ : Λ×Φ → R. Similarly, the wage is
a function of µ, that is, w : Λ → R. Let us define profit as a function of the wage and idiosyncratic productivity, π̂∗, that is:

π̂∗ =

{
R× Φ → R

(w,ϕs) 7→ Maxn {ϕsnα − wn− cf} . Formally, ∀ϕs ∈ Φ, the function w 7→ π̂∗(w,ϕs) is decreasing in w, while

∀w ∈ R, the function ϕs 7→ π̂∗(w,ϕs) is increasing in ϕs.
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The timing of decisions for incumbents is standard and described as follows. The incumbent first

draws its idiosyncratic productivity ϕs at the beginning of the period, pays the operating cost cf and

then hires labor to produce. It then decides whether to exit at the end of the period or to continue as

an incumbent the next period. We denote the present discounted value of being an incumbent for a

given aggregate state µ and idiosyncratic productivity level ϕs by V (µ,ϕs), defined by the following

Bellman equation:

V (µ,ϕs) = π∗(µ,ϕs) + max



0, β

∫

µ′∈Λ

∑

ϕs′∈Φ
V (µ′, ϕs′)F (ϕs′ |ϕs)Γ(dµ′|µ)





where β is the discount factor, Γ(.|µ) is the conditional distribution of µ′, tomorrow’s aggregate state,

F (.|ϕs) is the conditional distribution of tomorrow’s idiosyncratic productivity for a given today’s

idiosyncratic productivity of the incumbent, and Λ is the set of (S × 1)-vectors whose elements are

non-negative.

The second term on the right hand side of the value function above encodes an endogenous exit

decision. As is standard in this framework, this decision is defined by a threshold level of idiosyn-

cratic productivity given an aggregate state. Formally, since the instantaneous profit is increasing

in the idiosyncratic productivity level, there is a unique index s∗(µ) for each aggregate state µ, such

that: (i) for ϕs ≥ ϕs∗(µ) the incumbent firm continues to operate next period and, conversely (ii) for

ϕs ≤ ϕs∗(µ)−1 firm decides to exit next period.

After studying the incumbents’ problem, we now turn to the problem of potential entrants.

Entrants’ Problem

There is an exogenously given, constant and finite number of prospective entrantsM . Each potential

entrant has access to a signal about their potential productivity next period, should they decide to

enter today. To do so, they have to pay a sunk entry cost which, in turn, leads to an endogenous entry

decision which is again characterized by a threshold level of initial signals.

Formally, the entrants’ signals are distributed accordingG = (Gq)q∈[1...S], a discrete distribution over

Φ. There is a total ofM potential entrants every period, so that theMGq gives the number of potential

entrants for each signal level ϕq. If a potential entrant decides to pay the entry cost ce, then she will

produce next period with a productivity level drawn fromF (.|ϕq). Given this, we can define the value

of a potential entrant with signal ϕq for a given aggregate state µ as V e(µ,ϕq):

V e(µ,ϕq) = β

∫

µ′∈Λ

∑

ϕq′∈Φ
V (µ′, ϕq′)F (ϕq′ |ϕq)Γ(dµ′|µ)

Prospective entrants pay the entry cost and produce next period if the above value is greater or equal

to the entry cost ce. As in the incumbent’s exit decision, this now induces a threshold level of signal,
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e∗(µ), for a given aggregate state µ such that (i) for ϕq ≥ ϕe∗(µ) the potential entrant starts operating

next period and, conversely (ii) for ϕq ≤ ϕe∗(µ)−1 the potential entrant decides not to do so.

For simplicity henceforth, unless otherwise stated, we assume that the entry cost is set to zero: ce = 0

which in turn implies that ϕe∗(µ) = ϕs∗(µ).11

Labor Market and Aggregation

We assume that the supply of labor at a given wage w is given by Ls(w) = Mwγ with γ > 0. We

assume that, for a given wage level, the labor supply function is a linear function of M , the number

of potential entrants. This assumption is necessary because in what follows we will be interested

in characterizing the behavior of aggregate quantities and prices as we let M increase. Note that if

total labor supply were to be kept fixed, increasingM would lead to an increase in aggregate demand

for labor. Therefore, the wage would increase mechanically. We therefore make this assumption to

abstract from this mechanical effect of increasingM on the equilibrium wage.12,13

To find equilibrium wages, we derive aggregate labor demand in this economy. To do this, note that

if Yt is aggregate output, i.e. the sum of all individual incumbents’ output, then Yt = A1−α
t (Ld

t )
α

where Ld
t is the aggregate labor demand, the sum of all incumbents’ labor demand in period t. Note

further that A1−α
t is aggregate TFP gross of the contribution of fixed and entry costs. Henceforth it

will be convenient to differentiate between aggregate TFP, A1−α
t , and the term At itself. With some

abuse of language, we refer to the latter as aggregate productivity, which is given by:

At =

Nt∑

i=1

(ϕsi,t)
1

1−α

11Note that in general equilibrium entry/exit environments, setting the entry cost to zero is an assumption rather that a
normalization: an increase in the number of entrants tightens the resource constraint and affects the equilibrium alloca-
tion. Note however, that our model can be seen either (i) as a partial equilibrium model with no resource constraint, or,
(ii) as a general equilibrium model with linear utility in consumption as described by Footnote 13 below. Setting the entry
cost to zero is therefore innocuous because, either, the resource constraint does not exist (case (i)), or, the household’s
consumption adjusts one-for-one for any change in available resource (case (ii)).

12More generally, any increasing function of M will be possible. For simplicity, we assume a linear function. This as-
sumption ensures that the equilibrium wage is independent of the number of potential entrants. To see this, note that
given the labor market equilibrium condition (Equation 2), and under this assumption, the equilibrium wage is now a
function of µ̂t := µt

M
, the normalized productivity distribution across productivity levels. Given that M is a parameter of

the model, we can therefore use µt or µ̂t interchangeably as the aggregate state variable.
13By assuming an exogenous function for labor supply, we restrict our analysis to partial equilibrium. Note, however,

that we do not take wages as given. Rather, the wage w will adjust to clear the labor market. Formally, our reduced form
labor supply function is equivalent to a general equilibrium setup where household preferences are linear in consumption

and concave in labor disutility, the instantaneous utility U(C, L) = C − M
−1
γ L

1+ 1
γ /(1 + 1

γ
) delivers the assumed labor

supply function. A version of this model with concavity in consumption is certainly feasible computationally, by following
the methodology developed in Khan and Thomas (2008) and Bachmann, Caballero and Engel (2013).
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where ϕsi,t is the productivity level at date t of the ith firm among the Nt operating firms at date t.

This can be rewritten by aggregating over all firms that have the same productivity level:

At =

S∑

s=1

µs,t (ϕ
s)

1

1−α = B′µt (1)

where B is the (S × 1) vector of parameters
(
(ϕ1)

1

1−α , . . . , (ϕS)
1

1−α

)
. As discussed above, the dis-

tribution of firms µt across the discrete state space Φ = {ϕ1, . . . , ϕS} is a (S × 1) vector equal to

(µ1,t, . . . , µS,t) such that µs,t is equal to the number of operating firms in state s at date t. By the same

argument, it is easy to show that aggregate labor demand is given byLd(wt) =
(
αA1−α

t

wt

) 1

1−α

. Note that

the model behaves as a one factor model with aggregate TFP A1−α
t .

The market clearing condition then equates labor supply and labor demand, i.e. Ls(wt) = Ld(wt).

Given date t productivity distribution µt, we can then solve for the equilibrium wage to get:

wt =

(
α

1

1−α
B′µt
M

) 1−α

γ(1−α)+1

(2)

This last equation leads to the following expression for aggregate output:

Yt = A1−α
t Lα

t (3)

From these expressions, note that the wage and aggregate output is fully pinned down by the distri-

bution µt. Given a current-period distribution of firms across productivity levels we can solve for all

equilibrium quantities and prices.

Finally note that if, as we will show below, idiosyncratic shocks to large firms do lead to variation

of µt over time, then this will induce variations in the equilibrium wage as instructed by Equation

2. This, in turn, will lead to reallocation of economic activity across firms. To see this, define the

elasticity of output of a given firm i to an idiosyncratic productivity change in another firm j:

∂ log yi
∂ logϕsj,t

=
∂ log yi
∂ logwt

∂ logwt

∂ logϕsj,t
= − α

1− α

∂ logwt

∂ logϕsj,t
(4)

Intuitively, the steeper decreasing returns to scale are - i.e. the steeper the decline in the marginal

productivity of firm i as it expands, following a decline in wages - the lower this elasticity is. Thus, for

a given wage response elasticity to large firm shocks, the strength of this countervailing reallocation

effect is lower the smaller α is.

We are left to understand the behavior of the second component of this elasticity, i.e. the response

of wages to idiosyncratic shocks. This, in turn, implies understanding how the aggregate state, the

firm-size distribution, evolves over time as a function of idiosyncratic shocks. We address this in the

following section.
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Figure 1: Why the vector µt+1 follows a multinomial distribution.

NOTE: Top panel: continuum of firms case, unique possible outcome. Bottom panel: finite number of firms, one (of many)

possible outcome.

3 Aggregate State Dynamics and Uncertainty: General Results

In this section, we first show how to characterize the law of motion for the productivity distribution,

the aggregate state in this economy. We will prove that, generically, the distribution of firms across

productivity levels is time-varying in a stochastic fashion. An immediate implication of this result

is that aggregate productivity At and aggregate prices are themselves stochastic as they are simply a

function of this distribution. Additionally, we then show that the characterization of the stationary

firm productivity distribution offered in Hopenhayn (1992) is nested in our model when we take

uncertainty to zero.

Law of Motion of the Productivity Distribution

In a setting with a continuum of firms, Hopenhayn (1992) shows that by appealing to a law of large

numbers, the law of motion for the productivity distribution is in fact deterministic. In the current

setting, with a finite number of incumbents, a similar argument cannot be made. We now show how

to characterize the law of motion for the productivity distribution when we move away from the

continuum case.

In order to build intuition for our general result below, we start by exploring a simple example where,

for simplicity, we ignore entry and exit of firms. Assume there are only three levels of productivity

(S = 3) and four firms. At time period t these firms are distributed according to the bottom-left panel

of figure 1, i.e. all four firms produce with the intermediate level of productivity. Further assume

that these firms have an equal probability of 1/4 of going up or down in the productivity ladder and

9



that the probability of staying at the same intermediate level is 1/2. That is, the second row of the

transition matrix P in this simple example is given by (1/4, 1/2, 1/4). First note that, if instead of

four firms we had assumed a continuum of firms, the law of large numbers would hold such that at

t+ 1 there would be exactly 1/4 of the (mass of) firms at the highest level of productivity, 1/2 would

remain at the intermediate level and 1/4 would transit to the lowest level of productivity (top panel

of figure 1). This is not the case here, since the number of firms is finite. For instance, a distribution

of firms such as the one presented in the bottom-right panel of figure 1 is possible with a positive

probability. Of course, many other arrangements would also be possible outcomes. Thus, in this

example, the number of firms in each productivity bin at t + 1 follows a multinomial distribution

with a number of trials of 4 and an event probability vector (1/4, 1/2, 1/4)′ .

In this simple example, all firms are assumed to have the same productivity level at time t. It is easy

however to extend this example to any initial arrangement of firms over productivity bins. This is

because, for any initial number of firms at a given productivity level, the distribution of these firms

across productivity levels next period follows a multinomial. Therefore, the total number of firms

in each productivity level next period, is simply a sum of multinomials, i.e. the result of transitions

from all initial productivity bins.

More generally, for S productivity levels, and an (endogenous) finite number of incumbents, Nt,

making optimal employment and production decisions and accounting for entry and exit decisions,

the following theorem holds.

Theorem 1 The number of firms at each productivity level at t + 1, given by the (S × 1) vector µt+1,

conditional on the current vector µt, follows a sum of multinomial distributions and can be expressed

as:

µt+1 = m(µt) + ǫt+1 (5)

where ǫt+1 is a random vector with mean zero and a variance-covariance matrix Σ(µt) and

m(µt) = (P ∗
t )

′(µt +MG)

Σ(µt) =

S∑

s=s∗(µt)

(MGs + µs,t)Ws

where P ∗
t is the transition matrix P with the first (s∗(µt)− 1) rows replaced by zeros, G is the entrants’

signals distribution, M is the number of prospective entrants, and Ws = diag(Ps,.)−P
′

s,.Ps,. where Ps,.

denotes the s-row of the transition matrix P .

Proof See Appendix A.1. �

After taking into account the dynamics of incumbent firms and entry/exit decisions, the law of mo-

tion (Equation 5) of the aggregate state – the distribution of firms over productivity levels – is remark-

ably simple: tomorrow’s distribution is an affine function of today’s distribution up to a stochastic

term, ǫt+1, that reshuffles firms across productivity levels.

10



It is easy to understand this characterization by recalling our simple example economy above with-

out entry and exit. In this simple example, given the state transition probabilities, we should for

example observe that on average the number of firms remaining at the intermediate level of pro-

ductivity is twice that of those transiting to the highest level of productivity. This is precisely what

the affine part of Equation 5 captures: the term m(µt) reflects these typical transitions, which are a

function of matrix P alone. However, with a finite number of firms, in any given period there will

be stochastic deviations from these typical transitions as we discuss above. In the theorem, this is

reflected in the “reshuffling shock” term, ǫt+1, that enters in the law of motion given by Equation 5.

How important this reshuffling shock is for the evolution of the firm distribution is dictated by the

variance-covariance matrix Σ(µt) which, in turn, is a function of the transition matrix P , the current

firm distribution µt, and, in the general case with entry and exit, the signal distribution available to

potential entrants.

Steady-State Equilibrium and the Stationary Distribution

The above characterization - in particular, Equation 5 - is instructive of the differences of the current

setup relative to a standard Hopenhayn economy. The latter corresponds to the case where all of

the relevant firm dynamics are encapsulated by the affine term m(µt). In particular, it is immediate

to verify that, under a continuum of firms, the variance-covariance matrix in Theorem 1 is equal to

zero and the aggregate state µt becomes non-stochastic. The following corollary to Theorem 1 shows

that the deterministic dynamics of the productivity distribution under no aggregate uncertainty are

similar to the one in Hopenhayn (1992) framework.

Corollary 1 Define µ̂t := µt

M for any t. With a continuum of firms, or equivalently, when aggregate

uncertainty is absent, ǫt+1 = 0:

µ̂t+1 = (P̃t)
′(µ̂t +G) (6)

where P̃t is the transition matrix P where the first s̃(µt)− 1 rows are replaced by zeros, and where s̃(µt)

is the threshold of the entry and exit rule when the variance-covariance of the ǫt+1 is zero.

Proof. This follows from Theorem 1 by taking Var[ǫt+1] = 0 and dividing both sides byM . �

Under this special case, the law of motion for the distribution of firms across productivity levels is de-

terministic and its evolution is given by Equation 6. An immediate consequence of this is that, under

appropriate conditions on the transition matrixP , this law of motion converges to a self-reproducing

distribution. This defines the deterministic steady-state equilibrium of our model where (i) the wage

is constant and (ii) conditional on a value for firm-level productivity, the value and policy functions

that solve the firms’ problem are constant. Following Hopenhayn’s (1992), we dub the distribution

of firm-productivity levels which obtains at the steady-state as the stationary distribution. In our

setting, this is defined as:

µ̂ = (I − P̃ ′)−1P̃ ′G (7)
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where P̃ is the transition matrix P where the first (s∗(µ̂) − 1) rows are now replaced by zeros to ac-

count for equilibrium entry and exit dynamics and where s∗ is the steady-state value of the entry/exit

thesholds. Note that this distribution does not depend on time t. Despite the presence of idiosyn-

cratic shocks – implying firms transiting across productivity states and eventual exit – the mass of

firms at each productivity level is constant.

Taking stock, we have derived a law of motion for any finite number of firms and shown that, gener-

ically, the distribution of firms across productivity levels is time-varying in a stochastic fashion. An

immediate implication of this is that aggregate productivityAt is itself stochastic. Corollary 1 implies

that, in the continuum case, the distribution converges to a stationary object and, as a result, there

are no aggregate fluctuations.

4 Aggregate State Dynamics under Gibrat’s Law

In this section, we analyze a special case of the Markovian process driving firm-level productivity:

random growth dynamics. With this assumption in place, we then solve for the law of motion of

aggregate productivity up to the policy function on firm entry and exit. By solving for this law of

motion, we are then able to characterize how aggregate fluctuations, aggregate persistence and time-

varying aggregate volatility arise as an endogenous feature of equilibrium firm dynamics.

We start by specializing the general Markovian process driving the evolution of firm-level productiv-

ity to the case of random growth. After exploring the firm-level implications of this assumption, we

revisit the steady-state results described in the previous section.

Assumption 1 Firm-level productivity evolves as a Markov Chain on the state space Φ = {ϕs}s=1..S with
transition matrix

P =




a + b c 0 · · · · · · 0 0

a b c · · · · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · a b c

0 0 0 · · · 0 a b + c




This is a restriction on the general Markov process P in Section 2. It provides a parsimonious

parametrization for the evolution of firm-level productivity by only considering, for each produc-

tivity level, the probability of improving, c, the probability of declining, a, and their complement,

b = 1 − a − c, the probability of remaining at the same productivity level. This process also em-

beds the assumption that there are reflecting barriers in productivity, both at the top and at the bot-

tom, inducing a well-defined maximum and minimum level for firm-level productivity. This simple

parametrization will be key in obtaining the closed-form results below.
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The Markovian process defined in Assumption 1 has been first introduced by Champernowne (1953)

and Simon (1955) and studied extensively in Córdoba (2008). For completeness, we now summarize

the properties proved in the latter.

Properties 1 [Córdoba 2008] For a given firm i at time t with productivity level ϕsi,t with si,t 6= 1, S

that follows the Markovian process in Assumption 1, we have the following:

1. The conditional expected growth rate and conditional variance of firm-level productivity are

given by

E

[
ϕsi,t+1 − ϕsi,t

ϕsi,t
|ϕsi,t

]
= a(ϕ−1 − 1) + c(ϕ − 1)

Var

[
ϕsi,t+1 − ϕsi,t

ϕsi,t
|ϕsi,t

]
= σ2e

where σ2e is a constant. Both the conditional expected growth rate and the conditional variance

are independent of i’s productivity level, ϕsi,t .

2. As t→ ∞, the probability of firm i having productivity level ϕs is

P (ϕsi,t = ϕs) −→
t→∞

K (ϕs)−δ

where δ = log(a/c)
logϕ and K is a normalization constant. Therefore, the stationary distribution of

the Markovian Process in Assumption 1 is Pareto with tail index δ = log(a/c)
logϕ .

In short, Córdoba (2008) shows that the Markov process in Assumption 1 is a convenient way to

obtain Gibrat’s law on a discrete state space.14 In particular, Córdoba (2008) shows that whenever

firm-level productivity follows this process, its conditional expected growth rate and its conditional

variance are independent of the current level (part 1 of the properties above). Importantly, Córdoba

(2008) additionally shows that the stationary distribution associated with this Markovian process is

a power law distribution with tail index δ = log(a/c)
logϕ (part 2 of the properties above).15

The above assumption yields a tractable way of handling firm dynamics over time. At several points

of the analysis below we will also be interested in understanding how the economy behaves with

an ever larger number of firms. This raises the question of whether the maximum possible level of

firm-level productivity should be kept fixed. If this was the case, and given the tight link between

size and productivity implied by our model, increasing the number of firms would imply a constant

14Note that, due to the fact that we have a bounded state space for productivity, Gibrat’s law cannot apply for firms
at the upper and lower boundaries of the productivity process. Thus, the conditional expected productivity growth
rate is higher (resp. lower) at the lowest (resp. highest) productivity level than at any other productivity levels:

E

[
ϕ
si,t+1−ϕ

si,t

ϕ
si,t |ϕsi,t = ϕ1

]
= c(ϕ− 1) > a(ϕ−1 − 1) + c(ϕ− 1) > a(ϕ−1 − 1) = E

[
ϕ
si,t+1−ϕ

si,t

ϕ
si,t |ϕsi,t = ϕS

]
.

15To see this define {qs}1...S to be the stationary distribution associated with the Markovian process. This sequence
satisfies the following second order difference equation qs = aqs+1 + bqs + cqs−1 (away from the boundaries of the state
space). In this last equation, by substituting qs by (ϕs)−δ, it is immediate to see that δ satisfy aϕ−2δ + bϕ−δ + c = 0, that is,
ϕ−δ = c

a
. Finally, note that formally ϕ−δ is either equal to c

a
or to 1, the two roots of the polynomial aX2+bX+c. However,

the latter is ruled out by the boundary conditions.
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absolute size of the largest firms. As di Giovanni and Levchenko (2012) show this is counter-factual:

in cross-country data, whenever the size of the economy increases, the absolute size of the top 10

firms in the economy increases. To accord with this evidence, in the following assumption we allow

the maximum productivity-level to increase with the number of firms.

Assumption 2 Assume that ϕS = ZN1/δ, for some constant Z.

This assumption restricts the rate at which the maximum-level of productivity scales with the num-

ber of firms. To understand why this is a natural restriction to impose, first note that the stationary

distribution of the Markovian process in Assumption 1 discussed above is also the cross-sectional

distribution of a sample of firms of size N . Since the former is power-law distributed so is the lat-

ter. Second, from Newman (2005), the expectation of the maximum value of a sample N of random

variables drawn from a power law distribution with tail index δ is proportional to N1/δ . Thus, un-

der Assumption 2, for any sample of size N following the Markovian process in Assumption 1, the

stationary distribution of this sample is Pareto distributed with a constant tail index δ. 2

4.1 Steady State Equilibrium Characterization

With the above two assumptions in place, we now provide a detailed description of the steady-state

equilibrium. We start by characterizing further the stationary distribution in Corollary 1, which we

are now able to solve in closed-form. We then present a full solution of the firm’s problem by deriving

the policy and value functions in the steady-state.

First, in Corollary 2 below, we study the limiting case when the number of firms goes to infinity under

Assumptions 1 and for S → ∞.16

Corollary 2 Assume 1. If the potential entrants’ productivity distribution is Pareto (i.e Gs =

Ke (ϕ
s)−δe) then, as S → ∞, the stationary productivity distribution converges point-wise to:

µ̂s = K1

(
ϕs

ϕs∗

)−δ

+K2

(
ϕs

ϕs∗

)−δe

for s ≥ s∗

where s∗ is the steady-state entry/exit thesholds for S → ∞ and where δ = log(a/c)
log(ϕ) and K1 and K2 are

constants, independent of s.

Proof: See Online Appendix B.3 �.

Thus, the stationary productivity distribution for surviving firms (i.e. for s ≥ s∗), is a mixture of two

Pareto distributions: (i) the stationary distribution of the Markovian process given by Assumption 1

with tail index δ and (ii) the potential entrant distribution with tail index δe.

16The proof of this corollary is in two steps: (i) we first solve closed form for the stationary distribution given a maximum
level of productivityϕS under Assumption 1; (ii)we then take the limit of this distribution when the number of productivity
bins, S, goes to infinity.
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The first of these distributions is a consequence of Gibrat’s law and a lower bound on the size dis-

tribution. This works in a similar way to the existent random growth literature. In the context of

our model, this lower bound friction results from optimal entry and exit decisions by firms. Every

period there is a number of firms whose productivity draws are low enough to induce to exit. These

are replaced by low-productivity entrants inducing bunching around the exit/entry threshold, s∗, as

in Luttmer (2007, 2010, 2012) . Unlike Luttmer however, our entrants can enter at every productivity

level, according to a Pareto distribution. This leads to the second term in the productivity distribu-

tion above.

While the corollary above characterizes the stationary firm-level productivity distribution, it is im-

mediate to apply these results to the firm size distribution. This is because the firm size distribution

maps one to one to µt. To see this, recall that the output of a firm with productivity level ϕs is given

by: ys = (ϕs)
1

1−α

(
α
w

) α

1−α where w is the limit of the steady-state value of the wage when S goes to

infinity. Therefore, in the steady-state, the number of firms of size ys is given by µs.

Our Corollary 2 therefore implies that, for sufficiently large firms, the tail of the firm size distribution

is Pareto distributed with tail index given by min{δ(1 − α), δe(1 − α)}.17 Note that the discrepancy

between the firm (output) size distribution and the firm productivity distribution is governed by the

degree of returns to scale α. The higher the degree of returns to scale, the lower the ratio between the

productivity distribution tail, δ, and the firm size distribution tail δ(1 − α). Note that δ(1 − α) is an

observable quantity since it is the tail of the firm size distribution (for sufficiently large firms and as

soon as δe < δ). We are using this feature in the calibration of the quantitative section of this paper.

The result above characterizes the firm productivity and firm size distribution in the steady-state,

thus pinning down the aggregate state up to s∗, the firm’s policy function. In what follows, we now

solve for this policy function along with the associated value function for incumbents, thus present-

ing a full characterization of the steady-state equilibrium.18

Proposition 1 Under Assumption 1, when S → ∞ and ϕ is small enough, then in the stationary

equilibrium the value function of a firm facing productivity level ϕs and wage w is equal to

V (µ,ϕs) =
−cf
1− β

[
1− βr

[s−s∗+1]+

2

]
+

1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s

1− ρβ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



where [x]+ = Max(x, 0) and r2 is a constant defined in the appendix bounded above by one. The policy

function is characterized by the threshold

s∗ =

⌈
(1− α)log

(
cf (1− r2)(1− ρβ)

ρ(1− β)(1− α)α
α

1−α (1− r2ϕ
−1

1−α )

)
(logϕ)−1 + α(logw)(logϕ)−1

⌉
(8)

where ⌈x⌉ is the ceiling function, i.e. the least succeeding integer of x.

17To see this, note that for high productivity levels (i.e. for large s) the tail of the productivity distribution is given by the
smaller tail index, i.e. the fattest-tail distribution among the two.

18The steady-state equilibrium is given by the expressions in Proposition 1 and Equation 2, relating the equilibrium wage
to aggregate productivity, itself a function of s∗.
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Proof: See Online Appendix B.2 �.

For a sketch of the proof note that, under Assumption 1, the next period’s value of (surviving) incum-

bents can only take one of three values, depending on their idiosyncratic productivity realization.

This implies that solving for the value function is equivalent to solving a second order difference

equation. The constant r2 in the proposition is the relevant solution of this equation.19

Intuitively, the value function of an incumbent is simply the present value of instantaneous profits

adjusted by exit risk. To see this, note that the first term of the value function reflects the present

discounted value of fixed operating costs. The second term reflects the present discounted value

of variable profits. In turn, each of these terms are expressed as the product of (i) the present dis-

counted value that would obtain in a world without exit and (ii) an adjustment for the exit risk,

encoded in the square brackets terms. To understand the latter, note that the exit probability of an

incumbent currently in a high idiosyncratic productivity bin is low. In this case, the term in square

brackets is close to 1, i.e. the exit-risk adjustment of future profits is small. The converse holds for a

low productivity incumbent.

The second result in the proposition gives the policy function for entry and exit decisions. A larger

operating fixed cost, cf , or a larger equilibrium wage, w, increase the value of the entry/exit thresh-

old, s∗. Intuitively, either will reduce the value of being an incumbent and thus rendering it more

likely that a firm exits or a potential entrant declines to enter.

As we will see below in Section 4.3 much of this intuition carries through in a special case where the

aggregate state is time-varying.

4.2 A Complete Analytical Characterization for an Economy without Entry and Exit

Having described the steady-state equilibrium, we are now interested in characterizing the dynam-

ics of aggregate productivity and output under aggregate uncertainty. In this section, we start by

analysing the simpler case of an economy without entry and exit. This allows us to derive the law

of motion of the aggregate state analytically and, as a byproduct, closed form expressions for aggre-

gate output dynamics which exhibit persistence and time-varying volatility. As we shall see, our key

results will generalize to the case with entry and exit.

Economies without entry and exit are a special case of the setup introduced in Section 2, when fixed

operating costs, cf , are zero and entry costs, ce, are large enough. In this case, firms always have a

positive present discounted value of profits, irrespective of their current idiosyncratic productivity

draw and never choose to exit. For a large enough entry cost , no potential entrant will choose to start

producing either, irrespective of the current aggregate state and idiosyncratic productivity signal.

19For the finite S case, this implies the existence of two polynomial roots, r1 and r2. In the case where S → ∞, only
the latter root is relevant when solving for the value function. We defer presenting the more general solution of the value
function for a finite S case to the Online Appendix B.2 and focus on the S → ∞ case in the main text.

16



Therefore, the total number of firms is fixed atN , which is now a parameter of the model rather than

an endogenous variable to be solved for.

Without entry and exit, we start by noting that the law of motion for the aggregate state, i.e. the

productivity distribution, is a special case of Theorem 1 where Equation 5 is now:

µt+1 = P ′µt + ǫt+1 (9)

Recall that P is the transition matrix for firm-level productivity and ǫt+1 is a random vector with

mean zero and variance-covariance matrix Σ(µt) =
∑S

s=1 µs,tWs andWs = diag(Ps,.)−P
′

s,.Ps,. where

Ps,. denotes the sth-row of the transition matrix P . Without endogenous exit, relative to Theorem

1, the transition matrix across productivity states is no longer time-varying and, under no entry, we

no longer have to keep track of the contributions of entrants to the law of motion of the aggregate

state. However, the variance of the ǫt+1 is still time-varying as it remains a function of the lagged

realization of the productivity distribution.

As Equation 9 shows, the law of motion of the aggregate state µt is stochastic, i.e. µt is a random

vector. The following proposition describes the (unconditional) behavior of this random vector and

thus the stochastic properties of the aggregate state variable of the model with no entry/exit.

Proposition 2 For the no entry and exit case and under Assumption 1, the unconditional mean of µt
is µ = (µ1, . . . , µs, . . . , µS)

′ and is given by

E [µs,t] = µs = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

where δ = log(a/c)
log(ϕ) . Furthermore, the unconditional variance-covariance matrix of µt is

Var [µt] =

∞∑

k=0

(P ′)k
(

S∑

s=1

µsWs

)
P k

where P is the transition matrix for firm-level productivity, and, Ws = diag(Ps,.) − P
′

s,.Ps,. where Ps,.

denotes the sth-row of the transition matrix P in Assumption 1.

Proof: See Online Appendix B.4�.

This proposition shows that the aggregate state, µt, fluctuates around its mean. In turn, this mean is

the stationary distribution of firm productivity, µ, which is Pareto distributed with tail index δ. Note

that the latter is simply a particular case of Corollary 2 for the case with no entry and exit. The second

part of the proposition shows that deviations of µt from µ are governed by the variance-covariance
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matrix, Var [µt]. The latter takes the conditional variance-covariance matrix of µt and adjusts it by

the persistence in the law of motion of µt, as given by the transition matrix P .20

The above discussion shows that the firm productivity distribution fluctuates stochastically around

a Pareto distribution. We now build on this characterization to explore the dynamics of aggregate

productivity and output. We start by deriving the law of motion of aggregate productivity:

At = B′µt =
S∑

s=1

(ϕs)
1

1−α µt,s

From the expressions for aggregate TFP (Equation 1) and the equilibrium wage (Equation 2), it is

immediate that At is a sufficient statistic for the relative price of labor in our model. By deriving the

law of motion for At, we are therefore able to characterize the law of motion for aggregate prices,

and output.

Theorem 2 Assume 1, then aggregate productivity dynamics is given by

At+1 = ρAt +OA
t + σtεt+1 (10)

σ2t = ̺Dt +Oσ
t (11)

Furthermore, aggregate output dynamics (in percentage deviation from its steady-state value, Ŷt) is

given by:

Ŷt+1 = ρŶt + κÔA
t + ψ

σt
A
εt+1 (12)

where E[εt+1] = 0 and Var[εt+1] = 1. The parameter ρ = aϕ
−1

1−α + b + cϕ
1

1−α and ̺ = aϕ
−2

1−α + b +

cϕ
2

1−α − ρ2. The term Dt is given by Dt :=
∑S

s=1

(
(ϕs)

1

1−α

)2
µs,t. The terms OA

t and Oσ
t are a correction

for the upper and lower reflecting barriers in the idiosyncratic state space. A is the steady-state value

of the aggregate productivity At. κ is a constant defined in the Appendix, and, ψ =
(
1− α

γ(1−α)+1

)
is

such that Ŷt = ψÂt where Ât (resp. ÔA
t ) is the percentage deviation from steady-state of At (resp. OA

t ).

Proof: See Appendix A.2 for a proof sketch and Online Appendix B.5 for a formal proof. �

Theorem 2 provides a full description of aggregate productivity and aggregate output dynamics in

our model. The theorem states that the aggregate productivity tomorrow is the sum of (i) ρAt, the

expected aggregate productivity and (ii) σtεt+1 a mean zero aggregate productivity shock with time-

varying volatility as instructed by the termDt. The termOA
t is a correction term, arising from having

imposed bounds on the state-space. This term vanishes as the state-space bounds increase; we

relegate its precise functional form and further discussion of this term to the appendix. Given the

20To see why this is the case, it is useful to draw an analogy with the unconditional variance of the following univariate
process: xt+1 = (1− ρx)x̄ + ρxxt +

√
xtσuut+1 where x̄ = Ext, 0 < ρx < 1 and ut is a white noise independent of xt. It is

easy to show that Var [µt] =
x̄σ2

u
1−ρ2x

=
∑∞

k=0 ρ
2k
x x̄σ2

u. The formula of the variance-covariance matrix, Var [µt], in Proposition

2 is a multivariate generalization of this simple univariate process, where Ws plays the role of σ2
u, P the role of ρx and µ the

role of x̄ .
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law of motion for the aggregate productivity, it is straightforward to characterize the law of motion

for equilibrium output, which is given by the second part of the theorem. The dynamic properties

ofAt, persistence and time-varying volatility, carry through to the percentage deviation of aggregate

output from its steady-state value, Ŷt. This is not surprising, as in the aggregate our model behaves

as a one factor RBC model.

Theorem 2 implies that aggregate productivity and aggregate output are persistent and exhibit time-

varying volatility. Intuitively, since there are no aggregate shocks in our model, aggregate persistence

simply reflects firm-level persistence in productivity. To understand the time-varying nature of ag-

gregate volatility it is easiest to consider an extreme case with only two firms. In that case, aggregate

productivity would simply reflect the weighted sum of the two firms’ productivity. The volatility of

the aggregate productivity would then depend on (the square of) the relative size of these two firms,

which will be time-varying as they are subject to independent shocks. The term Dt in Theorem 2

gives the generalization of this intuitive argument for a large but finite number of firms.

To better understand this result, and building on the expressions in Theorem 2, we now detail how

persistence in aggregates depend on micro-level parameters. We then turn our attention to the

(firm-level) origins of time-varying volatility in aggregates.

To understand the persistence of aggregate output, ρ, note that, at the steady-state, ρ satisfies

Et [yi,t+1|yi,t] = ρyi,t for a given firm i. That is, aggregate persistence is nothing but firm-level persis-

tence.21 Building on this, the following proposition further characterizes how aggregate persistence

depends on parameters governing firm-level dynamics.

Proposition 3 . Let δ =
log a

c

logϕ be the tail index of the stationary productivity distribution as in Corol-

lary 2. If δ(1 − α) ≥ 1 then the persistence of the aggregate output, ρ, satisfies the following properties:

i) Holding δ constant, aggregate persistence is increasing in firm-level persistence: ∂ρ
∂b ≥ 0

ii) Holding b constant, aggregate persistence is decreasing in the tail index of the stationary produc-

tivity distribution: ∂ρ
∂δ ≤ 0

iii) If the productivity distribution is Zipf, aggregate productivity dynamics contain a unit root: if

δ = 1
1−α , ρ = 1

Proof: See Online Appendix B.6�.

To interpret the condition under which the proposition is valid, recall that δ(1 − α) gives the tail

index of the stationary firm size distribution. Hence, the proposition applies to Pareto distributions

that are (weakly) thinner than Zipf. According to the proposition, (i) the persistence of the aggregate

state (and hence aggregate productivity, wages and output) is increasing in the probability, b, that

firms do not change their productivity from one time period to the other. Intuitively, the higher is

firm-level productivity persistence, the more persistent are aggregates.22

21Note that from census firm-level data, this a potentially observable object.
22Note that we are holding the tail index of the stationary productivity distribution, δ, constant. In terms of model

primitives, we are keeping fixed the ratio a
c

while maintaining the adding-up constraint a+ b+ c = 1.
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Further, according to (ii) in the proposition, aggregate persistence will decrease with the tail index

of the stationary firm-level productivity distribution. To understand this, note that this tail index is

given by a
c . The thinner the tail, the larger this ratio is and thus, the larger is the relative probability

of a firm having a lower productivity tomorrow. This therefore induces stronger mean reversion in

productivity (and size) at the firm level which, in turn, leads to lower aggregate persistence. Thus,

a fatter tail in the size distribution implies heightened aggregate persistence. In the limiting case

where the stationary size distribution is given by Zipf’s law (δ(1 − α) = 1 in case (iii)), aggregate

persistence is equal to 1. That is, Zipf’s law implies unit-root type dynamics in aggregates.

We are now interested in understanding how aggregate volatility - and its evolution - depend on

the parameters driving the micro-dynamics. To do this, we find it convenient to first rewrite the

expression for the conditional volatility of Ŷt+1 as:

Vart

[
Ŷt+1

]
= ψ

σ2t
A2

= ψ̺
D

A2

Dt

D
+ ψ

Oσ

A2

Oσ
t

Oσ
(13)

where A and D are the the steady-state counterparts of At and Dt. To interpret these objects, first

recall that Dt =
∑S

s=1

(
(ϕs)

1

1−α

)2
µs,t is proportional to the second moment of the firm size distribu-

tion at time t, a well defined measure of dispersion.23 D is therefore proportional to the steady-state

dispersion in firm size. Finally, note that at the steady-state, ̺ satisfies ̺ = Var
[
yi,t+1

yi,t

]
, that is, ̺

is given by the variance of firm-level output growth at the steady-state.24 Thus, aggregate volatility

is simply firm-level volatility scaled by the current level of dispersion in the economy. As the latter

varies over time, so does aggregate volatility.

Note also that the expression above implies that the unconditional expectation of conditional vari-

ance can be written as:

E
σ2t
A2

= ψ̺
D

A2
+ ψ

Oσ

A2

With these two objects in place, the following proposition characterizes how aggregate volatility and

23To see this, recall that the size at time t of a firm with productivity level ϕs is given by ys,t = (ϕs)
1

1−α (α/wt)
α

1−α . The

second moment of the firm size distribution is then
∑S

s=1 y
2
s,tµs,t =

∑S
s=1 (ϕ

s)
2

1−α (α/wt)
2α

1−α µs,t = (α/wt)
2α

1−α Dt. In
other words, Dt is proportional to the second moment of the firm size distribution at time t.

24Note that as for ρ, this a potentially observable object.
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its dynamics depend on the primitives of the model.

Proposition 4 Let δ =
log a

c

logϕ be the tail index of the stationary productivity distribution as in Corollary

2, then

i) Under assumption 2 and if 1 < δ(1 − α) < 2, the unconditional expectation of the variance of

aggregate output satisfies:

E

[
σ2t
A2

]
∼

N→∞
̺G1

N
2− 2

δ(1−α)

(14)

whereG1 is a function of model parameters but independent of N .

ii) The dynamics of conditional variance of aggregate output depends on the dispersion of firm size:

∂Vart

[
Ŷt+1

]

∂Dt
=
ψ̺

A2
≥ 0

Proof: See Online Appendix B.8�.

Part (i) of Proposition 4 characterizes the average level of volatility of aggregate output in our model.

It builds on our result that, under random growth dynamics for firm-level productivity, the stationary

incumbent size distribution is Pareto distributed. The assumption on δ(1 − α) ensures that this

distribution is sufficiently fat tailed.

The ∼
N→∞

notation means that, in expectation, the conditional variance of the aggregate growth rate

scales with N , the number of firms, at a rate that is equal to the rate of the expression on the right

hand side.

The key conclusion of the first part of Proposition 4 is therefore that, for 1 < δ(1−α) < 2, the variance

of aggregate output scales at a slower rate than 1/N . Recall that the latter would be the rate of decay

implied by a shock-diversification argument relying on standard central limit arguments. This is not

the case when the firm size distribution is fat tailed, as it is here. Rather, as the proposition makes

clear, the rate of decay of aggregate volatility depends on the tail index of the size distribution of

firms. The closer is this distribution to Zipf’s law, the slower is the rate of the decay.

This proposition thus generalizes the main result in Gabaix (2011) to an environment where: (i)

firm dynamics are the result of optimal size decisions, given the idiosyncratic productivity process

characterized by the Markovian process in Assumption 1 and (ii) the Pareto distribution of firm sizes

is an equilibrium outcome consistent with optimal firm decisions.

Part (ii) of Proposition 4 shows that the evolution of aggregate volatility over time – i.e. the condi-

tional variance of aggregate output – mirrors that of Dt. As discussed above, Dt is proportional to

the second moment of the firm size distribution at time t. Thus, whenever the firm size distribution

at time t is more dispersed than the stationary distribution (Dt > D), aggregate volatility is higher.

The second part of the proposition is therefore related to a literature looking at the connection be-

tween micro and macro uncertainty (see Bloom et al, 2018 and Kehrig, 2015). Consistent with the

21



results of this literature, the proposition yields a direct, positive, link between the two levels of uncer-

tainty. Unlike this literature however, this link between the cross-sectional dispersion of micro-units

and conditional aggregate volatility is endogenous and emerges without resorting to exogenous ag-

gregate shocks influencing the first and second moments of firms’ growth.

4.3 Aggregate Persistence and Volatility in Economies with Entry and Exit

We now extend the characterization of aggregate persistence and volatility to economies with en-

dogenous, forward-looking, firm entry and exit decisions. Relative to the no entry and exit case

discussed above, the law of motion for the firm productivity distribution now depends on the cur-

rent realization of productivity signals across entrants and a potentially time-varying entry and exit

threshold. The latter implies that, without further assumptions, we can no longer solve for the full

solution of the model, which now includes a policy function describing how firms’ entry and exit

decisions depend on the aggregate state. Despite this, we are able to show that our analytical ex-

pressions for the persistence and volatility of aggregate output generalize to the case with entry and

exit. In particular, whenever the entrant productivity signal distribution is thinner tailed than the

productivity distribution of incumbents, we will show that the contribution of entry and exit to ag-

gregate volatility is second-order.

To show this, we follow the same steps as in Section 4.2. Recalling the general law of motion for the

aggregate state variable in Theorem 1,

µt+1 = (P ∗
t )

′(µt +MG) + ǫt+1 (15)

makes clear that the law of motion of the aggregate state depends on the distribution of productivity

signals for potential entrants,G, and the current (endogenous) threshold for entry and exit decisions,

s∗(µt). This is becauseP ∗
t , the transition matrix of firms across productivity states, also encodes entry

and exit transitions.

Specializing this setup to the Gibrat’s law case (i.e. Assumption 1), it is then straightforward to show

that this general law of motion of the aggregate state implies the following dynamics for aggregate

productivity:

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 (16)

σ2t = ̺Dt + ̺Et(ϕ
2) +Oσ

t (17)

Relative to Theorem 2, the contribution of entry and exit appears in the net entry terms, Et. These

terms give the difference between the entry and exit contributions for both the level and the volatility

of aggregate productivity withEt(x) =
(
M
∑S

s=s∗(µt)
Gs (x

s)
1

1−α

)
−
((
xs

∗(µt)−1
) 1

1−α µs∗(µt)−1,t

)
, where

22



x is either ϕ or ϕ2.25 Intuitively, the first term of this expression gives the contribution of today’s

entrants while the second term gives that of exiters. As a result, aggregate productivity of incumbents

tomorrow,At+1, now depends on ρEt(ϕ), the expected aggregate productivity of today’s net entrants,

conditional on their survival.

It is worth noting that entry and exit decisions do not alter the fact that, as in Section 4.2, aggregate

productivity is persistent and exhibits time-varying volatility. Furthermore, given this law of mo-

tion for aggregate productivity, it is immediate to show that the law of motion for aggregate output

inherits these same properties:

Ŷt+1 = ρŶt + ρκ1Êt(ϕ) + κ2Ô
A
t + ψ

σt
T
ǫt+1

where κ1 and κ2 are constant defined in the appendix.26 In particular, the parameter ρ in the above

equation, is the same as that defined in Theorem 2, for the no entry and exit case. It follows that the

persistence of aggregate productivity and output, depends on deep parameters governing firm-level

dynamics in the same way as in Proposition 3.

Turning to the volatility of aggregate output, we are now able to generalize Proposition 4 to the case

of entry and exit as follows:

Proposition 5 Let δ =
log a

c

logϕ be the tail index of the stationary productivity distribution as in Corollary

2. Let δe be the tail index associated with the productivity distribution of potential entrants. Then

i) Under assumption 2 and if 1 < δ(1−α) < 2 and 1 < δe(1−α) < 2, the unconditional expectation

of aggregate variance satisfies:

E

[
σ2t
A2

]
∼

M→∞
̺G1

N
2− 2

δ(1−α)

+
̺G2

N
1+ δe

δ
− 2

δ(1−α)

(18)

whereG1 and G2 are functions of model parameters but independent of N and M .

ii) The dynamics of conditional aggregate volatility depend on the dispersion of firm size:

∂Vart

[
Ŷt+1

]

∂Dt
=
ψ̺

A2
≥ 0

Proof: See Online Appendix B.8�.

Relative to the simpler case without entry and exit, we now need to take a stand on the distribution of

productivity signals across entrants. We follow our earlier approach in Corollary 2 and assume it to

be Pareto distributed with tail parameter δe. With this assumption in place, the proposition implies

25In particular note that the entry term affecting volatility, Et(ϕ
2) = M

∑S
s=s∗(µt)

((ϕs)
1

1−α )2Gs −
((ϕs∗(µt)−1)

1
1−α )2µs∗(µt)−1,t, is proportional to dispersion of firm size among successful entrants, where the last

term in the expression corrects for exit, and is proportional to the dispersion in the size of exiters.
26This equation is derived in the proof of Theorem 3 in Online Appendix B.5.
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that the characterization of aggregate volatility given for the no entry and exit case carries through

to the current, more general setup.

Thus, part (ii) of the proposition remains unchanged, while part (i) of the proposition shows that

the variance of aggregate output fluctuations still declines at a slower rate than 1/N .27 However,

relative to the no entry and exit case, this rate of decay now depends on the tail indexes of the size

distributions of both incumbents (δ(1−α)) and entrants (δe(1−α)) . In particular, whenever the size

distribution of incumbents has a lower tail index than the size distribution of entrants - i.e. whenever

δ < δe - the first term in the expression for aggregate volatility dominates. In this case, asymptotically,

the rate of decay of aggregate volatility will be a function of the tail index of incumbents, at the first

order, and we recover the result in Proposition 4.28

Intuitively, whenever the size distribution of incumbents is close to Zipf’s law (i.e. δ(1 − α) is close

to 1) and the probability of observing very large entrants is small, aggregate volatility depends on

large incumbent firms alone. This implies that, despite the fact that we cannot solve for entry dy-

namics explicitly, we can still describe the behaviour of aggregate volatility, as the contribution of

entry and exit is second order and it suffices to track the dynamics of large incumbents. Further, as

we will argue below, this is likely to be the empirically relevant regime, as both conditions (fat-tailed

incumbents and relatively thinner tailed entrants) are met in the data.

Taken together, these results imply that the voluminous literature building on the framework of

Hopenhayn (1992) has overlooked the potentially non-negligible aggregate dynamics implied by the

model, even when the number of firms entertained is large.

4.3.1 Policy and Value Functions: A Special Case

As discussed above, with endogenous entry and exit decisions, and without further assumptions, it

is not possible to make further headway analytically. This is because entry and exit decisions are

forward looking and firms therefore need to forecast the future productivity distribution or, equiva-

lently, future wages.

Despite the fact that, as shown in the previous section, our results regarding aggregate persistence

and volatility do not depend on the extensive margin, it is nevertheless useful to understand entry

and exit decisions on two counts. First, the behavior of the extensive margin following large firm

shocks is of independent interest. Second, a quantitative evaluation of the general model requires a

solution to these forward looking decisions.

27For comparability with the case without entry and exit, we have left the scaling factor of Equation 18 as a function of
N . Note, however, that in the current environment with entry and exit, the number of incumbents N is an endogenous
variable. Up to changes in the constant G1 and G2, the statement in the proposition is unaltered if we replace N by M ,
since N and M are asymptotically equivalent, as shown in Online Appendix B.7.

28Expression 18 in Proposition 5 also depends on the entry/exit threshold. In particular, Proposition 5 uses the fact that
as M → ∞, the threshold s∗ converges to a constant. Further, Lemma 2 and Equation 8 of Proposition 1, when combined
with Assumption 2, imply that we can write this constant as a function of the model’s structural parameters alone which,
in turn, are subsumed in the constants G1 and G2 in Equation 18.
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Technically, the key challenge in solving for value and policy functions in our model is that these are

nonlinear functions of the aggregate state variable µt. While not infinite dimensional (as in Hopen-

hayn, 1992), this is still a large dimensional object which we cannot solve for analytically.29 Our

proposed solution, following most of the literature on heterogeneous agents, is to reduce the di-

mensionality of the state-space.

Unlike most of the literature, we do know the form that the law of motion for At takes. This per se,

does not solve our problem since Et and σt are still functions of µt. Mathematically, this means that

At is not a recursive map: At maps to past values of itself but also to other moments of the produc-

tivity distribution. However, it becomes a recursive map if we make the following assumption.

Assumption 3 Assume that, when forming expectations about future wages, firms take Et

At
, OA

t

At
and σt

At

to be constant and equal to their stationary equilibrium counterparts, E
A , OA

A and σ
A , respectively, such

that the optimization problem of the firm is now

V (At, ϕ
s) = π∗(At, ϕ

s) + max
{
0, βEt

[
V̂ (At+1, ϕ

s′)|At, ϕ
s
]}

subject to the perceived law of motion:

At+1 = ρAt + ρ
E

A
At +

OA

A
At +

σ

A
Atǫt+1 (19)

Under Assumption 3, the firm perceives the moments,Et/At,Ot/At andσt/At, to be fixed at their sta-
tionary equilibrium counterparts such that Equation 19 then follows from Equation 16. Intuitively,
Assumption 3 implies that, when forecasting future wages, firms ignore (i) the time-varying contri-
bution of net entry to aggregate productivity and (ii) the time-varying nature of aggregate volatility.
This in turn implies that the perceived expectation of future wage depends only on current produc-
tivity,At. To see this explicitly, note from Lemma 3 in Online Appendix B.9, the perceived expectation
of tomorrow’s wage to some power ξ is

Et

[
wξ

t+1

]
=

(
α

1
1−α

At

M

) (1−α)ξ
γ(1−α)+1

Et



(
At+1

At

) (1−α)ξ
γ(1−α)+1


 =

(
α

1
1−α

At

M

) (1−α)ξ
γ(1−α)+1

Et



(
ρAt + ρEt +OA

t + σtεt+1

At

) (1−α)ξ
γ(1−α)+1




=

(
α

1
1−α

At

M

) (1−α)ξ
γ(1−α)+1

Et



(
ρ+ ρ

E

A
+
OA

A
+
σ

A
εt+1

) (1−α)ξ
γ(1−α)+1


 under Assumption 3.

Therefore, the conditional expectation (of a nonlinear function) of aggregate productivity growth

(i.e. the expectation term on the RHS of the above equation) simplifies to a constant, and thus, the

expectation of tomorrow’s wage (to some power) is solely a function of At today.

These admittedly strong assumptions allow us to make progress analytically by rendering the wage

forecasting problem tractable.30 In particular, this implies that the perceived aggregate state in the

29In the baseline calibration of Section 5, the dimension of the aggregate state variable, µt, is pinned down by S = 36,
large enough to render the problem computationally infeasible.

30Nevertheless, note that in the data (and in our quantitative exercise below) the average year-on-year contribution of
net entrants to aggregate productivity is small to begin with (see, for example, Foster et al. (2008) or Osotimehin (2016)).
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value and policy functions is now At and delivers closed form expressions for these objects, which

we summarize in the following proposition.

Proposition 6 Assume 1 and 3, when S → ∞, the value of an incumbent firm given At and idiosyn-

cratic productivity level ϕs ≥ ϕs∗(At) is:

V̂ (At, ϕ
s) =

−cf
1− β


1− aβ

r̃2

(
1
β − 1

β̃2

)
+ a

r̃2
s−s∗(At)+1




+
1− α

1− ρβ̃α

(
α

wt

) α

1−α
(
ϕ

1

1−α

)s

1 + −ρβaϕ −1

1−α β̃α + ρβ − ρβ̃α

β
(
r̃2

(
1
β − 1

β̃2

)
+ a
)

(
ϕ

1

1−α

)( r̃2

ϕ
1

1−α

)s−s∗(At)+1



with the corresponding policy function is given by by

s∗(At) =




(1− α) log




cf

(
1− a

r̃2
(

1

β
− 1

β̃2

)
+a

β

β̃2

r̃2

)
(1− ρβ̃α)

ρ(1− β)(1 − α)α
α

1−α

(
1 + −βaϕ

−1
1−α β̃α−β̃α+β

β
(
r̃2
(

1

β
− 1

β̃2

)
+a
) r̃2

β̃2

)




(logϕ)−1 + α(logwt)(log ϕ)
−1




where ⌈x⌉ is the ceiling function i.e. the least succeeding integer of x and β̃α, β̃2 and r̃2 are constants

defined in the Online Appendix B.9.

Proof: See Online Appendix B.9�.

The proof of Proposition 6 follows a guess and verify strategy. It is easiest to understand this so-

lution to the firms’ problem by first noting the similarities with the steady-state solution given in

Proposition 1. In particular, note that the value and policy functions assume the same form as be-

fore. The first term of the value function again reflects the present value of fixed operating costs,

while the second term reflects the expected present discounted value of profits. Again, we see an

adjustment for exit risk entering in the same form on both terms. Regarding the policy function, as

before, the first term indicates the contribution of fixed cost considerations for the entry and exit

decisions while the second term reflect variable profits. Indeed, it is easy to show that, if wages were

fixed across time (i.e. if there was no aggregate uncertainty), the terms β̃α=β̃2=β such that the value

and policy functions in this proposition would exactly coincide with those given in the steady-state

equilibrium.

However, the solution for both the value and policy functions now reflect the time-varying nature

of aggregate risk. That is, even when holding firm-level productivity fixed, the value and entry and

exit decisions of a firm are time-varying and depend on the current realization of wages. In the

value function, aggregate risk appears in two intuitive ways. First, under aggregate uncertainty, the

threshold for entry and exit will now be time-varying, as instructed by the policy function. As such,

the terms adjusting firm value for exit risk, now depend on the current value of this threshold (which,
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in turn, depends on the current realization of wages). Second, the expected present discounted value

of profits is also time-varying and depends on the current realization of wages.

The policy function also reflects aggregate risk. Thus, for the same value of firm-level productivity,

if the current realization of wages is high, the threshold for entry and exit increases. This is intuitive:

as shown above aggregate productivity (and, hence, aggregate wages) is persistent and therefore,

following a positive shock that increases the current value of wages, firms expect the cost of variable

inputs to remain high in the future. This implies that the expected present value of profits is now

lower which, in turn, implies that even relatively higher productivity firms might now find it optimal

to exit (or not enter).

5 Quantitative Results

In this section we present the quantitative implications of our model. We solve the model under the

particular case of firm-level random productivity growth (Assumption 1), which we have discussed

in the previous section. We first calibrate the steady-state solution of the model to match firm-level

moments.

Based on this calibration, we then use the law of motion of the aggregate productivity and Assump-

tion 3 to solve numerically for the firms’ policy function. Using this numerical solution we quanti-

tatively assess the performance of the model with respect to standard business cycle statistics and

inspect the mechanism rendering firm-level idiosyncratic shocks into aggregate fluctuations. We

then quantitatively explore the role of large firms in shaping the business cycle. Throughout we

show empirical evidence that is consistent with our mechanism.

5.1 Steady-state calibration

We choose to calibrate the production units in our model to firm-level data. To calibrate the model

to the US economy, we first set the value of deep parameters. The span of control parameter α is set

at 0.8. This value is chosen to be on the lower end of estimates, such as Basu and Fernald (1997) and

Lee (2005).31 The discount factor β is set at 0.95 so that the implied annual gross interest rate is 5.3%,

a value in line with the business cycle literature. The labor supply elasticity parameter, γ, is chosen

to be 2 following Rogerson and Wallenius’ (2009) argument linking micro and macro elasticities of

labor supply. Finally, we set the fixed cost of production, cf , to 1 every period.32

We then assume random productivity growth at the firm level, i.e. we follow Assumption 1 in the pre-

vious section. This implies that the stationary productivity distribution is Pareto-distributed with tail

31In the Online Appendix we explore an alternative calibration strategy where α is calibrated rather than fixed. We find
that qualitatively all results shown below go through and, if anything, imply that large firm dynamics account for a larger
share of aggregate volatility.

32In model simulations we found that the quantitative performance of the model is not affected by the value of fixed
costs.
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Statistic Model Data References

Entry Rate 0.109 0.109 BDS firm data
Idiosyncratic Vol. σe 0.08 0.1− 0.2 See main text

Tail index of Firm size dist. 1.097 1.097 BDS firm data
Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data

Share of Employment of the top 0.02% firms 0.252 0.255 BDS firm data
Number of Firms 4.5× 106 4.5× 106 BDS firm data

Table 1: Targets for the calibration of parameters

index δ. We additionally assume that the productivity of potential entrants is Pareto distributed with

tail index δe. This will also imply a Pareto distribution for firm size in the steady-state equilibrium as

shown in Corollary 2.

To obtain data counterparts for these and further moments discussed below, we use publicly avail-

able tabulations of firm size and firm size by age from the Business Dynamics Statistics (BDS) data

between 1977 and 2012. These are in turn computed from the Longitudinal Business Database of

the US census and ensure a near full coverage of the population of US firms. For a full description of

this dataset and our computations below, please refer to the Data Appendix C.

According to our model, we can read off the tail of the productivity distribution of incumbents from

its empirical counterpart by using the relation δ(1−α) = 1.097 and our assumed value for α. Accord-

ing to Corollary 2, this fixes the ratio between the parameters a and c in the firm-level productivity

process, up to the state space parameter ϕ. Similarly, we fix the tail index for entrant distribution

such that δe(1 − α) = 1.570. To obtain these numbers, we estimate the tail index from the BDS data

at the US census. The data counterpart to the stationary size distribution in our model is given by

the average (across years) of the size distribution of all firms. The corresponding object for entrants

is given by the average (across years) size distribution of age 0 firms in the BDS data. We obtain tail

estimates by using the estimator proposed in Virkar and Clauset (2014). According to our estimates

the size distribution of incumbents is more fat tailed than that of the corresponding distribution of

entrants; this is intuitive as the probability of observing very large entrants should indeed be smaller.

While we are not aware of any such estimation for entrants, our tail index estimate for incumbents

compares well with published estimates by Axtell (2001), Gabaix (2011) and Luttmer (2007).

We are left with calibrating the remaining parameters of the firm-level productivity process. This

process is characterized by the four parameters a, b, c and ϕ. First, because a, b and c sum to one,

as they are probabilities, we are left with three parameters. Second, as discussed in the previous

paragraph, our choice of targeting the tail of the firm-size distribution fixes the ratio between a and

c which leaves us with two parameters of the productivity process to calibrate, b and ϕ. We calibrate

these jointly to match two targets. One obvious choice is the volatility of firm-level productivity

growth σe. This moment is, as we argue below, both observable in data and a direct byproduct of the

firm-level productivity process. The second moment that we choose is the steady-state entry rate,

i.e. the ratio of entrants to incumbents. The intuition behind this choice is as follows. The entry
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rate is governed by the endogenous entry and exit decisions of all entrants and incumbent firms.

Their decisions are, in turn, determined by their idiosyncratic productivity dynamics (and the level

of the wage w, which is fixed at the stationary solution). It follows that the entry rate depends on the

firm-level productivity process.

We now turn to the mapping between model and data counterparts of these two targets. This map-

ping is immediate for the entry rate which is given by the ratio of the number of one year old firms to

the total number of incumbents. This can be easily read off the stationary distribution in the model

and from its empirical counterpart in the BDS data. The latter yields an entry rate target of 10.9%

which is consistent with the values reported by Dunne et al (1988).33

Turning to the choice of our target for firm-level productivity volatility, it is useful to first understand

the mapping between firm-level productivity ϕsi,t and its empirical counterpart. First, from the firm

production function in the model it is immediate to obtain log(ϕsi,t) = log(yi,t) − α log(ni,t). Thus

log(ϕsi,t) is a firm-level Solow residual, the difference between log real revenues and the labor input

weighted by its elasticity. Foster, Haltiwanger and Syverson (2008) and Castro, Clementi and Lee

(2015) estimate this object for US establishment Census data while Bachmann and Bayer (2014) do

the same for German firm-level data.34

Second, these empirical studies then fit statistical models to (log) firm-level Solow residuals and re-

port the variance of the respective firm-level innovations. As we detail in the Online Appendix D.1,

it is immediate that, up to a log-difference approximation, the variance of these Solow-residual in-

novations is the empirical counterpart of σ2e . Foster et al (2008), Haltiwanger (2011) and Castro et

al (2015) report an average annual productivity volatility of about 20% for establishments, a similar

value to that used by Clementi and Palazzo (2016) in their firm-level calibration. Bachmann and

Bayer (2014) report a productivity volatility of 9% for German firms. Our choice for firm-level pro-

ductivity volatility target, σe = 8%, is at the lower end of the values reported by these studies. In

33We discuss in detail our data sources and computations in the Data Appendix C.
34To be clear, there are differences between the empirical Solow residuals these studies work with and our model based

measure. First, the first two studies mentioned are establishment level measures rather than firm, while the last study is
based on German firm-level data. Second, in the absence of firm-level prices, these are revenue-based (TFPR) measures,
rather than quantity (TFPQ) as in our model. Again, we are not aware of any study documenting the properties of TFPQ
volatility and thus follow the literature (e.g. Bloom et al (2018) and Clementi and Palazzo (2016)) in matching moments of
TFPR. Third, these studies net out the contribution of additional, elasticity-weighted, variable inputs in the data. Clearly,
nothing would change in our analysis if we interpreted our model as one with additional fixed factors in the short run.
Alternatively, one can also directly model multiple variable inputs as is done in frontier quantitative papers in the firm
dynamics literature (e.g. Clementi and Palazzo, 2016). Because, as discussed earlier, we wish to make our point in the
context of the canonical model in the literature (i.e. Hopenhayn, 1992), we stick to the simpler production function but
source studies for TFPR where the existence of additional factors in data is acknowledged and controlled for. Finally,
the discussion above ignores the contribution of fixed costs to firm-level productivity and its volatility. The above cited
empirical studies are also silent on this issue. In the Online Appendix D.1 we show that, provided fixed costs are not too
large relative to firm output, the bias incurred in productivity volatility estimates is likely small. Going forward, as is clear
from the preceding remarks, there is ample room for improvement over the imperfect choices we make here. In particular,
a better and more precise mapping between model and data can be achieved by: (i) obtaining firm-level TFPQ measures,
(ii) properly accounting for fixed costs in production and (iii) generalizing the production function under consideration
to allow for capital and intermediate inputs. By the same token, such measures should provide a better handle for the
returns to scale parameter, α, for which appropriate firm-level estimates are currently unavailable. These provisos also
motivate the need for alternative calibration strategies, something we explore in Section 5.2.3 below, where we directly
target firm-level output volatility and internally calibrate α.
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Parameters Value Description

a 0.6129 Pr. of moving down
c 0.3870 Pr. of moving up
S 36 Number of productivity levels
ϕ 1.0874 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid
γ 2 Labor Elasticity
α 0.8 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate
M 4.8581 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.9313 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

Table 2: Baseline calibration

Section 5.2.3 below, we show that our quantitative results are largely unaffected by further lowering

our (already conservative) target of σe = 8%.

Finally, we need to choose values for S and M . For the former, we match the share of employment

of the largest 0.02% US firms, roughly the largest 1000 private employers in the US. From 1977 to

2012, this group of firms accounts on average for 25.54% of US employment.35 Recall that M is a free

scale parameter as discussed in the setup of the model. We calibrateM such that the total number of

firms is about 4.5 million, the average total number of firms reported in the BDS data for the period

1977-2012. In Table 1, we report the firm moments that we match for the calibration. In Table 2, the

implied parameters by our targets.

We are interested in accurately matching the characteristics of large firms. Recall that our calibration

procedure is intended to match well the tail of the firm size distribution. The left panel of Figure

2, plots the entire firm size distribution (in terms of employees) as implied by our model against

that in the data. The right panel plots the corresponding distribution for entrants. These are plots

of the counter-cumulative (CCDF) distribution of firm size giving, in the x-axis, the employment

size category of a given firm and, in the y-axis, the empirical probability of finding a firm larger

than the corresponding x-axis employment size category. The solid line reports the stationary size

distribution in the model.
35By calibrating S we are also fixing the largest possible productivity of a firm. Our baseline value of S implies that

the largest firm accounts for 0.21% of total employment. This number refers to the employment share of the highest

productivity firm at the stationary steady-state, that is, n(ϕS ,µ)
L(µ)

= ϕ
S

1−α

A(µ)
where A is given by Equation 1 evaluated at µ =

Mµ̂, the steady state stationary productivity distribution given by Equation 7. For comparison, Walmart is reported to have
1.4 million employees based in the US, about 1% of the labor force in the US. The lower value of this untargeted moment
under our baseline calibration ensures our results are not being driven by a single outsized firm.
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Filled (black) circles give the size distribution derived from the Business Dynamics Statistics (BDS)

from the US Census which we have used to estimate the tail index. Note that the largest bin in the

BDS data only pins down the minimum size of the largest firms in the data, corresponding to those

with more than 10000 employees. In order to go beyond this data limitation, we supplement the

BDS tabulations with Compustat data. Specifically, the hollow (red) circles in Figure 2 are computed

from tabulating frequencies for Compustat firms above 10000 employees. Our assumption is that,

for firms above 10000 employees, the distribution of firms in Compustat is similar to the one for all

firms in the U.S. economy.

The model does well in matching the firm size distribution: it accurately reproduces both the mass of

small firms in the BDS data and the mass of large firms in the Compustat data. These latter moments

are not targets of our calibration strategy (only the tail estimated on BDS data alone is). The same

general pattern holds for the entrant distribution. The model slightly under-predicts the probability

of finding very large firms. For instance, in our model the probability of finding a firm with more

than 10000 employees is just under 0.0001 while the corresponding probability in the data is 0.0003.

This is again consistent with our conservative calibration strategy and ensures that our results below

are not driven by firms that are too large with respect to the data.

Turning to heterogeneity in productivity, and in particular, to how productive large firms are in our

model, our calibration implies that the interquartile ratio in firm-level productivity is 1.29. Looking

further at highly productive firms in the model, the ratio in total factor productivity between a firm

at the 95th percentile and the 5th percentile is 1.80. While we are not aware of any such compu-

tations with actual firm-level data, these numbers are smaller but comparable to the establishment

level moments, reported by Syverson (2004) which finds an interquartile ratio of 1.34 and a 95th-5th

quantile ratio of 2.55.

5.2 Business cycle implications

We now solve the model outside the steady-state equilibrium and provide a quantification of its per-

formance as a theory of the business cycle. We start by briefly describing our numerical strategy.

Based on our numerical solution, we compute aggregate business cycle statistics and compare them

against the data. We then inspect the mechanism in our model by performing a simple impulse re-

sponse exercise, as traditional in the business cycle literature. The key difference is that here we track

the aggregate response to an idiosyncratic shock which endogenously translates into an aggregate

perturbation.
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Figure 2: Counter Cumulative Distribution Functions (CCDF) of the firms size distribution of incum-
bents (left) and entrants (right) in the model (blue solid line) against data (circles).
NOTE: Black filled circles report the CCDF of firm size distribution for less than 10000 employees in the BDS. The red

circles display a tabulation from Compustat for firms with more than 10000 employees assuming that, for this range, the

distribution of firms in Compustat is similar to that in the whole economy.

5.2.1 Numerical Strategy

The characterization of the law of motion of the aggregate productivity in Theorem 2 and its gener-

alization to the case with entry and exit (summarized in Theorem 3 in Online Appendix B.5), are key

to our numerical strategy. Recall that in the model firms make optimal intertemporal decisions (en-

try and exit) by forming expectations of future aggregate conditions which are summarized by the

variableAt. As Theorem 3 renders clear, the dynamics ofAt in turn depend onEt(ϕ) and σt and thus,

on Dt and Et(ϕ
2). Note that Dt is proportional to the second moment of the firm size distribution

and that, since the firm size distribution is a stochastic and time-varying object, so is Dt. In order to

solve the model numerically we will maintain Assumption 3 that Et(ϕ)
At

, OA
t

At
and σt

At
are perceived by

firms to be fixed at its steady-state values. Given this assumption, the firms’ problem can be solved

by standard value function iteration methods. We discuss this numerical algorithm in detail in the

Online Appendix D.2.36

Our numerical strategy similar in spirit to the Krusell-Smith approach in that agents only take into

account a reduced set of moments of the underlying high-dimensional state variable. It is also sim-

ilar to Den Haan and Rendahl (2010) in that we exploit recurrence equations linking different mo-

36It’s also worth noting that under our baseline calibration, equilibrium wage volatility and grid coarseness jointly imply
that the entry/exit threshold does not vary with aggregate fluctuations. That is, while our numerical algorithm allows this
threshold to be time-varying, given our calibration, the stochastic domain of At does not visit regions of the state space
that would induce the entry and exit threshold to change over the course of simulation (See Numerical Appendix D.2).
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Model Data
σ(x) σ(x)

σ(y) ρ(x, y) σ(x) σ(x)
σ(y) ρ(x, y)

Output 0.55 1.0 1.0 1.83 1.00 1.00
Hours 0.36 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.25 0.46 1.0 1.04 0.57 0.66

Table 3: Business Cycle Statistics

NOTE: The model statistics are computed for the baseline calibration (cf. Table 2) for an economy simulated for 20,000 pe-

riods. The data statistics are computed from annual data in deviations from an HP trend. The source of the data is Fernald

(2014). The Aggregate Productivity series is the Solow residual series. For further details refer to the Online Appendix C.

ments of the state distribution and then assume that agents’ expectations do not depend on higher

order moments of the distribution. In this paper, we are able to solve for the law of motion of these

moments analytically which renders our numerical strategy less computationally expensive. This, in

turn, allows us to solve for a large state space and therefore to better capture firm-level heterogeneity

in productivity.

5.2.2 Business cycle statistics

Using the calibration in Table 2 and the numerical algorithm describes in the Online Appendix D.2,

we compute the business cycle statistics. We simulate time series for output, hours and aggregate

TFP using the law of motion (Equation 5) of the productivity distribution. These statistics are pre-

sented in Table 3.37

The standard deviation of aggregate output in the model is 0.55%, 30% of the annual volatility of

HP-filtered real GDP in the data. The standard deviation of hours is 0.36%, about 20% of the annual

volatility of total hours worked (in deviations from trend). As a result, the volatility of hours relative

to output is 0.66, about two-thirds of relative volatility of hours to GDP in the data. The dampened

behavior of hours relative to output in our model is not unlike that of a baseline RBC model. As in

the latter class of models, aggregate dynamics in our model follow from the dynamics of aggregate

TFP. In our baseline calibration, the standard deviation of aggregate TFP is 0.25%, about one quarter

of the volatility of the (aggregate) Solow residual in data.

Crucially, in our model, these aggregate TFP dynamics are not the result of an exogenous “aggregate”

shock. Rather they are the endogenous outcome of (i) the evolution of micro-level productivity and

37Note that given our choice of notation aggregate TFP refers to A1−α
t while aggregate productivity refers to At. Further

note that A1−α
t is aggregate TFP gross of fixed and entry cost. Our quantitative results are only slightly altered when we

compute aggregate statistics net of such costs. In particular, to take into account the contribution of fixed and entry cost,
we follow the contributions of Petrin and Levinsohn (2012) and Petrin et al (2011, equation (2)) and define aggregate output
net of fixed and entry costs, that is, Yt −

∑
incumbents cf − ∑entrants ce. Aggregate TFP, net of fixed and entry costs, is

then (Yt −
∑

incumbents cf − ∑entrants ce)/L
α
t . Given parameter values, we can then track net Aggregate TFP over the

simulation. For our baseline calibration, implementing the correction for fixed and entry costs, we obtain a standard
deviation of Aggregate TFP of 0.27. This is consistent with the empirical findings of Petrin et al (2011) where estimates of
the contribution of fixed and sunk costs to aggregate productivity volatility are low.
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Figure 3: Decay of Volatility of Aggregate Output
NOTE: The blue (filled) circles give the standard deviation of aggregate output for different values of the equilibrium num-

ber of firms; the blue (solid) line shows the fit to the model estimates (blue circles); the red (dashed) line shows the slope

implied by Proposition 4 for the case with no entry and exit; the black (dash-dotted) line shows the slope implied by a

standard central limit theorem argument.

(ii) optimal decisions by firms regarding size, entry and exit. Thus, idiosyncratic firm dynamics

account for one fifth of aggregate TFP variability in the data.

There are two benchmarks against which to compare this number. The first reflects the maintained

assumption in the firm dynamics literature: in a model featuring 4.5 million firms - as our model

does - the law of large numbers should hold exactly and therefore we should obtain zero aggregate

volatility. The fact that we do not is the result of acknowledging the role of the firm size distribution

in rendering idiosyncratic disturbances into aggregate ones; as first emphasized by Gabaix (2011)

and generalized by our Proposition 5.38

To see this, we implement numerically the same thought experiment that underlies Propositions 4

and 5. Namely, we investigate quantitatively the rate of decay of aggregate volatility when we vary

the number of firms, relative to our baseline calibration. The number of firms across these different

laboratory economies varies from 1.8 million, roughly three times smaller than the number of firms

in the U.S., to 45 million, roughly 10 times that number. To discipline our exercise, we require that

the targets in our baseline calibration are maintained across these different sized economies (in par-

ticular, we maintain our baseline targets for the entry rate, the idiosyncratic volatility and the tails

of the entrants and incumbents firm size distributions). The exceptions are (i) the number of firms

and, (ii) the share of the economic activity commanded by the largest firm, which, as instructed by

Assumption 2 should decay as we move to economies with larger and larger number of firms.

38This has important implications for a rich literature analyzing the interaction between firm dynamics and aggregate
fluctuations; one where, invariably, aggregate shocks play a first order role. See, for example, Bloom et al (2018), Campbell
(1998), Clementi and Palazzo (2016), Khan and Thomas (2008) and Veracierto (2002).
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Figure 3 summarizes our results. The first thing to note is that the rate of decay of aggregate volatility

(given by the blue solid line) is much slower than what a standard central limit theorem argument

would predict (as represented by the slope of the black dash-dotted line). In particular, the decline of

aggregate volatility we observe across these economies is very close to the one predicted in Propo-

sition 4 for the case without entry and exit (represented by the red dashed line). We can also see

that there is a slight discrepancy between these two slopes. This is as it should be. Recall, that in

our quantitative section we are studying an economy with entry and exit and therefore, according

to Proposition 5, the decay of aggregate volatility should be slightly faster than what is predicted

under no entry and exit. This is because the size distribution of entrants is thinner tailed (as disci-

plined by data). Therefore when the number of entrants increases (such that the entry rate is equal-

ized across these different sized economies) diversification within the group of entrants should be

stronger. Nevertheless, as the Figure renders clear, this is a second order effect precisely because, as

predicted by Proposition 5, the decay is predominantly ruled by the size distribution of incumbents

(which is fatter tailed).

The second benchmark is given by the recent empirical work of di Giovanni, Levchenko, Mejean

(2014). Using a database covering the universe of French firms they conclude that firm-level id-

iosyncratic shocks account for 80% of aggregate sales growth volatility. Our quantification gives a

structural interpretation to these numbers and implies that large firm dynamics alone account for

about 38% of this number. As di Giovanni, Levchenko, Mejean (2014) suggest, the remainder might

be attributable to input-output linkages as in Acemoglu et al (2012).

5.2.3 Robustness checks

We have just seen that our baseline calibration implies non-negligible aggregate fluctuations. In the

next section, and leveraging from the same baseline calibration, we will explore the time-varying

nature of aggregate volatility and its dependence on the evolution of the firm size distribution– as

instructed by Sections 4.2 and 4.3. Before proceeding, it is perhaps useful to pause and consider

the role of key parameters of the model when quantifying both the level and time-varying nature of

aggregate volatility in our model. This leads us to consider alternative calibration strategies which

we present here as robustness checks.

Recall first that our model, when aggregated, behaves as a one-factor model with aggregate TFP

being the main driver of the business cycle. The volatility of the former is therefore key in deter-

mining the aggregate GDP volatility. In turn, and taking for a moment the firm size distribution as

exogenously given, it is immediate that firm-level productivity volatility σe is a key moment in deter-

mining aggregate volatility. Second, and recalling our discussion in Section 4.2, the extent to which

the time-varying dynamics of aggregate volatility reflect firm-size dispersion,Dt, depends crucially

on ̺, which as we have seen is simply the volatility of firm-level output growth. This, in turn, is a

function of σe and, the degree of decreasing returns to scale, α. To understand this note that, at
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the steady state and to a first order approximation, the growth rate of firm-level output is given by
∆yi,t+1

yi,t
≈ 1

1−α
∆ϕsi,t+1

ϕsi,t and therefore ̺ = Var
[
∆yi,t+1

yi,t

]
=
[

1
1−α

]2
σ2e .

Summarizing, our two main quantitative exercises rely on correctly capturing, simultaneously, firm-

level productivity volatility, σe and firm-level output growth volatility, Var
[
∆yi,t+1

yi,t

]
, where the de-

gree of decreasing returns to scale, α, provides the link between the two. Our baseline calibration is

one particular strategy to achieve this: we externally calibrate α, target σe and therefore obtain the

volatility of firm-level output growth as an untargeted moment.

Given the above discussion, one first important sanity check is whether this untargeted - but key -

moment is in line with data. Inserting our calibrated parameters in the formula above for firm-level

steady-state output growth volatility yields a value of 40%. Gabaix (2011), citing Comin and Mulani

(2006), gives precisely this number for average firm-level sales volatility in Compustat. Davis et al

(2007) report that the employment volatility of the typical firm in the economy is between 40% and

50%.39 Overall, we conclude that the model is successful at delivering the correct firm volatility as

an untargeted moment.

Still, a potential concern with our baseline calibration is that success in matching this untargeted

moment is a relatively low bar. In particular, the baseline strategy of settingα externally and targeting

σe - a moment that is legitimately hard to accurately measure in data – may provide the modeller with

too many degrees of freedom in pinning down key parameters of the model. To address this concern

we offer an alternative calibration where we directly match the volatility of firm-level sales. This has

the upside of having a clean mapping between model and observable data. To do this, and differently

from our previous exercise, we now externally fix σe to 0.08 and instead calibrate the span of control

parameter α (which was fixed in our baseline) by exploiting the relation between productivity and

sales discussed above.

For the idiosyncratic volatility of sales, we choose a 35% target, on the lower end of the values re-

ported in the above cited literature.40 The calibrated α is now equal to 0.77. Our results are quali-

tatively unchanged. If anything, the implied GDP volatility of 0.58% (i.e 32% of the observed GDP

volatility) is now slightly higher, as the reallocation mechanism is weaker than in our baseline cali-

bration due to the lower α.

A third concern – which applies to both our baseline and the alternative calibration above - is that

we are simply overstating both σe and the volatility of firm-level growth. In particular, recall that our

baseline choice of productivity volatility, σe, was on the lower end of the typical numbers reported

in the literature for the average firm in the economy. However, as is well known, large firms are

less volatile than the average firm in the economy, thus raising the possibility that our quantitative

results for aggregate volatility are being driven by excessively volatile large firms.

To address this concern, we present a third calibration exercise where we now choose σe to match a

standard deviation of annual employment volatility of 15%, corresponding to that of the largest 10%

39Note that, in our model, firm-level sales and employment volatility coincide.
40Further details and a full set of results for this second calibration are summarized the Online Appendix D.2.2.1
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of firms (as measured by the number of employees) present in Compustat.41 This number is also

comparable to the volatility of employment growth of even larger firms: Gabaix (2011), working with

Compustat data, reports a value of 14% for the largest 100 firms.42 While this number is in agreement

with previously reported estimates for large firms (see e.g. Comin and Phillipon, 2006 and Davis et

al, 2007) note that, relative to our baseline calibration, it now grossly understates the employment

volatility of the typical firm in the economy which, as discussed above, is between 40 and 50%.43

Based on this conservative calibration, we obtain σe = 0.03. Recomputing the aggregate volatility

statistics we find that the standard deviation of output in the model is now 0.44% or 24% of annual

GDP volatility observed in the data. As it should be, this number is lower than that implied by our

baseline calibration.44 Still, our main conclusion - that micro shocks have non-negligible aggregate

effects - remains unchanged and thus that the main thrust of our results in this paper are not driven

by unreasonably high volatility of large firms.

Overall, the three different calibration strategies we explore all imply similarly sizeable levels of ag-

gregate volatility: our baseline calibration – targeting σe and externally settingα - accounts for 30% of

aggregate volatility in data, our second calibration strategy – calibratingα to match firm-level output

growth volatility while externally calibratingσe – delivers 32%, and our third conservative calibration

strategy – calibrating σe to match firm-level output growth volatility of very large firms while setting

α externally – 24%.

5.2.4 Inspecting the mechanism

As Propositions 4 and 5 render clear, large firm dynamics are at the heart of the aggregate dynam-

ics summarized above. Intuitively, the endogenous Pareto distribution of firm size implies that a

relatively small group of very large firms have a probability mass that is non-negligible: individu-

ally, each firm accounts for a sizeable share of aggregate activity. Further, the number of very large

firms is small enough that idiosyncratic shocks may not average out: if a large firm suffers a negative

productivity shock, it is unlikely that a comparable sized firm suffers a positive shock that exactly

compensates for the former.

41Further details and a full set of results for this third calibration are summarized the Online Appendix D.2.2.2
42Similarly, Di Giovanni, Levchenko and Mejean (2014), report a value for the standard deviation of sales growth of 13.2%

(respectively, 12.7%) for the largest 100 (respectively, largest 10) French firms.
43For this third calibration, because the typical firm is less volatile than in the data, the entry rate is equal to 1.7% while

the same number in the data is 10.9%. The entry rate reflects the dynamics of the typical firm in the economy rather than
the dynamics of the largest firms that this calibration is targeting.

44In light of Propositions 4 and 5, the fact that aggregate volatility does not decline appreciably relative to our baseline
calibration – despite a considerably smaller value for σe – might appear puzzling at first. Indeed, as discussed above, at the
steady-state and to a first order, ̺ is proportional to σ2

e so that changes in the latter should show, one-for-one, in aggregate
volatility through the ̺ terms in the propositions. However, note that Propositions 4 and 5 are asymptotic approximations
that also depend on the variables G1 and G2. These, although independent of N , do depend on model parameters - and
in particular σe - through the equilibrium mechanism of the model. More generally, it is important to recognize that
Propositions 4 and 5 are scaling relationships only: they provide a complete characterization of how aggregate volatility
scales with N (or M ) but they are less useful when thinking about the level of volatility and its comparative statics with
respect to other model parameters (such as σe). Indeed, this is why using the model as a quantitative laboratory is useful.
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By the same token, it is important to note that no individual firm drives the economy. Rather, the

number of large firms is small enough that idiosyncratic shocks hitting these firms might actually

appear (to the econometrician) like a correlated disturbance. For example, if there are only ten very

large firms, the probability of eight of them suffering a negative shock is non-negligible; thus the

probability of the economy entering a recession is also non-negligible even though there are no

aggregate shocks. To put it simply, in our model, business cycles have a “small sample” origin.

To render this intuition concrete, we now compute an impulse response function giving the dynamic

impact on aggregates of a negative one standard deviation shock to the productivity growth rate of

the largest firm. Figure 4 shows the response of aggregate output, hours, TFP along with the average

marginal productivity of labor across firms.45

The top panel of Figure 4 shows the responses of aggregate output and aggregate hours to this large-

firm shock. The dynamics of both variables closely mirror that of aggregate TFP, as displayed in the

bottom left panel. Thus, after a one standard deviation negative shock to the largest firm, aggregate

TFP decreases by 0.028%. In turn, this has a non-negligible effect on aggregate output, which de-

clines by about 0.059% on impact. As a consequence, aggregate labor demand declines and hours

worked fall by 0.039%. If these magnitudes seem small, recall that this is the result of a shock to a

single firm out of 4.5 million firms.

The qualitative dynamics implied by the aggregate responses are consistent with that of a represen-

tative firm RBC model. However, in our model these aggregate responses to an idiosyncratic pulse

also reflect the adjustment of all other firms in the economy. The bottom right panel in Figure 4

displays the response of the marginal productivity of the largest firm’s competitors.

The intuition is as follows. Since the largest firm becomes less productive, it will shrink optimally

and cut its labor demand. This in turn induces a decline in aggregate labor demand and thus in

the equilibrium wage. Competitors of this firm, producing the same good and not having changed

their productivity, now face a lower wage and optimally increase their size. In short, as a result of

the shock, production is reallocated to the less productive competitors of the largest firm in the

economy.

Note however that due to decreasing returns to scale, these firms’ marginal productivity of labor

also decreases. Therefore, though this process of reallocation towards competitors mitigates the

aggregate response to the idiosyncratic shock, it is not strong enough to undo the initial effect of the

shock. Were we to shut down this reallocation effect - by keeping the wage fixed - aggregate output

would decrease by 0.123%, more than twice the effect in our baseline calibration.

45From the structure of the model, computing the impulse response is straightforward. From Equation 5, note that the
transition of the firm size distribution between date t and date t + 1 is a linear operator. Therefore, after computing the
initial shock ǫt, we do not need to simulate a large number of paths and to take the average. Instead, we assume ǫt to be
zero for t ≥ 1 and thanks to the linearity of transition described by Equation 5 the result is exactly the same.
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Figure 4: Impulse response to a one standard deviation negative productivity shock on the largest
firm.

5.3 Large Firm Dynamics over the Business Cycle

Our model delivers two first-order implications for understanding aggregate fluctuations and the

evolution of aggregate volatility. First, large firm dynamics drive aggregate growth and, hence, the

business cycle. Second, cross-sectional dispersion in firm size drives aggregate volatility. In this

section, we explore quantitatively these two implications of our model and show empirical evidence

that is consistent with our mechanism.

To understand the impact of large firm dynamics on aggregate first moments we focus on the dy-

namic relationship between the tail of the firm size distribution and aggregate growth. To under-

stand why we choose time variation in the tail index as a summary statistic for large firm dynamics,

notice the following. It is clear that (both in the model and in the data) large firms comove with the

business cycle.46 By our argument in the previous subsection, since the number of large firms is rel-

atively small, fluctuations within this group of firms will not cancel out. Note that this is not the case

for the typical firm in the economy: precisely because there are many small firms in the economy,

46We do not address the literature debating whether large firms are more or less cyclical than small firms (see Moscarini
and Postel-Vinay, 2012, Chari, Christiano and Kehoe, 2013, and Fort et al, 2013). The focus of this paper is on large firm
dynamics over the business cycle; in order to keep this analysis as simple and transparent as possible we do not introduce
frictions that are arguably important in capturing small firm dynamics.
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Figure 5: Variation of the Counter Cumulative Distribution Function (CCDF) in simulated data (left)
and in the BDS data (right).
NOTE: The simulated data are the results of a 25000 periods sample (where the first 5000 are dropped). For the BDS data,

we compute the CCDF for each year on the sample 1977-2008. The black line is the mean of each sample. For each period,

we plot a transparent red line for that year CCDF. Darker regions of the plot imply that the economy spends more periods

in this region of the state space. The transparency is chosen such that these two graphs are comparable.

idiosyncratic fluctuations should cancel out. The upshot of this observation is that (i) fluctuations

in large firms should show up as movements in the right tail of firm size distribution while (ii) the

rest of the firm size distribution should be relatively stable over time.

Figure 5 plots counter-cumulative distributions (CCDF) of firm size over time, both in the model and

in the binned BDS and Compustat data. The left panel of the Figure overlays 20000 CCDF’s for firm

size (measured by the number of employees), one for each sample period along a long simulation

run of the model. The right panel displays all CCDF’s associated with the BDS and Compustat data,

running from 1977 to 2008. Consistent with our intuition above, variation (over time) in the firm

size distribution is larger in the upper tail, both in model simulations and in the data. One way to

quantitatively assess the results in Figure 5 is to compute the standard deviation of the percentage

change of the share of firms above a given employment level. Indeed, this number is a measure of

the width of the region that the firm-size distribution visits across time. In the data (right panel), the

standard deviation of the percentage change of the share of firms with more than 100 employees is

1.3%, while the same number in the simulation (left panel) is 0.3%. The same number for firms with

more than 10 000 employees is 9.8% in the data and 4.7% in the simulation. Even if these number

are of the same order of magnitude, overall, the model understate the volatility of the share of firms

above some threshold. This reflects the conservative calibration strategy adopted in the paper.

The question is now whether fluctuations in the right tail of the firm size distribution correlate with

aggregate fluctuations. To perform this exercise in the model, we estimate the tail index generated by

the model’s firm size distribution. We do this for every period over a 20000 period simulation of the
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Sample Firms with more than 10k 15k 20k
Model Correlation in level −0.69

(0.000)
−0.64
(0.000)

−0.57
(0.000)

Correlation in growth rate −0.38
(0.000)

−0.41
(0.000)

−0.43
(0.000)

Data Correlation in (HP filtered) level −0.34
(0.008)

−0.51
(0.000)

−0.46
(0.000)

Correlation in growth rate −0.33
(0.011)

−0.43
(0.001)

−0.38
(0.004)

Table 4: Correlation of tail estimate with aggregate output.

NOTE: The tails in the model are estimated for simulated data for the baseline calibration (cf. Table 2) for an economy

simulated during 20,000 periods. The tails are estimated on Compustat data over the period 1958-2008. The aggregate

output data comes form the St-Louis Fed.

model’s dynamics, under our baseline calibration. We then correlate this with the level of aggregate

output in our model.

For the empirical counterpart to this correlation we use Compustat data only. While Compustat

is not an accurate description of the population of U.S. firms, it contains detailed firm-level data

that is particularly informative for large firms as these are more likely to be publicly listed. The

number of large firm observations helps us to more accurately identify large firm dynamics and to

better capture tail movements over time. From this data we obtain tail index estimates for each year

between 1958 and 2008. We then correlate this with a measure of aggregate output growth for the

corresponding year. Table 4 summarizes the results.

For our baseline case, we choose to estimate tail indexes based on information for firms with more

than 10000 employees, both in the model and in the data.47 The correlation between the tail estimate

and the level of aggregate output in the model is negative (-0.69) and significant. The corresponding

exercise in the data correlates the HP filtered aggregate output series and correlates this with the

tail indexes estimated from Compustat. This correlation is again negative (-0.34) and significant.

Intuitively, in periods when large firms suffer negative shocks, the tail index estimate is larger, i.e.

the firm size distribution is less fat tailed. Both in the model and in the data, these periods coincide

with below-trend performance at the aggregate level.

The remaining columns in the Table 4 present different robustness checks. First, we assess whether

our results are sensitive to the cutoff choice when estimating tails. To do this, we re-estimate the

empirical tail series in Compustat using larger scale cutoffs. The results are, if anything, stronger:

the more we focus on the behavior of very large firms the stronger is the correlation in the data.48

Our second robustness check, assesses whether this correlation survives a growth rate specification.

47For the model, we implement the estimator by Virkar and Clauset (2014) with a fixed cutoff. For the Compustat data,
we follow Gabaix and Ibragimov (2011). Note that we cannot use the same estimator in the data and the model: given
that we have a discrete state space, the tail index of the model-generated firm size distribution will necessarily have to
be estimated from binned ’data’. An alternative would be to bin Compustat data and apply the Virkar and Clauset (2014)
estimator to the data. By doing so, our results are qualitatively unaffected.

48In the Data Appendix we also show that this is robust to considering smaller cutoffs.
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Sample Aggregate Volatility Dispersion of Real Sales Dispersion of Employment

Model Aggregate Volatility 0.9967
(0.000)

0.9980
(0.000)

Data Aggr. Vol. in TFP growth 0.3461
(0.016)

0.2690
(0.065)

Aggr. Vol. in GDP growth 0.2966
(0.041)

0.1782
(0.226)

Table 5: Correlation of Dispersion and Aggregate Volatility.

NOTE: In the model: aggregate volatility are computed using the Theorem 2. The model statistics are computed on a

simulated sample of 20000 periods. In the data: we measure dispersion by computing cross-sectional variance. Variance

of employment and real sales are computed using Compustat data from 1960 to 2008 for manufacturing firms. Price are

deflated using the NBER-CES Manufacturing Industry Database 4-digits price index. Aggregate volatility is measured by

fitted values of an estimated GARCH on the growth rate of TFP and GDP series sourced from Fernald (2014).

The correlation between tail indices and aggregate output growth is again negative and does not

depend on the particular cutoff chosen for the tail estimation.

Our model also has implications for the evolution of aggregate volatility over time. According to our

discussion following Propositions 4 and 5 in the previous section, periods of high cross-sectional

dispersion in firm size are periods of high volatility in aggregate output and aggregate TFP.

Our measure of cross-section dispersion in data is again sourced from Compustat. For each year, we

compute the variance of (the logarithm of) real sales of manufacturing firms. We deflate the original

nominal sales values in Compustat by the corresponding industry 4-digit price deflator from the

NBER-CES Manufacturing database. For a measure of aggregate volatility, we follow Bloom et al

(2018) and take the conditional volatility estimates from a GARCH(1,1) specification on aggregate

TFP growth and aggregate GDP growth. Since both series contain low frequency movements we HP

filter each series. We detail the construction of cross-section dispersion in the Online Data Appendix

C.

To obtain the model counterpart of the conditional volatility in aggregate output we make use of

its analytical characterization in Theorem 3 in the Online Appendix B.5. We then correlate this se-

ries with the cross-sectional variance of firm-level output and employment as given by the solution

of the model. Both series are computed over a 20000 simulation of the model under our baseline

calibration.

Table 5 summarizes the results. Both in the model and in the data, the cross-sectional variance

of sales is positively correlated with aggregate volatility of TFP and GDP as our proposition implies.

Using the cross-sectional variance of employment also implies a positive (but weaker) correlation. In

the Data Appendix C we show that these findings are robust to considering other measures of cross-

sectional dispersion, both at the firm level – using the interquartile range of real sales in Compustat

– and at the establishment level – using either the productivity dispersion across establishments

producing durable goods (from Kehrig, 2015, based on Census data) or the interquartile range of

establishment level growth (from Bloom et al 2018, based on Census data).
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Taken together, the evidence in this section is consistent with the main predictions of our model:

aggregate dynamics are driven by the dynamics of large firms and aggregate volatility follows move-

ments in the dispersion of the cross-section of firms. Unlike the existing literature, our model de-

livers these predictions without resorting to aggregate shocks to first or second moments. Rather,

aggregate output and aggregate volatility dynamics are the equilibrium outcome of micro-level dy-

namics.

5.4 Distributional Dynamics and the Business Cycle

The core of our argument is that the firm size distribution is a “sufficient statistic” for understand-

ing fluctuations in aggregates. The aggregate state in our model is the firm size distribution. The

evolution of this object over time determines aggregate output and its volatility. In the quantita-

tive exercises above we have shown that certain moments of this distribution – its maximum in the

impulse response analysis exercise and its tail and cross-sectional second moment in the previous

subsection – do influence aggregates and that their quantitative impact is non-negligible.

In this section, we take this “sufficient statistic” argument one step further. Suppose we had access

to a single time series object – the evolution of the firm size distribution over time as given by the

BDS data. Using our calibrated model as an aggregation device we ask: what would be the implied

history of aggregate fluctuations and volatility, based on this data alone?

To do this we use the expressions that aggregate the information in the firm size distribution and

deliver aggregate TFP (Equation 1), aggregate output (Equation 3) and aggregate volatility (Equation

11) in the model.49 As a result of this exercise, we obtain from our model three aggregate time series

- for aggregate output, aggregate TFP and the volatility of aggregate output - whose time variation

reflects movements in the size distribution over time alone. Figure 6 plots these three series (solid

lines) against their HP filtered data counterparts (dashed lines).50

As Figure 6 renders clear, when interpreted through the lenses of our model, the empirical evolution

of the firm size distribution implies aggregate fluctuations that track well the historical fluctuations

in aggregate data. In all three cases, the correlation between the implied and actual aggregates is

positive and statistically significant. The estimates implied by the firm size distribution data track

the evolution of aggregate output (in deviations from trend) particularly well with a highly significant

49To feed these expressions with data on the firm size distribution we must additionally resolve one issue: the model
takes as a primitives the productivity grid Φ. Instead, the data on the firm size distribution by the BDS takes as prim-
itives the bins of the firm size, which are fixed over time. Thus, given a size distribution at time t, we need to solve
for the productivity bins in our model that are consistent with the observed size distribution. This can be easily ob-
tained by using the optimality condition with respect to employment and the labor market clearing condition. To be
precise, denote the information in the data by nBDS

s , the observed number of firms with employment in bin s. We

then solve for the productivity grid ΦBDS
t and the wage rate wBDS

t such that (i)∀s, ϕBDS
s,t =

wBDS
t
α

(nBDS
s )1−α and

(ii)wBDS
t =

(
α

1
1−α

∑SBDS

s=1 (ϕBDS
s,t )

1
1−α µBDS

s,t

M

) 1−α
γ(1−α)+1

.

50This exercise is not unlike Carvalho and Gabaix (2013) who track the business cylcle with a different sufficient statistic
– fundamental volatility – which is nothing but a function of the distribution of (Domar) shares of industries.
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Figure 6: Dynamics of aggregate variable from firm size distribution data (BDS).
NOTE: The blue (solid) lines give the evolution of the aggregate series of our model when we use the BDS distribution of

firm size and Equations 1, 3 and 11 to compute aggregate TFP, output and aggregate volatility. The red (dashed) line are

the aggregate series in the data: aggregate TFP and output are taken from Fernald 2014. For aggregate volatility dynamics,

we estimate a GARCH(1,1) on GDP growth following Bloom et al (2018).

44



correlation of 0.497. For aggregate TFP and the conditional volatility of aggregate TFP, this correlation

is lower and noisier, which mostly reflects a weaker correlation in the earlier part of the sample.

Conversely, the data on the firm size distribution implies remarkably accurate aggregate dynamics

in the period leading up to, during and after the Great Recession.

In summary, coupling the information contained in the dynamics of the firm size distribution with

our quantitative model delivers a history of aggregate fluctuations that is not unlike what we observe

in the aggregate data.

6 Conclusion

A small number of firms accounts for a substantial share of aggregate economic activity. This opens

the possibility of doing away with aggregate shocks, instead tracing back the origins of aggregate

fluctuations to large firm dynamics. We build a quantitative firm dynamics model in which we cast

this hypothesis.

The first part of our analysis characterizes, analytically, the law of motion of the firm size distribution

and shows that the implied aggregate output and productivity dynamics are persistent, volatile and

exhibit time-varying second moments.

In the second part of the paper, we explore quantitatively and in the data, the role of the firm size

distribution – and, in particular, that of large firm dynamics – in shaping aggregate fluctuations.

Taken together, our results imply that a large fraction of aggregate dynamics can be rationalized by

large firm dynamics.

The results in this paper suggest at least two fruitful ways of extending our analysis. First, while we

have intentionally focused our attention on large firm dynamics as drivers of aggregate fluctuations,

a complete analysis of firm dynamics over the business cycle should also match those of small firms.

This surely implies moving away from the frictionless environment presented here and understand-

ing how small firm dynamics are distorted by adjustment costs, credit constraints and other frictions.

The fact that Hopenhayn’s (1992) framework is tractable enough to handle such frictions, render our

analysis easily extensible to such environments.

Second, in our framework, a firm does not internalize its own effect on aggregate prices and factor

costs. In other models of firms dynamics, the assumption that the law of large numbers holds, jus-

tifies thinking about firms as infinitesimal price takers. However, we have shown that, in a standard

firm dynamics framework, large firms have a non-negligible effect on aggregates. Thus, the price

taker assumption should be taken carefully. This points to generalizations of our setup that do away

with this assumption and take on market structure and market power as further determinants of

aggregate dynamics as in Grassi (2017).
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Appendix to “Large Firm Dynamics and the Business Cycle”
Vasco M. Carvalho and Basile Grassi

A Proof Appendix

A.1 Proof of Theorem 1

The distribution of firms µt across the discrete state space Φ = {ϕ1, . . . , ϕS} is a (S × 1) vector equal
to (µ1,t, . . . , µS,t) such that µs,t is equal to the number of operating firms in state s at date t. The
next period’s distribution of firms across the (discrete) state space Φ = {ϕ1, . . . , ϕS} is given by the
dynamics of both incumbents and successful entrants.

In what follows, we define two conditional distributions. First, the distribution of incumbent firms
at date t+ 1 conditional on the fact that incumbents were in state s at date t is denoted as f .,st+1. This

(S×1) vector is such that for each state k in {1, . . . , S}, fk,st+1, the kth element of f .,st+1 gives the number
of incumbents in state k at t+ 1 which were in state ϕs at t.

Similarly, let us define g.,st+1 the distribution of successful entrants at date t+1 given that they received

the signal ϕs at date t. This (S × 1) vector is such that for each state k in {1, . . . , S}, gk,st+1, the kth

element of g.,st+1 gives the number of entrants in state k at t+ 1 which received a signal ϕs at t.

Period t + 1 distribution is the sum of all these conditional distributions and thus the vector µt+1

satisfies:

µt+1 =

S∑

s=s∗(µt)

f .,st+1 +

S∑

s=s∗(µt)

g.,st+1 (20)

Note that f .,st+1 and g.,st+1 are now multivariate random vectors implying that µt+1 also is a random
vector.
At date t+ 1 for s ≥ s∗(µt), f

.,s
t+1 follows a multinomial distribution with two parameters: the integer

µs,t and the (S × 1) vector P ′
s,. where Ps,. is the sth row vector of the matrix P . Similarly, at date t+ 1

for s ≥ s∗(µt), g
.,s
t+1 follows a multinomial distribution with two parameters: the integerMGq and the

(S × 1) vector P ′
q,..

Recall that the mean and variance-covariance matrix of a multinomial distribution with a number
of trials m and event probabilities given by the (S × 1) vector h is respectively the (S × 1) vector mh
and the (S × S) matrix mH = m(diag(h) − hh′). So let us define Ws = diag(Ps,.)− P

′

s,.Ps,.. From the
right hand side of Equation 20, using the fact that the f .,st+1 and g.,st+1 follow multinomials, µt+1 has a
mean m(µt) and a variance-covariance matrix Σ(µt) where

m(µt) :=

S∑

s=s∗(µt)

[
µstP

′
s,. +MGsP

′
s,.

]
= (P ∗

t )
′(µt +MG)

Σ(µt) :=

S∑

s=s∗(µt)

(MGs + µst)Ws

where P ∗
t is the transition matrix P with the first (s∗(µt)− 1) rows replaced by zeros.

Equation 20 can be rewritten in a simple way as the sum of its mean and a zero-mean shock:

µt+1 = m(µt) + ǫt+1
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where

ǫt+1 =

S∑

s=s∗(µt)

[
f .,st+1 − µstP

′

s,.

]
+

S∑

s=s∗(µt)

[
g.,st+1 −MGsP

′

s,.

]

i.e ǫt+1 is the demeaned version of µt+1. This gives us the result stated in the theorem.

�

A.2 Proof Sketch of Theorem 2

To understand the essence of the argument, consider the following proof sketch, which ignores the
boundary effects arising from assuming a bounded state space. A full proof is given in the Online
Appendix B.5.

The first thing to note is that aggregate productivity,At, is the sum of firm-level productivity (up to a
Cobb-Douglas power). Aggregate productivity at t+ 1 is thus:

At+1 =

N∑

i=1

ϕ
si,t+1

1−α =

N∑

i=1

(
ϕ

si,t+1−si,t

1−α

)(
ϕ

si,t

1−α

)
(21)

so by taking expectations, we get

Et [At+1] =

N∑

i=1

Et

[
ϕ

si,t+1−si,t

1−α

] (
ϕ

si,t

1−α

)

Under Assumption 1, si,t+1 − si,t takes only the values (−1, 0, 1) with probability (a, b, c) and thus

Et

[
ϕ

si,t+1−si,t

1−α

]
= aϕ

−1

1−α + b + cϕ
1

1−α = ρ which is independent of si,t. Using this last result in the

above equation leads to Et [At+1] = ρAt. Similarely by taking the conditional variance of Equation
21, we have

Vart [At+1] =

N∑

i=1

Vart

[
ϕ

si,t+1−si,t

1−α

] (
ϕ

2si,t

1−α

)
= ̺

N∑

i=1

ϕ
2si,t

1−α

where ̺ = Vart

[
ϕ

si,t+1−si,t

1−α

]
= aϕ

−2

1−α + b+ cϕ
2

1−α − ρ2. �
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B Proof Appendix

In this proof appendix, we first prove two intermediate results that (i) describe the stationary distri-
bution for a finite S (Lemma 1), and, (ii) describe the limit of the steady-state value of the wage w
and the entry/exit threshold s∗ when S goes to infinity (Lemma 2). This is given in Appendix B.1. We
then prove Proposition 1, giving the value and policy functions of an incumbent firm at the steady-
state, in Appendix B.2. We then prove Corollary 2 giving the stationary distribution when S → ∞.
In Appendix B.4, we prove Proposition 2, giving the ergodic behavior of the firm productivity distri-
bution for the case without entry and exit. In Appendix B.5, we state and prove a general theorem
that extends Theorem 2 to the case with entry and exit. We then prove Proposition 3. We then find
the asymptotic value of the ratio between the number of incumbents and the number of potential
entrants, when the former goes to infinity (Appendix B.7). This intermediate result will be used in
the the proof of Propositions 4 and 5 in Appendix B.8. Finally, we prove Proposition 6 that solve for
the value and policy function under Assumption 3. This last proof involves two intermediate results,
Lemma 3 and 4.

B.1 Preliminary Results

Lemma 1 For a given S, if (i) the entrant distribution is Pareto (i.e Gs = Ke (ϕ
s)−δe) and (ii) the

productivity process follows Gibrat’s law (Assumption 1) with parameters a and c on the grid defined
by ϕ, then the stationary distribution (i.e when Vartǫt+1 = 0) is:
For s∗ ≤ s ≤ S:

µs = P{ϕ = ϕs} =MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

and µs∗−1 = a
(
µs∗ +MKe

(
ϕs∗
)−δe

)
and µs = 0 for s < s∗ − 1.

Where δ = log(a/c)
log(ϕ) and C1, C2, C3 are constants, independent of s, and where

C1 =
c(a(ϕ−δe )S+2−a(ϕ−δe )s

∗−c(ϕ−δe)S+3+c(ϕ−δe )s
∗

)
a(1−ϕ−δe )(a−c)(aϕ−δe−c) , C2 =

(a(ϕ−δe )2+bϕ−δe+c)
(a(ϕ−δe )2−ϕ−δe (a+c)+c) and C3 =

−(ϕ−δe)S+1

(1−ϕ−δe )(a−c) .

Proof: To find the stationary distribution of the Markovian process described by the transition matrix
P , we need to solve for µ in µ = (P ∗

t )
′(µ+MG) where P is given by assumption 1 and where µ is the

(S × 1) vector (µ1, . . . , µS)′. For simplicity, we assume M = 1.

The matrix equation µ = (P ∗
t )

′(µ + MG) can be equivalently written as the following system of
equations:

For s < s∗ − 1:
µs = 0 (22)

For s = s∗ − 1:
µs∗−1 = a(µs∗ +Gs∗) (23)

For s = s∗:
µs∗ = b(µs∗ +Gs∗) + a(µs∗+1 +Gs∗+1) (24)

For s = S:
µS = c(µS−1 +GS−1) + (b+ c)(µS +GS) (25)
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For s∗ + 1 ≤ s ≤ S − 1:

µs = c(µs−1 +Gs−1) + b(µs +Gs) + a(µs+1 +Gs+1) (26)

The system of Equations 24, 25 and 26 gives a linear second order difference equation with two
boundary conditions. The system has a exogenous term given by the distribution of entrants G. For
this system, we define the associated homogeneous system by the same equations with Gs = 0,∀s.
To solve for a linear second order difference equation, we follow four steps: (i) Solve for the general
solution of the homogeneous system; these solutions are parametrized by two constants (ii) Find
one particular solution for the full system (iii) The general solution of the full system is then given
by the sum of the general solution of the homogeneous system and the particular solution we have
found (iv) Solve for the undetermined coefficient using the boundary conditions.

The recurrence equation of the homogeneous system is equivalent to cµs−1 − (a+ c)µs + aµs+1 = 0
since b = 1 − a − c. To find the general solution of this equation, let us solve for the root of the
polynomial aX2 − (a+ c)X + c. This polynomial is equal to a(X − c/a)(X − 1) and thus its roots are
r1 = c/a and 1. The general solution of the homogeneous system associated to Equation 26 is then
µs = A(c/a)s +B where A and B are constants.

Using the form of the entrant distributionGs = Ke(ϕ
−δe)s, and assuming that ϕ−δe 6= a

c , a particular

solution is Ke
a(ϕ−δe )2+bϕ−δe+c

a(ϕ−δe )2−(a+c)ϕ−δe+c(ϕ
−δe)s.

The general solution of the second order linear difference equation is then

A(c/a)s +B +Ke
a(ϕ−δe)2 + bϕ−δe + c

a(ϕ−δe)2 − (a+ c)ϕ−δe + c
(ϕ−δe)s

By substituting this general solution in the boundary condition 24 and 25, we find

A = Ke

( c
a

)−s∗ c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗
)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
and B = Ke

−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)

Since the sth productivity level is ϕs, then s = logϕs

logϕ and thus
(
c
a

)s
= (ϕs)−

log a/c

log ϕ . Let us define δ =
log a/c
logϕ . The expression of the stationary distribution is then:

µs = KeC1

(
ϕs

ϕs∗

)−δ

+KeC2 (ϕ
s)−δe +KeC3 (27)

for s∗ ≤ s ≤ S. The value of µs∗−1 is given by 23 and ∀s < s∗ − 1, µs = 0. �

Lemma 2 The limits s∗ andw of s∗ andw when S goes to infinity satisfyw =
(
α

1

1−αA∞
) 1−α

γ(1−α)+1

where

A

M
−→
S→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗

)−δe
)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ
−δ+ 1

1−α

+ (ϕδe − 1)C2

(
ϕ
−δe+

1
1−α

)s∗

1− ϕ
−δe+

1
1−α

and C2 =
(a(ϕ−δe )2+bϕ−δe+c)

(a(ϕ−δe )2−ϕ−δe(a+c)+c) , as defined in Lemma 1 and C∞
1 = c

a
(ϕ−δe )s

∗

(1−ϕ−δe )(c−aϕ−δe )
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Proof: To show this lemma, let us first note that w =
(
α

1

1−α A
M

) 1−α

γ(1−α)+1

and let us take the limit of A
M

when S goes to infinity. For a given S, let us look at the expression of A:

A =
S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +

S∑

s=s∗

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗
)−δe

+MKeC3 +MKe(ϕ
s∗)−δe

)

+

S∑

s=s∗

(ϕs)
1

1−α

(
MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)

By dividing both sides byM , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ S∑

s=s∗

(
ϕ−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ−δe+

1
1−α

)s
+KeC3

S∑

s=s∗

(ϕ
1

1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ
(
ϕ−δ+ 1

1−α

)s∗
−
(
ϕ−δ+ 1

1−α

)S+1

1− ϕ−δ+ 1
1−α

+KeC2

(
ϕ−δe+

1
1−α

)s∗
−
(
ϕ−δe+

1
1−α

)S+1

1− ϕ−δe+
1

1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Since ϕ > 1, δ(1 − α) > 1 and δe(1 − α) > 1, we have that − δe
δ + 1

δ(1−α) < 0 and −1 + 1
δ(1−α) < 0. This

implies that both
(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1

1−α

)S
converge to zero when S goes to infinity. We also

have that

C3(ϕ
1

1−α )S =
−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)
(ϕ

1
1−α )S =

−ϕ−δe(ϕ−δe+
1

1−α )S

(1− ϕ−δe)(a− c)
−→
S→∞

0

Putting these results together yields

A

M
−→
S→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ−δ+ 1
1−α

+ (ϕδe − 1)C2

(
ϕ−δe+

1
1−α

)s∗

1− ϕ−δe+
1

1−α

�

B.2 Proof of Proposition 1

In this section we prove Proposition 1. We first solve for the value and the policy function for the
general case of a finite S and then present the simpler special case - given in the main text - when S
goes to infinity.
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B.2.0.1 Instantaneous profit: It is easy to show that instantaneous profit is equal to

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf

Note that this is a function of µ through the equilibrium wage w. In the stationary equilibrium this
wage is fixed. In the following we will drop the notation µ whenever no confusion arises from this.

B.2.0.2 Bellman equation: In the stationary equilibrium, the Bellman equation is given by

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf + βmax {0, aVs−1 + bVs + cVs+1}

where Vs = V (µ,ϕs). The policy function of this problem follows a threshold rule: there exist a s∗

such that

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf + β (aVs−1 + bVs + cVs+1) for s ≥ s∗

Vs = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf for s ≤ s∗ − 1

B.2.0.3 For s ≥ s∗: Let us first look at the case when s ≥ s∗. We want to solve for the following
second order linear difference equation:

aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 =

cf
β

− (ϕs)
1

1−α

(α
w

) α

1−α 1− α

β
(28)

which is associated with the homogeneous equation

aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 = 0 (29)

This homogeneous equation is associated with the polynomial cX2 +
(
1− a− c− 1

β

)
X + a which

has discriminant ∆ =
(
1− a− c− 1

β

)2
− 4ca =

(
β−1
β

)2
+ (a − c)2 + 2(a + c)1−β

β > 0. Thus, this

polynomial has two real roots:

r1 =
(a+ c+ 1

β − 1) +
√
∆

2c
and r2 =

(a+ c+ 1
β − 1)−

√
∆

2c

Since a− c+ 1
β − 1 > 0 it is trivial to show that r2 < 1 < r1. The general solution of the homogeneous

Equation 29 is
Vs = K1r

s
1 +K2r

s
2

where K1 and K2 are (for now) undetermined constants.

To find the general solution of the Equation 28, we need to find a particular solution of this equation.
A particular solution of Equation 28 is

Vs = − cf
1− β

+ (ϕs)
1

1−α

(α
w

) α

1−α 1− α

1− ρβ

where ρ = aϕ
−1

1−α + b+ cϕ
1

1−α .

The general solution of Equation 28 takes the following form

V GS
s = K1r

s
1 +K2r

s
2 −

cf
1− β

+ (ϕs)
1

1−α

(α
w

) α

1−α 1− α

1− ρβ
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where K1 and K2 are constants to be solved for. To solve for these constants we use the boundary
conditions.

B.2.0.4 At s = s∗, the value function of a firms satisfies

aVs∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

β

with Vs∗−1 =
(
ϕs∗−1

) 1

1−α
(
α
w

) α

1−α (1− α)− cf . Note that V GS
s also satisfies

aV GS
s∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

β

It follows that V GS
s∗−1 = Vs∗−1, which yields

K1r
s∗−1
1 +K2r

s∗−1
2 − cf

1− β
+
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ
=
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α

(1− α)− cf

After rearranging terms we get

K1r
s∗−1
1 +K2r

s∗−1
2 = β

cf
1− β

− βρ
(
ϕs∗−1

) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ
(30)

B.2.0.5 At s = S, the value function at level ϕS , VS , satisfies

aV GS
S−1 + (1− a− c+ c)VS =

1

β
VS +

cf
β

− 1− α

β

(α
w

) α

1−α
(
ϕ

1

1−α

)S

Solving for VS yields

VS =
1

1− 1
β − a

(
cf
β

− 1− α

β

(α
w

) α

1−α
(
ϕ

1

1−α

)S
− aV GS

S−1

)

which implies

VS =
1

1− 1
β
− a

(
cf
β

− 1− α

β

(α
w

) α
1−α

(
ϕ

1
1−α

)S
− a(K1r

S−1
1 +K2r

S−1
2 ) + a

cf
1− β

− a
(
ϕS−1

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ

)

VS =
1

1− 1
β
− a

(
cf

(
1

β
+ a

1

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S
(

1

β
+ a

ϕ
−1
1−α

1− βρ

)
− a(K1r

S−1
1 +K2r

S−1
2 )

)

VS =
1

1− 1
β
− a

(
cf

(
1
β
− 1 + a

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S
(

1

β
+ a

ϕ
−1
1−α

1− βρ

)
− a(K1r

S−1
1 +K2r

S−1
2 )

)

VS =
1

1− 1
β
− a


cf

(
1
β
− 1 + a

1− β

)
− (1− α)

(α
w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− βρ


− a(K1r

S−1
1 +K2r

S−1
2 )




VS =
−cf
1− β

− 1− α

1− βρ

(α
w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


− a(K1r

S−1
1 +K2r

S−1
2 )

B.2.0.6 At s = S − 1, we have

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cVS =

cf
β

−
(
ϕS−1

) 1

1−α

(α
w

) α

1−α 1− α

β
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but, at the same time

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cV GS

S =
cf
β

−
(
ϕS−1

) 1

1−α

(α
w

) α

1−α 1− α

β

it follows that VS = V GS
S and thus

−cf

1− β
− 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


− a(K1r

S−1
1 +K2r

S−1
2 ) = K1r

S
1 +K2r

S
2 − cf

1− β
+
(
ϕS
) 1

1−α
( α

w

) α
1−α 1− α

1− ρβ

⇔

− 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


−

(
ϕS
) 1

1−α
( α

w

) α
1−α 1− α

1− ρβ
= K1r

S
1 +K2r

S
2 + a(K1r

S−1
1 +K2r

S−1
2 )

⇔

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = − 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a

+ 1




which yields

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = − 1− α

1− βρ

(α
w

) α

1−α
(
ϕ

1

1−α

)S
(
a(ϕ

−1

1−α − 1) + 1− ρ

1− 1
β − a

)
(31)

B.2.0.7 Solving for K1 and K2: Equations 30 and 31 form a system of two equations in two un-
knowns. Solving this system gives K1 and K2 and thus the full solution of the incumbent’s value
function over the state space Φ. Let us rewrite the system of Equations 30 and 31 as

K1r
s∗−1
1 +K2r

s∗−1
2 = A− βρ

(
ϕs∗−1

) 1

1−α B

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = −κ

(
ϕ

1

1−α

)S
B

where A = β cf
1−β ,B =

(
α
w

) α

1−α 1−α
1−ρβ and κ = a(ϕ

−1
1−α −1)+1−ρ
1− 1

β
−a

. It is obvious to show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

or, after substituting the expression for A,B and κ,

K1(s
∗, w) =

(1 + ar−1
2 )rS−s∗+1

2

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+ a(ϕ

−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗, w) =

(1 + ar−1
1 )rS−s∗+1

1

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+ a(ϕ

−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2
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Note that both K1 and K2 are also function of the wage and the threshold s∗. It follows that the
unique solution of the Bellman equation is

Vs =

{
K1(s

∗, w)rs1 +K2(s
∗, w)rs2 − cf

1−β + (ϕs)
1

1−α

(
α
w

) α

1−α 1−α
1−ρβ for s ≥ s∗

(ϕs)
1

1−α

(
α
w

) α

1−α (1− α)− cf for s ≤ s∗ − 1

B.2.0.8 Solving for s∗: Note that by definition s∗ is the smallest integer such that aVs∗−1 + bVs∗ +
cVs∗+1 ≥ 0 (i.e that aVs∗−2 + bVs∗−1 + cVs∗ < 0). Note also that

ars−1
1 + brs1 + crs+1

1 =
rs1
β

ars−1
2 + brs2 + crs+1

2 =
rs2
β

a
(
ϕ

1

1−α

)s−1
+ b
(
ϕ

1

1−α

)s
+ c

(
ϕ

1

1−α

)s+1
= ρ

(
ϕ

1

1−α

)s

by definition of r1, r2 and ρ. Using the above equations, it is easy to show that

aVs∗−1 + bVs∗ + cVs∗+1 =
1

β

(
K1(s

∗, w)rs
∗

1 +K2(s
∗, w)rs

∗

2

)
− cf

1− β
+ ρ

(
ϕs∗
) 1

1−α

(α
w

) α

1−α 1− α

1− ρβ

Solving for s̃∗ such that 1
β

(
K1(s̃

∗, w)rs̃
∗

1 +K2(s̃
∗, w)rs̃

∗

2

)
− cf

1−β + ρ
(
ϕs̃∗
) 1

1−α
(
α
w

) α

1−α 1−α
1−ρβ = 0 implies

that s∗ = ⌈s̃∗⌉. This completes the characterization of the solution of the Bellman equation. In order
to obtain a more intuitive expression, we now turn to the special case where S → ∞.

B.2.0.9 Solution of the Bellman when S → ∞: Since r1 > ϕ
1

1−α > 1 > r2 (we know that ϕ
1

1−α >

1 > r2 and we have assumed that r1 > ϕ
1

1−α i.e ϕ is small enough), it is easy to show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

−→
S→∞

0

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1

1−α B
)
+ κ

(
ϕ

1

1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

−→
S→∞

A− βρ
(
ϕs∗−1

) 1

1−α

B

rs
∗−1

2

It follows that for s ≥ s∗

V S=∞
s =

(
A− βρ

(
ϕs∗−1

) 1

1−α

B

)
rs−s∗+1
2 − cf

1− β
+
(
ϕ

1

1−α

)s (α
w

) α

1−α 1− α

1− ρβ

where A = β cf
1−β and B =

(
α
w

) α

1−α 1−α
1−ρβ and w and s∗ are the limits of, respectively, w and s∗ when S

goes to infinity. After substituting the expression of A and B and rearranging terms, the solution of
the Bellman equation is, for all s:

V S=∞
s =

−cf
1− β

(
1− βr

[s−s∗+1]+

2

)
+

1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s

1− ρβ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



where [x]+ = |x|+x
2 = max(x, 0).
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B.2.0.10 Solving for s∗ when S → ∞: Following the same steps as in the case S < ∞, it is easy to
show that, for s ≥ s∗,

aVs−1 + bVs + cVs+1 =
−cf
1− β

(
1− rs−s∗+1

2

)
+

1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s

ρ− ρ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



and thus, for s = s∗,

aVs∗−1 + bVs∗ + cVs∗+1 =
−cf
1− β

(1− r2) +
1− α

1− ρβ

(α
w

) α

1−α
(
ϕ

1

1−α

)s∗
ρ

(
1− r2

ϕ
1

1−α

)

It follows that aVs∗−1 + bVs∗ + cVs∗+1 ≥ 0 is equivalent to

s∗ ≥ (1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

log ϕ

Since s∗ is the smallest integer such that this inequality is satisfied, it follows that

s∗ =



(1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

log ϕ




which complete the proof. �

B.3 Proof of Corollary 2

In this appendix, we prove that the productivity stationary distribution is a mixture of two distribu-
tions: (i) the stationary distribution associated with the Markovian firm-level productivity process
and (ii) the distribution of entrants. These are weighted by the constants K1 and K2, respectively.

Formally, we show that K1 = − c
a

(ϕδe−1)(ϕ−δe )s
∗

(1−ϕ−δe )(aϕ−δe−c) and K2 = (ϕδe−1)(a(ϕ−δe )2+bϕ−δe+c)
a(ϕ−δe )2−ϕ−δe(a+c)+c (ϕs∗)−δe . In the

corollary in the main text, we only reported the value of the stationary productivity distribution for
productivity levels above the entry/exit thresholds. In this appendix, for completeness, we describe
this distribution over the full idiosyncratic state-space. We then show that:

µ̂s =





− c
a

(ϕδe−1)(ϕ−δe )s
∗

(1−ϕ−δe )(aϕ−δe−c)

(
ϕs

ϕs∗

)−δ

+
(ϕδe−1)(a(ϕ−δe )2+bϕ−δe+c)

a(ϕ−δe )2−ϕ−δe (a+c)+c
(ϕs)−δe if s ≥ s∗

a
(
ϕδe − 1

) ( −c/a

(1−ϕ−δe )(aϕ−δe−c)
+ a(ϕ−δe )2+bϕ−δe+c

a(ϕ−δe )2−(a+c)ϕ−δe+c
+ 1
)
(ϕs∗)−δe if i = s∗ − 1

0 if s < s∗ − 1

with δ = log(a/c)
log(ϕ) .

The proof of this corollary builds on the result of Lemma 1 and then takes the limit of this distribution
when the maximum level of productivity goes to infinity.

We first find the limit of constants Ke, C1, C2 and C3 as the number of productivity bins S goes to
infinity. After finding these limits, we take the limit of Equation 27 in the previous lemma.
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Let us first describe the asymptotic behavior of Ke. Recall that the entrant distribution sums to
one.51

1 =

S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe − (ϕ−δe)S+1

Since ϕ > 1 and δe, δ > 0 we have
(
ϕ−δe

)S −→
S→∞

0 by applying these results to the expression for Ke,

it follows that Ke −→
S→∞

ϕδe − 1. Let us now focus on the asymptotic behavior of C3, C2 and C1. From

Lemma 1, we have C3 =
−(ϕ−δe )S+1

(1−ϕ−δe )(a−c) −→
S→∞

0. We also have that

C2 :=

(
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)

which is independent of S.

Finally, we have

C1 =
c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)

−→
S→∞

c
(
−a(ϕ−δe)s

∗

+ c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
=

c

a

−(a− c)(ϕ−δe)s
∗

(1− ϕ−δe)(a− c)(aϕ−δe − c)

and therefore

C1 −→
S→∞

C∞
1 :=

c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

We have just found the limit ofKe, C1,C2 andC3 when S goes to infinity. We then apply these results
to the stationary distribution by taking S to infinity. According to Lemma 1, we have for s∗ ≤ s:

µs

M
= KeC1

(
ϕs

ϕs∗

)−δ

+KeC2(ϕ
s)−δe +KeC3

We have just shown that when S goes to infinity, the stationary distribution is given by:

µs

M
=
(
ϕδe − 1

) c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

(
ϕs

ϕs∗

)−δ

+
(
ϕδe − 1

) (
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)
(ϕs)−δe

�

B.4 Proof of Proposition 2

Proposition 2 claims that for the no entry and exit case and under Assumption 1, the unconditional
mean of µt is given by

E [µs,t] = µs = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

where δ = log(a/c)
log(ϕ) . Furthermore, the unconditional variance-covariance matrix of µt is

Var [µt] =

∞∑

k=0

(P ′)k
(

S∑

s=1

µsWs

)
P k

51The way we define the model, we assume that G sums to one. We also assume that the number of potential entrants in
bin s is MGs, so that the total number of potential entrants is M .

60



where P is the transition matrix for firm-level productivity, and, Ws = diag(Ps,.) − P
′

s,.Ps,. where
Ps,. denotes the sth-row of the transition matrix P in Assumption 1. Where for 1 < s < S, Ws =(

0 0 0
0 Σ 0
0 0 0

)
with Σ =

(
a(1 − a) −ab −ac
−ab b(1 − b) −bc
−ac −bc c(1− c)

)
, while W1 =

(
Σ(1) 0
0 0

)
with Σ(1) =

(
c(1− c) −c(1− c)
−c(1− c) c(1− c)

)
,

and,WS =
(
0 0
0 Σ(S)

)
with Σ(S) =

(
a(1 − a) −a(1− a)
−a(1 − a) a(1 − a)

)
.

Proof:

Let us define fk,st+1 as the number of firms in state k at t+1 that were in state s at t. Under Assumption

1, it is easy to show that, for 1 < s < S, fk,st+1 = 0 for both k > s + 1 and k < s − 1. Similarly, we have

fk,1t+1 = 0 for k > 2 and fk,St+1 for k < S − 1. It is easy to see that

µ1,t+1 = f1,1t+1 + f1,2t+1 for s = 1

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 for 1 < s < S

µS,t+1 = fS,S−1
t+1 + fS,St+1 for s = S

As in the proof of Theorem 1, the vector f .,st+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′ is distributed according to a

multinomial distribution with number of trials µs,t and probability of events (a, b, c)′. As the number
of firms in productivity state s becomes large, we can approximate this multinomial distribution
with a normal distribution (see Severini 2005, p377 example 12.7). It follows that, for 1 < s < S, we
have:

f .,st+1 =



f s−1,s
t+1
f s,st+1

f s+1,s
t+1


 N

(
µs,t

(a
b
c

)
;µs,tΣ

)
where Σ =

(
a(1− a) −ab −ac
−ab b(1− b) −bc
−ac −bc c(1 − c)

)

Similarly for s = 1, we have

f .,1t+1 =

(
f1,1t+1

f2,1t+1

)
 N

(
µ1,t

(
1− c
c

)
;µ1,tΣ1

)
where Σ1 =

(
c(1− c) −c(1− c)
−c(1− c) c(1 − c)

)

and for s = S, we have

f .,St+1 =

(
fS−1,S
t+1

fS,St+1

)
 N

(
µS,t

(
a

1− a

)
;µS,tΣS

)
where ΣS =

(
a(1− a) −a(1− a)
−a(1− a) a(1− a)

)

It follows that we can rewrite the vector f .,st+1 as

f .,1t+1 = µ1,t

(
1− c
c

)
+

√
µ1,tǫ

.,1
t+1

f .,st+1 = µs,t

(a
b
c

)
+

√
µs,tǫ

.,s
t+1 for 1 < s < S

f .,St+1 = µS,t

(
a

1− a

)
+

√
µS,tǫ

.,S
t+1
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where ǫ.,1t+1  N (0,Σ1), ǫ
.,s
t+1  N (0,Σ) for 1 < s < S, and, ǫ.,St+1  N (0,ΣS). Note that the ǫ.,st+1 are

then independent of the µs,t. Let us introduce some notation that turns out to be useful:

Is ≡




0 0 0
...

...
...

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0




and I1 ≡




1 0
0 1
0 0
...

...
0 0


 and IS ≡




0 0
...

...
0 0
1 0
0 1




where the sth row of Is is (0, 1, 0). With this notation, it is easy to see that

µt =

S∑

s=1

Isf
.,s
t+1

= µ1,tI1

(
1− c
c

)
+

S−1∑

s=2

µs,tIs

(a
b
c

)
+ µS,tIS

(
a

1− a

)
+

S∑

s=1

Is
√
µs,tǫ

.,s
t+1

from which it follows that

µt = P ′µt +
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es) (32)

where P is the transition matrix of the idiosyncratic productivity process in Assumption 1, es is the
sth base vector, and,

√
µt = (

√
µ1,t, . . . ,

√
µs,t, . . . ,

√
µS,t)

′.

Let us call the vector µ = E [µt], the unconditional expectation of the productivity distribution µt.
From Equation 32 it is easy to show that µ satisfies µ = P ′µ. Using a similar approach to the proof of
Corollary 2 and the fact that

∑S
s=1 µs = N , one can show that

µs = E [µs,t] = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

To compute the unconditional variance-covariance matrix of µt, let us take the variance of Equation
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32:

Var [µt] =Var

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov
[
P ′µt;P

′µt
]
+ Cov

[
P ′µt;

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]
+ Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt

]
. . .

. . . + Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= P ′Var [µt]P +

S∑

s=1

P ′Cov
[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
+

S∑

s=1

(
P ′Cov

[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
])′
. . .

. . . +

S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ǫ
.,s′

t+1)(
√
µt

′es′)
]

Note that E
[
(Isǫ

.,s
t+1)(

√
µt

′es)
]
= IsE

[
(ǫ.,st+1)(

√
µt

′)
]
es = IsE

[
(ǫ.,st+1)

]
E
[
(
√
µt

′)
]
es = 0 since E

[
ǫ.,st+1

]
=

0, and, ǫ.,st+1 and µt are independent. Let us look at the second and third term of the equation above:

P ′Cov
[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
= E

[
(µt − µ)

(
(Isǫ

.,s
t+1)(

√
µt

′es)
)′]

= E
[
(µt − µ)(

√
µt

′es)
′(Isǫ

.,s
t+1)

′]

= E
[
(µt − µ)(

√
µt

′es)
′]E

[
(Isǫ

.,s
t+1)

′] = 0

since E
[
ǫ.,st+1

]
= 0, and, ǫ.,st+1 and µt are independent. Let us now look at the last term:

S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ǫ
.,s′

t+1)(
√
µt

′es′)
]
=

S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)(

√
µt

′es)
(
(Is′ǫ

.,s′

t+1)(
√
µt

′es′)
)′]

=

S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)

√
µt

′ese
′
s′
√
µt(Is′ǫ

.,s′

t+1)
′
]

=

S∑

s=1

E [µs,t] IsE
[
ǫ.,st+1(ǫ

.,s
t+1)

′] I ′s

= µ1I1Σ1I
′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

where in the fourth line we use the fact that if s 6= s′ then
√
µt

′ese′s′
√
µt = 0 and if s = s′ then√

µt
′ese′s′

√
µt = µs,t. The variance-covariance matrix of µt is thus characterized by the following

discrete Lyapunov equation:

Var [µt] = P ′Var [µt]P + µ1I1Σ1I
′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S (33)
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The solution of the discrete Lyapunov Equation 33 is thus:

Var [µt] =

∞∑

k=0

(P ′)k
(
µ1I1Σ1I

′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

)
P k

note that IsΣI ′s =

(
0 0 0
0 Σ 0
0 0 0

)
, I1Σ1I

′
1 =

(
Σ1 0
0 0

)
and ISΣSI

′
S =

(
0 0
0 ΣS

)
. �

B.5 Proof of Theorem 2

In this appendix, we state and prove the more general Theorem 3 which extends the results of Theo-
rem 2 to the entry and exit case. Formally, we show that the following theorem is true:

Theorem 3 Assume 1, then

(i) The dynamic of aggregate productivity is given by

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 (34)

σ2t = ̺Dt + ̺Et(ϕ
2) +Oσ

t (35)

where E[εt+1] = 0 and Var[εt+1] = 1. The persistence of the aggregate state is ρ = aϕ
−1

1−α + b +

cϕ
1

1−α . The term Dt is given by Dt :=
∑S

s=s∗(µt)−1

(
(ϕs)

1

1−α

)2
µs,t and ̺ = aϕ

−2

1−α + b + cϕ
2

1−α −

ρ2. The terms Et(ϕ) and Et(ϕ
2) are defined using the Et(x) =

∑S
s=s∗t

xsMGs − x
s∗t −1

1−α µs∗t−1,t for

any x. The terms OA
t and Oσ

t are a correction for the upper and lower reflecting barriers in the
idiosyncratic state space definied in the proof. Furthermore, for a large number of firms the
distribution of εt+1 can be approximate by a standard normal distribution.

(ii) Aggregate output (in percentage deviation from its steady-state value) has the following law of
motion:

Ŷt+1 = ρŶt + κÔA
t + ψ

σt
A
ǫt+1 (36)

ÔA
t is the percentage deviation from steady-state ofOA

t , κ and ψ are constants defined below and
A is the steady-state value of the aggregate productivity At.

Proof: Aggregate productivity

Note first that

At+1 =

Nt+1∑

i=1

ϕ
st+1,i

1−α =

S∑

s=1

ϕ
s

1−αµs,t+1

where µs,t+1, the number of firms in productivity bin s at time t+1, is stochastic as shown in Theorem
1. Using the proof of this theorem for S > s > s∗(µt) and under Assumption 1, we have:

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 + gs,s−1
t+1 + gs,st+1 + gs,s+1

t+1

where f s
′,s

k,t+1 is the number of firms in state s′ at t + 1 that were in state s at time t and gs
′,s

k,t+1 is the
number of entrants in state s′ at t+ 1 that received a signal s at time t. Given Assumption 1 the 3× 1

vector f .,sk,t+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′ follows a multinomial distribution with number of trials µs,t+1

and event probabilities (a, b, c)′. Similarly, the 3 × 1 vector g.,sk,t+1 = (gs−1,s
t+1 , gs,st+1, g

s+1,s
t+1 )′ follows a
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multinomial distribution with number of trialsMGs and event probabilities (a, b, c)′. In other words,
for S > s ≥ s∗(µt):

f .,st+1 =

(
fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)
 Multi

(
µs,t,

(
a
b
c

))
and g.,st+1 =

(
gs−1,s
t+1

gs,s
t+1

gs+1,s
t+1

)
 Multi

(
MGs,

(
a
b
c

))

Furthermore, we also have:

µs∗(µt)−1,t+1 = f
s∗(µt)−1,s∗(µt)
t+1 + g

s∗(µt)−1,s∗(µt)
t+1

µs∗(µt),t+1 = f
s∗(µt),s∗(µt)
t+1 + f

s∗(µt),s∗(µt)+1
t+1 + g

s∗(µt),s∗(µt)
t+1 + g

s∗(µt),s∗(µt)+1
t+1

µS,t+1 = fS,S−1
t+1 + fS,St+1 + gS,S−1

t+1 + gS,St+1

Note that we have

f .,St+1 =
(

fS−1,S
t+1

fS,S
t+1

)
 Multi (µS,t, (

a
b+c )) and g.,St+1 =

(
gS−1,S
t+1

gS,S
t+1

)
 Multi (MGS , (

a
b+c ))

Having shown these preliminary results, let us consider: 52

At+1 =
S∑

s=1

(ϕ
1

1−α )
s
µs,t+1 = (ϕ

1
1−α )

s∗t −1
µs∗t −1,t+1 + (ϕ

1
1−α )

s∗t µs∗t ,t+1 +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
µs,t+1 + (ϕ

1
1−α )

S
µS,t+1

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + g

s∗t −1,s∗t
t+1

)
+ (ϕ

1
1−α )

s∗t

(
f
s∗t ,s∗t
t+1 + f

s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t
t+1 + g

s∗t ,s∗t +1

t+1

)

. . . +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1 + f

s,s
t+1 + f

s,s+1
t+1 + g

s,s−1
t+1 + g

s,s
t+1 + g

s,s+1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S−1
t+1 + f

S,S
t+1 + g

S,S−1
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + (ϕ

1
1−α )f

s∗t ,s∗t
t+1 + g

s∗t −1,s∗t
t+1 + (ϕ

1
1−α )g

s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t +1

t+1

)
+

. . . +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1 + g

s,s−1
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s
t+1 + g

s,s
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s+1
t+1 + g

s,s+1
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1 + g

S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1 + (ϕ

1
1−α )f

s∗t ,s∗t
t+1 + g

s∗t −1,s∗t
t+1 + (ϕ

1
1−α )g

s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t +1

t+1

)
+

. . . + ϕ
1

1−α

S−2∑

s=s∗t

(ϕ
1

1−α )
s
(
f
s+1,s
t+1 + g

s+1,s
t+1

)
+

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
(
f
s,s
t+1 + g

s,s
t+1

)
+ (ϕ

1
1−α )

−1
S∑

s=s∗t +2

(ϕ
1

1−α )
s−1

(
f
s−1,s
t+1 + g

s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1 + g

S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1 + g

S,S
t+1

)

=(ϕ
1

1−α )
s∗t

(
ϕ

−1
1−α

(
f
s∗t −1,s∗t
t+1 + g

s∗t −1,s∗t
t+1

)
+ f

s∗t ,s∗t
t+1 + g

s∗t ,s∗t
t+1 + ϕ

1
1−α

(
f
s∗t +1,s∗t
t+1 + g

s∗t +1,s∗t
t+1

))
+

. . . + (ϕ
1

1−α )
s∗t +1

(
ϕ

−1
1−α

(
f
s∗t ,s∗t +1

t+1 + g
s∗t ,s∗t +1

t+1

)
+ f

s∗t +1,s∗t +1

t+1 + g
s∗t +1,s∗t +1

t+1 + ϕ
1

1−α

(
f
s∗t +2,s∗t +1

t+1 + g
s∗t +2,s∗t +1

t+1

))
+

. . . + ϕ
1

1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s+1,s
t+1

+ g
s+1,s
t+1

)
+

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s,s
t+1

+ g
s,s
t+1

)
+ ϕ

−1
1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s−1,s
t+1

+ g
s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S−1

(
ϕ

−1
1−α

(
f
S−2,S−1
t+1

+ g
S−2,S−1
t+1

)
+ f

S−1,S−1
t+1

+ g
S−1,S−1
t+1

+ ϕ
1

1−α
(
f
S,S−1
t+1

+ g
S,S−1
t+1

))

. . . + (ϕ
1

1−α )
S

(
ϕ

−1
1−α

(
f
S−1,S
t+1 + g

S−1,S
t+1

)
+ f

S,S
t+1 + g

S,S
t+1

)

=

S−1∑

s=s∗t

ϕ
s

1−α

(
ϕ

−1
1−α

(
f
s−1,s
t+1 + g

s−1,s
t+1

)
+ f

s,s
t+1 + g

s,s
t+1 + ϕ

1
1−α

(
f
s+1,s
t+1 + g

s+1,s
t+1

))
+ (ϕ

1
1−α )

S

(
ϕ

−1
1−α

(
f
S−1,S
t+1 + g

S−1,S
t+1

)
+ f

S,S
t+1 + g

S,S
t+1

)

=

S−1∑

s=s∗t

ϕ
s

1−α







ϕ

−1
1−α

1

ϕ
1

1−α




′



f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


 +




ϕ

−1
1−α

1

ϕ
1

1−α




′



g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1





 + (ϕ

1
1−α )

S



(

ϕ

−1
1−α

1

)
′


 f

S−1,S
t+1

f
S,S
t+1


 +

(
ϕ

−1
1−α

1

)
′


 g

S−1,S
t+1

g
S,S
t+1






52note that we use the notation s∗t instead of s∗(µt) to keep the notation parsimonious)
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It is easy to see that for s < S,

E



(

ϕ
−1
1−α

1

ϕ
1

1−α

)′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1




 = µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′ (
a
b
c

)
= ρµs,t and Var



(

ϕ
−1
1−α

1

ϕ
1

1−α

)′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1




 = µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′

Σ

(
ϕ

−1
1−α

1

ϕ
1

1−α

)
= ̺µs,t

with

Σ =

(
a(1− a) −ab −ac
−ab b(1− b) −bc
−ac −bc c(1 − c)

)

from which it follows that
(

ϕ
−1
1−α

1

ϕ
1

1−α

)′(
fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)
= ρµs,t +

√
̺µs,tε

f
s,t+1

where εfs,t+1 is a mean-zero, unit variance random variable, independent across time and state s
(and independent of µs,t). Furthermore, using the approximation of a multinomial by a multivariate
distribution we can see that εs,t  N (0, 1) for large µs,t (see p377 example 12.7 in Severini (2005)).
Similarly, (

ϕ
−1
1−α

1

ϕ
1

1−α

)′(
gs−1,s
t+1

gs,s
t+1

gs+1,s
t+1

)
= ρMGs +

√
̺MGsε

g
s,t+1

where εgs,t+1 is a mean-zero, unit variance random variable independent across time and state s. This
again can be approximated by a standard normal distributionN (0, 1). Using the same reasoning, we
have
(

ϕ
−1
1−α

1

)′ ( fS−1,S
t+1

fS,S
t+1

)
= ρSµS,t +

√
̺SµS,tε

f
S,t+1 and

(
ϕ

−1
1−α

1

)′ ( gS−1,S
t+1

gS,S
t+1

)
= ρSMGS +

√
̺SMGSε

g
S,t+1

where εfS,t+1 and εgS,t+1 is a mean-zero, unit variance random variable independent across time and
state for s 6= S. This can be approximated by a standard normal distribution N (0, 1). Finally,

ρS =
(

ϕ
−1
1−α

1

)′
( a
b+c ) and ̺S =

(
ϕ

−1
1−α

1

)′ ( a(1−a) −a(1−a)
−a(1−a) a(1−a)

)(
ϕ

−1
1−α

1

)

Let us these results to compute At+1

At+1 =

S−1∑

s=s∗t

ϕ
s

1−α




 ϕ

−1
1−α

1

ϕ
1

1−α




′


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


+


 ϕ

−1
1−α

1

ϕ
1

1−α




′


g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1




+ (ϕ

1
1−α )S

((
ϕ

−1
1−α

1

)′ (
f
S−1,S
t+1

f
S,S
t+1

)
+

(
ϕ

−1
1−α

1

)′ (
g
S−1,S
t+1

g
S,S
t+1

))

=

S−1∑

s=s∗t

ϕ
s

1−α

(
ρµs,t +

√
̺µs,tε

f
s,t+1 + ρMGs +

√
̺MGsε

g
s,t+1

)
+ (ϕ

1
1−α )S

(
ρSµS,t +

√
̺SµS,tε

f
S,t+1 + ρSMGS +

√
̺SMGSε

g
S,t+1

)

=ρ
S∑

s=s∗t

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs +
√
̺

S∑

s=s∗t

ϕ
s

1−α

(√
µs,tε

f
s,t+1 +

√
MGsε

g
s,t+1

)
+ . . .

. . .+ (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)

=ρ
S∑

s=s∗t −1

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs − ρϕ
s∗t −1

1−α µs∗t −1,t +
√
̺

S∑

s=s∗t

ϕ
s

1−α

(√
µs,tε

f
s,t+1 +

√
MGsε

g
s,t+1

)
+ . . .

. . .+ (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)

=ρ
S∑

s=s∗t −1

ϕ
s

1−α µs,t + ρ
S∑

s=s∗t

ϕ
s

1−α MGs − ρϕ
s∗t −1

1−α µs∗t −1,t + (ϕ
1

1−α )S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS

)
+ . . .

. . .+
√
̺

S∑

s=s∗t

ϕ
s

1−α
√
µs,tε

f
s,t+1 +

√
̺

S∑

s=s∗t

ϕ
s

1−α
√

MGsε
g
s,t+1 + (ϕ

1
1−α )S

((√
̺SµS,t −

√
̺µS,t

)
εfS,t+1 +

(√
̺SMGS −

√
̺MGS

)
εgS,t+1

)
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Note that, by definition, At =
∑S

s=s∗t−1 ϕ
s

1−αµs,t and Et(ϕ) =
∑S

s=s∗t
ϕ

s

1−αMGs − ϕ
s∗t −1

1−α µs∗t−1,t. We

define OA
t ≡ (ϕ

1

1−α )S ((ρS − ρ)µS,t + (ρS − ρ)MGS). Furthermore,

Vart
[
At+1

]
= σ

2
t =Var



√

̺

S∑

s=s∗t

ϕ
s

1−α √
µs,tε

f
s,t +

√
̺

S∑

s=s∗t

ϕ
s

1−α
√

MGsε
g
s,t+1 + (ϕ

1
1−α )

S
((√

̺SµS,t+1 −√̺µS,t

)
ε
f
S,t+1

+
(√

̺SMGS −
√

̺MGS

)
ε
g
S,t+1

)



=̺
S∑

s=s∗t

ϕ
2s

1−α µs,t + ̺
S∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

=̺
S∑

s=s∗t

ϕ
2s

1−α µs,t + ̺
S∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

=̺

S∑

s=s∗t −1

ϕ
2s

1−α µs,t + ̺

S∑

s=s∗t

ϕ
2s

1−α MGs − ̺ϕ

2(s∗t −1)

1−α µs∗t ,t + ϕ
2S

1−α
(
(
√

̺S − √
̺)

2
µS,t + (

√
̺S − √

̺)
2
MGS

)

Note that Dt =
∑S

s=s∗t−1 ϕ
2s

1−αµs,t while Et(ϕ
2) =

∑S
s=s∗t

ϕ
2s

1−αMGs − ϕ
2(s∗t −1)

1−α µs∗t ,t and we defineOσ
t ≡

ϕ
2S

1−α

((√
̺S −√

̺
)2
µS,t +

(√
̺S −√

̺
)2
MGS

)
. It follows that

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 where σt = ̺Dt + ̺Et(ϕ

2) +Oσ
t

with εt+1 a mean zero and unit variance random variable. When using the approximation of a multi-
nomial by a multivariate normal distribution, it is easy to show that εt+1 follow a standard normal
distribution. The above proof applies to the no entry-exit case with little changes using the fact that

f .,1t+1 =
(

f1,1
t+1

f2,1
t+1

)
 Multi (µ1,t, ( a+b

c ))

This completes the proof of the law of motion of aggregate productivityAt. �

Proof: Aggregate Output

To prove the law of motion of aggregate output (in percentage deviation from its steady-state value),
we first solve for aggregate output, Yt, as a function of the univariate state variableAt analytically. We
then study their first order relationship. The next step is then to take the first-order approximation
of the equation describing the dynamics of At. Finally, we find the implied first-order dynamics of
Yt.
Let us first compute aggregate output Yt as a function ofAt only:

Yt =

Nt∑

i=1

yi
t =

S∑

s=1

µs,t(ϕ
s)

1
1−α

( α

wt

) α
1−α

=
( α

wt

) α
1−α

At

Recall that wt =
(
α

1

1−α At

LM

) 1−α

γ(1−α)+1

. Substituting the expression of the wage in the latter equation

yields Yt = α
αγ

γ(1−α)+1

(
1

L(M)

) −α

γ(1−α)+1

(At)
1− α

γ(1−α)+1 . This last equality, taken at the first order, implies

that:
Ŷt =

(
1− α

γ(1− α) + 1

)
Ât (37)

where X̂t of a variableXt is the percentage deviation from its steady-state valueX: X̂t = (Xt−X)/X.

Let us define ψ ≡
(
1− α

γ(1−α)+1

)
.

We then take the percentage deviation from steady-state of Equation 34:

At+1 =ρAt + ρEt +OA
t + σtεt+1

A =ρA+ ρE +OA

At+1 − A =ρ(At − A) + ρ(Et − E) + (OA
t −O) + σtεt+1

At+1 − A

A
=ρ

At − A

A
+ ρ

E

T

Et − E

E
+

OA

A

OA
t −O

O
+

σt

A
εt+1
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Ât+1 =ρÂt + ρ
E

A
Êt +

OA

A
ÔA

t +
σt

A
εt+1

Ŷt+1 =ρŶt +

(
1− α

γ(1− α) + 1

)
ρ
E

A
Êt +

(
1− α

γ(1− α) + 1

)
OA

A
ÔA

t +

(
1− α

γ(1− α) + 1

)
σt

A
εt+1

where the second line is Equation 34 at the steady-state; in the third line we subtract the second
from the first line; in the fourth line we divide both sides by the steady-state value of A and in the
last line we use Equation 37. �

B.6 Proof of Proposition 3: Aggregate Persistence

In this appendix, we prove Proposition 3 regarding the comparative statics results for aggregate per-
sistence, ρ. We first express ρ as a function of b, a measure of micro-level persistence, and of δ, the
tail of the productivity stationary distribution.

First, note that from definition δ = log(a/c)
logϕ , it follows that c = aϕ−δ. Secondly, from the fact that

b = 1 − a − c = 1 − a(1 + ϕ−δ) we have that a = 1−b
1+ϕ−δ . From Theorem 2, aggregate persistence is

ρ = aϕ
−1

1−α + b+ cϕ
1

1−α . In this last equation, let us substitute c and a using c = aϕ−δ and a = 1−b
1+ϕ−δ :

ρ =
1− b

1 + ϕ−δ
ϕ

−1
1−α + b+ ϕ−δϕ

1
1−α

1− b

1 + ϕ−δ

ρ =
1− b

1 + ϕ−δ

[
ϕ

−1
1−α − ϕ−δ + ϕ−δϕ

1
1−α − 1

]
+ 1

First, it is clear that if δ = 1
1−α , then it follows that ρ = 1. This is exactly (iii) of the Proposition 3.

Second, from the expression of ρ, it is clear that dρ
db > 0 if and only if g(δ) = ϕ

−1

1−α −ϕ−δ+ϕ−δϕ
1

1−α −1 <

0. Note that g( 1
1−α ) = 0 and g(δ) −→

δ→∞
ϕ

−1

1−α − 1 < 0 since ϕ > 1. The derivative of g is g′(δ) =

−(− logϕ)ϕ−δ + (− logϕ)ϕ−δ+ 1

1−α < 0. It follows that for δ > 1
1−α , then g(δ) < 0 and thus dρ

db > 0. We
have just shown (i).

Finally to show (ii), let us rewrite ρ = − (b−1)g(δ)
1+ϕ−δ + 1. We have shown that for g(δ) is decreasing in δ,

since b < 1 it is clear that (b−1)g(δ) is increasing in δ. Note that 1
1+ϕ−δ is also increasing in δ. It follows

that (b−1)g(δ)
1+ϕ−δ is increasing in δ which then implies that ρ is decreasing in δ, which is the statement in

(ii).

�

B.7 Intermediate result: the link between the number of incumbentsN and the number
of potential entrants M

In this appendix, we are interested in the relationship between the number of incumbents N , the
number of potentials entrants M , and the value of their ratio when N goes to infinity. We show that
as N goes to infinity, the ratio M/N goes to a constant. This means that taking the endogenous
variable N or the exogenous parameterM to infinity is strictly equivalent.
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The number of firms is simply the sum of the number of firms in each bin:

N =
S∑

s=1

µs = µs∗−1 +
S∑

s=s∗

µs

=a
(
MKeC1 +MKeC2(ϕ

s∗)−δe +MKeC3 +MKe(ϕ
s∗)−δe

)
+MKeC3

S∑

s=s∗

1

+MKeC1(ϕ
s∗)δ

S∑

s=s∗

(ϕs)−δ +MKeC2

S∑

s=s∗

(ϕs)−δe

=a
(
MKeC1 +MKeC2(ϕ

s∗)−δe +MKeC3 +MKe(ϕ
s∗)−δe

)
+MKeC3(S − s∗ + 1)

+MKeC1(ϕ
s∗)δ

(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1− ϕ−δ
+MKeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1− ϕ−δe

thus, by dividing both side byM , we have

N

M
= a

(
KeC1 +Ke(C2 + 1)(ϕs∗ )−δe +KeC3

)
+KeC3(S− s∗ +1)+KeC1(ϕ

s∗ )δ
(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1− ϕ−δ
+KeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1− ϕ−δe

Let us note that under assumption 2
(
ϕ−δ

)S
=
(
ϕS
)−δ

=
(
ZN1/δ

)−δ

= Z−δN−1 −→
N→∞

0

and that, since S = 1
logϕ(logZ + 1

δ logN), we have

SC3 =
1

logϕ
(logZ +

1

δ
logN)

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
N−δe/δ −→

N→∞
0

Thus, we have that
N

M
−→

M→∞
(E∞)−1 :=a

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)(ϕs∗)−δe
)

+ (ϕδe − 1)C∞
1

1

1− ϕ−δ
+ (ϕδe − 1)C2

(
ϕ−δe

)s∗

1− ϕ−δe

where E∞ is the ratio of the number of potential entrants M and the number of incumbents, when
there is an infinite number of potential entrant. Note that this ratio is a function of the equilibrium
threshold s∗ whenS → ∞. The last equation shows thatM andN are equivalent when the number of
incumbents is large. Thus, takingN to infinity is the same as takingM to infinity i.e E∞N ∼

M→∞
M .

B.8 Proof of Propositions 4 and 5: Aggregate Volatility

In this appendix, we prove Proposition 5 describing how aggregate volatility decays with the number
of firmsN . This proof nests the proof of Proposition 4.

To prove this proposition, we study the asymptotic behavior of A, D and deduce the one for D/A2,
when M goes to infinity. We complete the proof by studying the behavior of the remaining terms
E(ϕ2) andOσ andE(ϕ2)/A2 andOσ/A2.

At this stage is important to note that, under Assumption 2, whenN (and thereforeS) goes to infinity,
the limit of the wage and the threshold are w and s∗ which satisfy the system of equations given by
the equation in Lemma 2 and Equation 8 in Proposition 1. This system of equations shows that w
and s∗ are a function of structural parameters of the model. On many occasions in the following
proof, we will take limits of expressions that are functions of s∗. These limits will therefore depend
on s∗ which, in turn, depend on the structural parameters of the model.
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Note further, that in the context of Proposition 4 without entry/exit, the number of incumbents firms
N is an exogenous variable that we can take to the infinity. However, in the context of Proposition 5
with entry/exit, N is an endogenous variable. Nevertheless, taking the number of potential entrants
M to infinity also implies that the incumbent number of firms N also goes to infinty, as it is shown
in the above Online Appendix B.7.

Now, the proof below applies to both Propositions 4 and 5. All the limits below are taken with respect
to M ; however, when the proof applies to Proposition 4 without entry/exit, every such limit should
be read as with respect to N .

Step 0: Limit of the stationary distribution when the number of firms goes to infinity

The second step of the proof below will consist of finding the limit of constants Ke, C1, C2 and C3 as
M (and thus the number of firms N ) goes to infinity. After finding these limits, we take the limit of
Equation 27 in the previous lemma.

Here we first describe the asymptotic behavior of Ke. Recall that the entrant distribution sums to
one.53

1 =
S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe − (ϕ−δe)S+1

Under Assumption 2 and since δe, δ > 0 we have
(
ϕ−δe

)S
=
(
ϕS
)−δe

=
(
ZN1/δ

)−δe
= Z−δeN−δe/δ −→

M→∞
0

by applying these results to the expression for Ke, it follows that Ke −→
M→∞

ϕδe − 1.

Let us now focus on the asymptotic behavior of C3, C2 andC1. From Lemma 1, we have

C3 =
−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)
=

−ϕ−δe(ϕS)−δe

(1− ϕ−δe)(a− c)
=

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
N−δe/δ −→

M→∞
0

We also have that

C2 :=

(
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)

which is independent of S and thus ofN .

Finally, we have

C1 =
c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)

−→
M→∞

c
(
−a(ϕ−δe)s

∗

+ c(ϕ−δe)s
∗

)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)
=

c

a

−(a− c)(ϕ−δe)s
∗

(1− ϕ−δe)(a− c)(aϕ−δe − c)

and therefore

C1 −→
M→∞

C∞
1 :=

c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

We have just found the limit ofKe,C1,C2 andC3 whenN goes to infinity. We then apply these results
to the stationary distribution by takingN to infinity. According to Lemma 1, we have for s∗ ≤ s ≤ S:

µs

M
= KeC1

(
ϕs

ϕs∗

)−δ

+KeC2(ϕ
s)−δe +KeC3

53Recall that we assume that G sums to one. We also assume that the number of potential entrants in bin s is MGs, so
that the total number of potential entrants is M .
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Under assumption 2, we have just shown that when the number of firms, N , goes to infinity, the
stationary distribution is given by:

µs

M
−→

M→∞

(
ϕδe − 1

) c

a

(ϕ−δe)s
∗

(1− ϕ−δe)(c− aϕ−δe)

(
ϕs

ϕs∗

)−δ

+
(
ϕδe − 1

) (
a(ϕ−δe)2 + bϕ−δe + c

)

(a(ϕ−δe)2 − ϕ−δe(a+ c) + c)
(ϕs)−δe

Step 1: How A evolves when the number of incumbents converges to infinity

For a given number of firms, let us look at the expression for A:

A =

S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +
S∑

s=s∗

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗
)−δe

+MKeC3 +MKe(ϕ
s∗)−δe

)

+
S∑

s=s∗

(ϕs)
1

1−α

(
MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)

Dividing both sides byM , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ S∑

s=s∗

(
ϕ−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ−δe+

1
1−α

)s
+KeC3

S∑

s=s∗

(ϕ
1

1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗
)−δe

+KeC3 +Ke(ϕ
s∗)−δe

)

+KeC1

(
ϕs∗
)δ
(
ϕ−δ+ 1

1−α

)s∗
−
(
ϕ−δ+ 1

1−α

)S+1

1− ϕ−δ+ 1
1−α

+KeC2

(
ϕ−δe+

1
1−α

)s∗
−
(
ϕ−δe+

1
1−α

)S+1

1− ϕ−δe+
1

1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Recall that under assumption 2, we have

(ϕ
1

1−α )S = (ϕS)
1

1−α = (ZN1/δ)
1

1−α = Z
1

1−αN
1

δ(1−α)

(
ϕ−δ+ 1

1−α

)S
=
(
ϕS
)−δ+ 1

1−α
=
(
ZN1/δ

)−δ+ 1
1−α

= Z−δ+ 1
1−α N

−1+ 1
δ(1−α)

(
ϕ−δe+

1
1−α

)S
=
(
ϕS
)−δe+

1
1−α

=
(
ZN1/δ

)−δe+
1

1−α
= Z−δe+

1
1−αN

− δe
δ

+ 1
δ(1−α)

Since we assume that δ(1−α) > 1 and δe(1−α) > 1 we have both − δe
δ + 1

δ(1−α) < 0 and−1+ 1
δ(1−α) < 0

and thus both
(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1

1−α

)S
converge to zero when M (and thus N ) goes to infinity.

We also have that
C3(ϕ

1
1−α )S =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
Z

1
1−αN

−δe/δ+
1

δ(1−α) −→
M→∞

0

Putting these results together yields

A

M
−→

M→∞
A∞ := a(ϕs∗−1)

1
1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδe − 1)C∞
1

(
ϕ

1
1−α

)s∗

1− ϕ−δ+ 1
1−α

+ (ϕδe − 1)C2

(
ϕ−δe+

1
1−α

)s∗

1− ϕ−δe+
1

1−α

71



In other words, under assumption 2 and if δ(1 − α) > 1 and δe(1− α) > 1 then A ∼
M→∞

A∞M or

A ∼
M→∞

E∞A∞N (38)

Note here that when M (N ) goes to infinity the threshold s∗ converges to s∗, and therefore it follows
that the constants E∞, A∞ are a function of s∗.

Step 2: How D evolves when the number of incumbents converges to infinity

For a given number of firms, the steady-state value of D:

D =
S∑

s=1

(
(ϕs)

1
1−α

)2
µs

=
(
(ϕs∗−1)

1
1−α

)2
µs∗−1 +

S∑

s=s∗

(
(ϕs)

1
1−α

)2
µs

D

M
=(ϕs∗−1)

2
1−α µ̂s∗−1 +KeC1(ϕ

s∗)δ
S∑

s=s∗

(ϕs)
2

1−α
−δ +KeC2

S∑

s=s∗

(ϕs)
2

1−α
−δe +KeC3

S∑

s=s∗

(ϕs)
2

1−α

=a(ϕs∗−1)
2

1−α

(
KeC1 +Ke(C2 + 1)

(
ϕs∗
)−δe

+KeC3

)

+KeC1(ϕ
s∗)δ

(ϕ
2

1−α
−δ)s

∗ − (ϕ
2

1−α
−δ)S+1

1− ϕ
2

1−α
−δ

+KeC2
(ϕ

2
1−α

−δe)s
∗ − (ϕ

2
1−α

−δe)S+1

1− ϕ
2

1−α
−δe

+KeC3
(ϕ

2
1−α )s

∗ − (ϕ
2

1−α )S+1

1− ϕ
2

1−α

Under assumption 2, we have

(ϕ
2

1−α
−δ)S = (ϕS)

2
1−α

−δ = (ZN1/δ)
2

1−α
−δ = Z

2
1−α

−δN
2

δ(1−α)
−1

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

C3(ϕ
2

1−α )S = C3(ϕ
S)

2
1−α =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α N

2
δ(1−α)

− δe
δ

Under the assumption that δ(1−α) < 2 and δe(1−α) < 2, these terms diverge whenM (that is when
N ) goes to infinity. Thus we are able to look at the asymptotic equivalent of D/M ,

D

M
∼

M→∞
a(ϕs∗−1)

2
1−α

(
(ϕδ

e − 1)C∞
1 + (ϕδ

e − 1)(C2 + 1)
(
ϕs∗
)−δe

)

+ (ϕδ
e − 1)C∞

1 (ϕs∗)δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δN

2
δ(1−α)

−1

+

(
(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α

)
N

2
δ(1−α)

− δe
δ

By using the intermediate result above on the link between N and M , we have

D ∼
M→∞

a(ϕs∗−1)
2

1−α

(
(ϕδ

e − 1)C∞
1 + (ϕδ

e − 1)(C2 + 1)
(
ϕs∗
)−δe

)
E∞N

+ (ϕδ
e − 1)C∞

1 (ϕs∗)δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δE∞N

2
δ(1−α)

+

(
(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α

)
E∞N

2
δ(1−α)

− δe
δ

+1
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Or equivalently, defining the appropriate constants D∞
1 ,D

∞
2 and D∞

3 we have that, under Assump-
tion 2:

D ∼
M→∞

D∞
1 N +D∞

2 N
2

δ(1−α) +D∞
3 N

2
δ(1−α)

− δe
δ

+1 (39)

Note that as we take the limit, the threshold s∗ converges to s∗ and therefore the constants D∞
1 ,D

∞
2

and D∞
3 are a function of s∗.

Step 3: How D/A2 evolves withM,N :

The first term of aggregate volatility described by Equation 35 is D
A2 . Let us look at its equivalent

when M goes to infinity by combining Equations 38 and 39

D

A2
∼

M→∞

D∞

1
(E∞A∞)

N
+

D∞

2
(E∞A∞)

N
2− 2

δ(1−α)

+

D∞

3
(E∞A∞)

N
1+ δe

δ
− 2

δ(1−α)

Under the assumptions that δ(1−α) < 2 and δe(1−α) < 2, then 2− 2
δ(1−α) < 1 and 1+ δe

δ − 2
δ(1−α) < 1.

In other words, the last two terms dominate the first term and thus:

D

A2
∼

M→∞

D∞

2
(E∞A∞)

N
2− 2

δ(1−α)

+

D∞

3
(E∞A∞)

N
1+

δe
δ

− 2
δ(1−α)

(40)

Note again that, for the case of entry/exit (Proposition 5), when we take the limit M to infinity the
threshold s∗ converges to s∗. It implies that the constants E∞, A∞,D∞

2 and D∞
3 are a function of s∗.

�

Step 4: How E(ϕ2) andOσ evolve withM,N

Here we prove a similar result for the remaining terms in Equation 35, i.e. E(ϕ2)/A2 and Oσ/A2. We
first find the expression for E(ϕ2)

M and then for Oσ

M , when M → ∞. The steady-state expression of
E(ϕ2) is

E(ϕ2) =

(
M

S∑

s=s∗

Gs

(
ϕ2s) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=

(
MKe

S∑

s=s∗

(ϕs)−δe
(
ϕ2s) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=MKe

(
ϕ−δe+

2
1−α

)S+1

−
(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1)

µs∗−1,t

)

Under Assumption 2, we still have

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

Thus, it follows

E(ϕ2)

M
=Ke

(
Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ ϕ−δe+
2

1−α

)
−
(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))

=KeN
2

δ(1−α)
− δe

δ

(
Z

2
1−α

−δeϕ−δe+
2

1−α

)
−N

−2
δ(1−α)

+ δe
δ

(
ϕ−δe+

2
1−α

)s∗

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))
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Under the assumption that δe(1− α) < 2, we have

E(ϕ2)

M
∼KeN

2
δ(1−α)

− δe
δ

(
Z

2
1−α

−δeϕ−δe+
2

1−α

)

(
ϕ−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
ϕδe − 1

)(
C∞

1 + (C2 + 1)ϕs∗
))

Recall that M ∼ E∞N . Then, for some constant E∞
1 and E∞

2 , we have E(ϕ2) ∼ E∞
1 N

1− δe
δ
+ 2

δ(1−α) +
E∞

2 N . Using the fact thatA2 ∼
M→∞

E∞A∞N and the above equation, we get for some other constant

E∞
1 and E∞

2 :
E(ϕ2)

A2
∼ E∞

1

N
1+ δe

δ
− 2

δ(1−α)

+
E∞
2

N
∼ E∞

1

N
1+ δe

δ
− 2

δ(1−α)

(41)

where the last equivalence comes from the fact that δ(1 − α) > 2 and δe(1 − α) > 2 and thus 1 >
1 + δe

δ − 2
δ(1−α) . Note that as M goes to infinity, the threshold s∗ converges to s∗. It follows that E∞

1

and E∞
2 are a function of s∗.

The steady-state expression for Oσ is:

Oσ

M
= −Ke(̺− ̺′)(ϕ−δe(ϕ

1
1−α )2)S − (̺− ̺′)(ϕ

1
1−α )2S µ̂S

= −Ke(̺− ̺′)(ϕ−δe(ϕ
1

1−α )2)S − (̺− ̺′)(ϕ
1

1−α )2S
(
KeC1(ϕ

s∗)−δ(ϕS)−δ +KeC2(ϕ
S)−δe +KeC3

)

= −Ke(̺− ̺′)(ϕ−δe+
2

1−α )S − (̺− ̺′)
(
KeC1(ϕ

s∗)−δ(ϕ−δ+ 2
1−α )S +KeC2(ϕ

−δe+
2

1−α )S +KeC3(ϕ
2

1−α )S
)

Recall that under Assumption 2,

(ϕ
2

1−α
−δ)S = (ϕS)

2
1−α

−δ = (ZN1/δ)
2

1−α
−δ = Z

2
1−α

−δN
2

δ(1−α)
−1

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
− δe

δ

C3(ϕ
2

1−α )S = C3(ϕ
S)

2
1−α =

−ϕ−δeZ−δe

(1− ϕ−δe)(a− c)
(Z)

2
1−α N

2
δ(1−α)

− δe
δ

Using the above relations, we then have, for some constants O∞
1 andO∞

2 ,

Oσ ∼ O∞
1 N

1− δe
δ

+ 2
δ(1−α) +O∞

2 N
2

δ(1−α)

from which it follows that for, some other constants, O∞
1 and O∞

2

Oσ

A2
∼ O∞

1

N
1+

δe
δ

− 2
δ(1−α)

+
O∞

2

N
2− 2

δ(1−α)

(42)

Again, note that as M goes to infinity, the threshold s∗ converges to s∗. It follows that O∞
1 and O∞

2

are a function of s∗.
Putting Equations 40, 41 and 42 together yields the results in Equation 14. �

B.9 Proof of Proposition 6

To solve for the general case with aggregate uncertainty, we deploy a different strategy relative to that
used in the stationary case. Whereas we used a constructive proof for the stationary case, we follow
a guess and verify strategy for the case featuring aggregate fluctuations. We first show some useful
preliminary results to compute conditional expectations. We then show that the value function has
to be bounded above by the value of a firm when cf = 0. Finally, we form our guess and solve for the
value function.
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B.9.1 Preliminary Results

Lemma 3 Under Assumption 3, for any ξ

Et

[
wξ
t+1

]
≈ wξ

t ρ
(1−α)ξ

γ(1−α)+1 I(ξ)

where

I(ξ) =

∫ ∞

−∞

(
1 +

E(ϕ)

A
+
OA

A
+
σ

A
ε

) (1−α)ξ

γ(1−α)+1

φ(ε)dε

where φ(ε) is the probability distribution function of a standard normal random variable andX is the
stationary equilibrium value of Xt.

Proof: First note that, in equilibrium, wξ
t =

(
α

1

1−α At

M

) (1−α)ξ

γ(1−α)+1

. Let us now compute the conditional

expectation

Et

[
wξ
t+1

]
=

∫

µt+1

wξ
t+1Γ(dµt+1|µt) =

∫

µt+1

(
α

1

1−α
At+1

M

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

=

(
α

1

1−α
At

M

) (1−α)ξ

γ(1−α)+1
∫

µt+1

(
At+1

At

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

=

(
α

1

1−α
At

M

) (1−α)ξ

γ(1−α)+1
∫

µt+1

(
ρAt + ρEt(ϕ) +OA

t + σtεt+1

At

) (1−α)ξ

γ(1−α)+1

Γ(dµt+1|µt)

= ρ
(1−α)ξ

γ(1−α)+1wξ
t

∫ ∞

−∞

(
1 +

Et(ϕ)

At
+
OA

t

ρAt
+

σt
ρAt

ε

) (1−α)ξ

γ(1−α)+1

φ(ε)dε

where we use Theorem 3 in the third line. Under Assumption 3, the integral in the last equation is
equal to I(ξ) which completes the proof of the lemma. �

B.9.2 Bounded Above by the case cf = 0

Lemma 4 For S → ∞, the value function of a firm at productivity level ϕs with aggregate state µt
satisfies the following inequality

V (µt, ϕ
s) ≤ V cf=0(µt, ϕ

s)

where V cf=0(µt, ϕ
s) is the value of a firm at productivity level ϕs with aggregate state µt that faces an

operating cost cf equal to zero. This is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβ̃α
w

−α

1−α

t (ϕs)
1

1−α

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 and I(ξ) =
∫∞
−∞

(
1 + E(ϕ)

A + OA

A + σ
Aε
) (1−α)ξ

γ(1−α)+1

φ(ε)dε. The inequality

becomes an equality when cf = 0.

Proof:

We prove this proposition in two steps. We first show the inequality stated in the Lemma and then
solve for V cf=0(µt, ϕ

s).
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Bounding V (µt, ϕs) ≤ V cf=0(µt, ϕs): First note that the instantaneous profit is bounded above by the
profit of a firm facing zero fixed operating costs cf :

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1− α)− cf ≤ πcf=0(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α

1−α

(1 − α)

A firm j’s problem can be rewritten as a stopping time problem:

V (µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπ∗(µi+t, ϕ
sj,t+i)

}

where the j firm choose the optimal time of exit, L, to maximize its discounted sum of instantaneous
profit. The same firm facing an operating cost cf = 0 every period will have a value

V cf=0(µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπcf=0(µi+t, ϕ
sj,t+i)

}

It is optimal for this firm to choose L = ∞. Since ∀(s, µ), π∗(µ,ϕs) ≤ πcf=0(µ,ϕs) we have

V (µt, ϕ
sj,t) ≤ V cf=0(µt, ϕ

sj,t)

This completes the first part of the proof.

Solving for V cf=0(µt, ϕs): Note that V cf=0(µt, ϕ
s) must satisfy the following Bellman equation:

V cf=0(µt, ϕ
sj,t) = πcf=0(µ,ϕsj,t) + βEt

[
V cf=0(µt, ϕ

sj,t+1)
]

(43)

We are following a guess and verify strategy. Our guess is

V cf=0(µt, ϕ
s) = K1 +K2w

−α

1−α

t (ϕs)
1

1−α

and we are solving forK1 andK2. Let us compute the right hand side of the Bellman equation above.
It is easy to show using the definition of ρ

aV cf=0(µt, ϕ
s−1) + bV cf=0(µt, ϕ

s) + cV cf=0(µt, ϕ
s+1) = K1 +K2ρw

−α

1−α

t (ϕs)
1

1−α

and the continuation value is
∫

w′

(
aV cf=0(µ′, ϕs−1) + bV cf=0(µ′, ϕs) + cV cf=0(µ′, ϕs+1)

)
Γ(dµ′|µt)

= K1 +K2ρ (ϕ
s)

1

1−α

∫

w′

w′ −α

1−αΓ(dµ′|µt)

= K1 +K2ρ (ϕ
s)

1

1−α w
−α

1−α

t I

( −α
1− α

)
ρ

−α

γ(1−α)+1

where we use Lemma 3 in the last line of derivations. The Bellman Equation 43 writes

K1 +K2w
−α

1−α

t (ϕs)
1

1−α = (ϕs)
1

1−α

(
α

wt

) α

1−α

(1− α) + βK1 + βK2ρ (ϕ
s)

1

1−α w
−α

1−α

t I

( −α
1− α

)
ρ

−α

γ(1−α)+1

Matching coefficients yields

K1 = βK1

K2 =
(1− α)α

α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

76



Since β < 1 it follows that K1 = 0 and the value of a firm facing zero operating cost at productivity
level ϕs and aggregate state µt is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t (ϕs)
1

1−α

�

Proof of the proposition

The value of an incumbent firm, V (µt, ϕ
s), satisfies the following Bellman equation:

V (µt, ϕ
s) = π∗(µt, ϕ

s) + βmax

{
0,

∫

µ′

(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt)

}

the policy function of such a problem satisfies a threshold rule, with threshold s∗(µ) such that

V (µt, ϕ
s) =

{
π∗(µt, ϕ

s) + β
∫
µ′

(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt) for s ≥ s∗(µt)

π∗(µt, ϕ
s) for s ≤ s∗(µt)− 1

(44)

We adopt a guess and verify strategy to prove this proposition. In this case, we are forming a guess for
both s∗(µt) and V (µt, ϕ

s). To form our guess we are going to draw our inspiration from the stationary
case. In that case, we first solved for the homogeneous equation, and we were using the roots of this
equation. The equivalent of this homogeneous equation in the current setting is:

a+ bX + cX2 =
X

βρ
−α(1−α)

γ(1−α)+1

log X

log ϕ I
(
−α logX

logϕ

)

Let r̃1 and r̃2 be the two solutions of this equation, such that r̃1 > ϕ
1

1−α > r̃2. Let us define the

constants β̃i = βρ
−α(1−α)

γ(1−α)+1

log r̃i
log ϕ I

(
−α log r̃i

logϕ

)
for i = 1, 2. It is clear that r̃i satisfies

ar̃i
s + br̃i

s+1 + cr̃i
s+2 = r̃i

s
(
a+ br̃i + cr̃i

2
)
= r̃i

s r̃i

β̃i
=
r̃i

s+1

β̃i

B.9.2.1 Guess for s∗(µt): We are guessing that the entry/exit thesholds take the same form as in
the stationary case:

s∗(µt) = (1− α)
log χ

log ϕ
+ α

logwt

logϕ

where χ is a constant to be solved for. Given this, it is easy to show that for anyX > 0

X−s∗(wt) = X−(1−α) log χ

log ϕ
−α log wt

log ϕ = X−(1−α) log χ

log ϕX−α log wt
log ϕ = χ−(1−α) log X

log ϕw
−α log X

log ϕ

t

B.9.2.2 Guess for V (µt, ϕ
s): To form a guess of the value function, we draw inspiration from the

stationary case and thus our guess is, for s ≥ s∗(wt)

V (µt, ϕ
s) = K1 +K2w

−α

1−α

t

(
ϕ

1

1−α

)s
+K3r̃2

s+1−s∗(wt) +K4r̃1
s+1−s∗(wt)

where the constants K1,K2,K3 and K4 have to be solves for. Using this guess for s∗(wt) gives

V (µt, ϕ
s) = K1 +K2w

−α

1−α

t

(
ϕ

1

1−α

)s
+K3χ

−(1−α) log r̃2
log ϕ w

−α log r̃2
log ϕ

t r̃2
s+1 +K4χ

−(1−α) log r̃1
log ϕ w

−α log r̃1
log ϕ

t r̃1
s+1
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Let us introduce the following simplifying notation. Let us define K̃3 = K3χ
−(1−α) log r̃2

log ϕ and K̃4 =

K4χ
−(1−α) log r̃1

log ϕ , and V (wt, s) = V (µt, ϕ
s). With this notation, our guess can be written, for s ≥ s∗(wt)

V (wt, s) = K1 +K2w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α log r̃1
log ϕ

t r̃1
s+1

B.9.2.3 Bellman equation: We are computing the right hand side of the Bellman Equation 44
starting with the continuation value of an incumbent firm. Note that

aV (wt, s− 1) + bV (wt, s) + cV (wt, s+ 1) =

K1(a+ b+ c)

+K2w
−α

1−α

t

(
ϕ

1

1−α

)s (
aϕ

−1

1−α + b+ cϕ
1

1−α

)

+ K̃3w
−α

log r̃2
log ϕ

t

(
ar̃2

s + br̃2
s+1 + cr̃2

s+2
)

+ K̃4w
−α log r̃1

log ϕ

t

(
ar̃1

s + br̃1
s+1 + cr̃1

s+2
)

=K1 +K2ρw
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t

1

β̃2
r̃2

s+1 + K̃4w
−α

log r̃1
log ϕ

t

1

β̃1
r̃1

s+1

using the definition of ρ and r̃i. Let us now compute the continuation value of an incumbent
∫

w′

[
aV (w′, s− 1) + bV (w′, s) + cV (w′, s+ 1)

]
Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s ∫

w′

w′ −α
1−αΓ(dµ′|µt) + K̃3

1

β̃2

r̃2
s+1

∫

w′

w
′−α

log r̃2
log ϕ Γ(dµ′|µt) + K̃4

1

β̃1

r̃1
s+1

∫

w′

w
′−α

log r̃1
log ϕ Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

( −α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1

+ K̃3
1

β̃2

r̃2
s+1I

(
−α

log r̃2
logϕ

)
w

−α
log r̃2
log ϕ

t ρ
−α(1−α)
γ(1−α)+1

log r̃2
log ϕ + K̃4

1

β̃1

r̃1
s+1I

(
−α

log r̃1
logϕ

)
w

−α
log r̃1
log ϕ

t ρ
−α(1−α)
γ(1−α)+1

log r̃1
log ϕ

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

(
−α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1 + K̃3

1

β
r̃2

s+1w
−α

log r̃2
log ϕ

t + K̃4
1

β
r̃1

s+1w
−α

log r̃1
log ϕ

t

where we use Lemma 3 and the definition of β̃i = βρ
−α(1−α)

γ(1−α)+1

log r̃i
log ϕ I

(
−α log r̃i

logϕ

)
. We can now write the

Bellman equation for s ≥ s∗(wt):

V (wt, s) = K1 +K2w
−α
1−α
t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1 =

(ϕs)
1

1−α

(
α

wt

) α
1−α

(1− α)− cf

+ βK1 +K2βρ
(
ϕ

1
1−α

)s
I

(
−α

1− α

)
w

−α
1−α
t ρ

−α
γ(1−α)+1 + K̃3r̃2

s+1w
−α

log r̃2
log ϕ

t + K̃4r̃1
s+1w

−α
log r̃1
log ϕ

t

which yields (after simplification and matching coefficients)

{
K1 = −cf + βK1

K2 = K2βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 + (1− α)α
α

1−α
⇔





K1 = −cf
1−β

K2 = (1−α)α
α

1−α

1−βρI( −α

1−α)ρ
−α

γ(1−α)+1

We are then left to solve for K3 andK4 with the following guess

V (wt, s) =
−cf
1− β

+
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1
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B.9.2.4 Solving for K4: To solve for K4, we are using Lemma 4.

V (s∗(µt), wt) ≤
−cf
1− β

+
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t (ϕs)
1

1−α

where the first equality comes from the fact that V (s,wt) is increasing in s for a given wt and the
second inequality from Lemma 4. Let us divide both sides of this inequality by (ϕs)

1

1−α

V (s∗(µt), wt)

(ϕs)
1

1−α

≤ −cf

1− β

1

(ϕs)
1

1−α

+
(1− α)α

α
1−α

1− βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t + K̃3w

−α
log r̃2
log ϕ

t r̃2

(
r̃2

ϕ
1

1−α

)s

+ K̃4w
−α

log r̃1
log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t

Since r̃2 < ϕ
1

1−α < r̃1 and ϕ
1

1−α > 1, for s→ ∞ this inequality becomes

0 ≤ 0 +
(1− α)α

α

1−α

1− βρI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t + 0 + lim
s→∞

K̃4w
−α log r̃1

log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α

γ(1−α)+1

w
−α

1−α

t

which implies that lims→∞ K̃4w
−α

log r̃1
log ϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

= 0 and, thus, that K4 = 0 since ϕ
1

1−α < r̃1. We are

thus left to solve for K3 with the guess

V (wt, s) =
−cf
1− β

+
(1− α)α

α

1−α

1− ρβ̃α
w

−α

1−α

t

(
ϕ

1

1−α

)s
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s+1

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 .
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B.9.2.5 Solving for K3: To solve for K3 we are using the Bellman Equation 44 at s∗(wt):

aV (wt, s
∗
t − 1) + bV (wt, s

∗
t ) + cV (wt, s

∗
t + 1) =

= a

((
ϕs∗t −1

) 1
1−α

(
α

wt

) α
1−α

(1− α)− cf

)

+ b

(
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s∗t +1

)

+ c

(
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t +1

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t+2

)

=
−cf
1− β

(a(1− β) + b+ c)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t (
aϕ

−1
1−α

(
1− ρβ̃α

)
+ b+ cϕ

1
1−α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t
(
br̃2 + cr̃2

2)

=
−cf
1− β

(1− aβ)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s∗t (
ρ− aϕ

−1
1−α ρβ̃α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t

(
r̃2

β̃2

− a

)

Note that K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t = K3χ

−(1−α) log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s∗t = K3r̃2

−s∗t r̃2
s∗t = K3 and that

(
ϕ

1

1−α

)s∗t
=

χ(1−α) log ϕ
1

1−α

log ϕ w
α log ϕ

1
1−α

log ϕ

t = χw
α

1−α

t . With these in hand it follows

aV (wt, s
∗
t − 1) + bV (wt, s

∗
t ) + cV (wt, s

∗
t + 1) =

=
−cf
1− β

(1− aβ) +
(1− α)α

α

1−α

1− ρβ̃α
χ
(
ρ− aϕ

−1

1−αρβ̃α

)
+K3

(
r̃2

β̃2
− a

)

Note that the above expression is independent of wt. The Bellman Equation 44 at s = s∗t is

−cf
1− β

+
(1− α)α

α

1−α

1− ρβ̃α
w

−α

1−α

t

(
ϕ

1

1−α

)s∗t
+ K̃3w

−α log r̃2
log ϕ

t r̃2
s∗t+1

=
(
ϕs∗t
) 1

1−α

(
α

wt

) α

1−α

(1− α)− cf

+
−cfβ
1− β

(1− aβ) +
(1− α)α

α

1−α

1− ρβ̃α
βχ
(
ρ− aϕ

−1

1−αρβ̃α

)
+K3β

(
r̃2

β̃2
− a

)
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which after simplification yields

−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

χ+K3r̃2

= χα
α

1−α (1− α) − cf +
−cfβ

1− β
(1− aβ) +

(1− α)α
α

1−α

1− ρβ̃α

βχ
(
ρ− aϕ

−1
1−α ρβ̃α

)
+K3β

(
r̃2

β̃2

− a

)

⇔

K3

(
r̃2 − r̃2

β

β̃2

+ βa

)
=

cf
1− β

aβ2 + χα
α

1−α (1− α)

(
1 +

ρβ − ρβaϕ
−1
1−α β̃α)

1− ρβ̃α

− 1

1− ρβ̃α

)

⇔

K3β

(
r̃2

(
1

β
− 1

β̃2

)
+ a

)
=

cf
1− β

aβ2 + χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α

1− ρβ̃α

⇔

K3 =

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

+ χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)

where β̃α = βI
(

−α
1−α

)
ρ

−α

γ(1−α)+1 . It follows that the value of an incumbent for s ≥ s∗t is

V (wt, s) =
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s
+

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

χ
−(1−α)

log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1

+χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)χ−(1−α)

log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1

or equivalently

V (wt, s) =
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s
+

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)

+χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) r̃2s+1−s∗(wt)

which, after rearranging terms, yields

V (wt, s) =
−cf
1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s
+

α
α

1−α (1− α)

1− ρβ̃α

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) w

−α
1−α
t

(
ϕ

1
1−α

)s∗(wt)

r̃2
s+1−s∗(wt)

or

V (wt, s) =
−cf
1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α
t

(
ϕ

1
1−α

)s
+

α
α

1−α (1− α)

1− ρβ̃α

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) w

−α
1−α
t

(
ϕ

1
1−α

)s+1
(

r̃2

ϕ
1

1−α

)s+1−s∗(wt)

or

V (wt, s) =
−cf
1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+ w
−α
1−α
t

(
ϕ

1
1−α

)s (1− α)α
α

1−α

1− ρβ̃α


1 +

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)

(
ϕ

1
1−α

)( r̃2

ϕ
1

1−α

)s+1−s∗(wt)


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B.9.2.6 Solving for χ: χ is such that the continuation value at s = s∗(wt) is equal to zero. The
continuation value is

aV (wt, s
∗
t − 1) + b+ cV (wt, s

∗
t + 1) =

−cf
1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

(
a+ br̃2 + cr̃2

2
)



+ w
−α
1−α
t

(
ϕ

1
1−α

)s∗(wt) (1− α)α
α

1−α

1− ρβ̃α


ρ+

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) (

a+ br̃2 + cr̃2
2)



=
−cf
1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2

β̃2


+ χ

(1− α)α
α

1−α

1− ρβ̃α


ρ+

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) r̃2

β̃2




The last expression is independent of wt. Thus, to solve for χ we just need to equate the above to
zero and this yields

χ =

cf
1−β

(
1− aβ

r̃2
(

1

β
− 1

β̃2

)
+a

r̃2
β̃2

)

(1−α)α
α

1−α

1−ρβ̃α

(
ρ+ −ρβ̃α+ρβ−ρβaϕ

−1
1−α β̃α

β
(
r̃2
(

1

β
− 1

β̃2

)
+a
) r̃2

β̃2

)

which completes the proof. �

C Data Appendix

In this appendix, we describe the different data sources used in the paper. The first data source is
the Business Dynamics Statistics (BDS), giving firm counts by size and age on the universe of firms
in the US economy. Compustat data contains information on publicly traded firms. Finally, we use
publicly available aggregate time series.

C.1 BDS data

According to the US Census Bureau, the Business Dynamics Statistics (BDS) provides annual mea-
sures of firms’ dynamics covering the entire economy. It is aggregated into bins by firm characteris-
tics such as size and size by age. The BDS is created from the Longitudinal Business Database (LBD),
a US firm-level census. The BDS database gives us the number of firms by employment size cat-
egories (1-5, 5-10, 10-20,20-50,50-100,100-250,500-1000,1000-2500,2500-5000,5000-10000) for the
period ranging from 1977 to 2012. Note that the number of firms in each bin is the number of
firms on March 12 of each year. We also source from the BDS the number of firms of age zero by
employment size. We call the latter entrants.

We compute the empirical counterpart of the steady-state stationary distribution in our model based
on this data, by taking the average of each bin over years. We do this for the entrant and incumbent
distributions. We then estimate the tail of these distribution following Virkar and Clauset (2014). We
find that the tail estimate for the (average) incumbent size distribution is 1.0977 with a standard-
deviation of 0.0016. For entrants, this estimate is 1.5708 with standard deviation of 0.0166. To
compute the entry rate, we divide the average number of entrants over the period 1977-2012 by
the average number of incumbents. Over this period there are 48,8140 entrant firms and 4,477,300
incumbent firms; the entry rate is then 10.9%.

To perform the exercise described in Section 5.4, we need to compute the model counterpart of the
time t firm size distribution. According to Theorem 1, these are deviations of the firm size distri-
bution around the (deterministic) stationary firm size distribution. However, in the BDS data, the
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trend of each bin is different. We thus HP-filter each bin of the BDS data with a smoothing pa-
rameter λ = 6.25. Each bin is thus decomposed µBDS

s,t = µBDS−trend
s,t + µBDS−dev

s,t where µBDS
s,t is

the original bin value, µBDS−trend
s,t is its HP-trend and µBDS−dev

s,t is the HP-deviation from trend. The

empirical counterpart of time t firm size distribution in our model is thus µBDS−average
s + µBDS−dev

s,t

where µBDS−average
s is the average of bins s over the period 1977-2012. We then use Equations 1, 3

and 13 to compute the time series for aggregate TFP, Yt and σ2
t

T 2 which we plot in Figure 6 along with
data aggregate time series describe below.

C.2 Compustat

The Compustat database is compiled from mandatory public disclosure documents by publicly
listed firm in the US. It is a firm-level yearly (unbalanced) panel with balance sheet information.
Apart from firm-level identifiers, year and sector (4 digit SIC) information, we use two variables from
Compustat: employment and sales. We use data from the year 1958 to 2009. Sales is a nominal vari-
able. We deflate it using the price deflator given by the NBER-CES Manufacturing Industry Database
for shipments (PISHIP) in the corresponding SIC industry. We focus on real sales because our firm-
level outcomes in the model are real, and therefore, the most immediate counterpart is real sales
data.
Using this dataset, we estimate tail indexes following Gabaix and Ibragimov (2011), performing a log
rank-log size regression on the cross-section of firms each year. Our measure of size is given by the
number of employees. We compute tail estimates for firms above 1k, 5k, 10k, 15k and 20k employees.
We then HP-filter the resulting time-series of tail estimates (with a smoothing parameter of 6.25).

For each year, we also compute the cross-sectional variance of (log) real sales and then HP-filter the
time series using a smoothing parameter of 6.25. As described above, sales are deflated using price
deflator given by the NBER-CES Manufacturing Industry Database. This helps ensure that the empir-
ical correlation between dispersion and aggregate volatility are not being driven by industry-specific
price cyclicality features, which our model is silent on.54 We restrict our sample to manufacturing
firms because of the need for detailed industry-specific price indexes spanning five decades, and,
to maintain comparability across our robustness exercises.55 Finally, we find that there are trends
in this level of cross-sectional dispersion over time.56 Our model is silent about such trends and the
mechanisms that might account for this; we are solely interested in business cycle implications. As
such, we follow Kehrig (2015) in analysing percentage deviations of dispersion from its non-linear
trend57.

54To see this, think of a world where our hypothesis is false. Suppose that the dispersion of real sales is, in fact, fixed over
time and thus uncorrelated with aggregate volatility. Suppose further that in this counterfactual world, nominal prices
are differentially correlated with aggregate volatility. To the econometrician it would seem as nominal sales dispersion is
indeed correlated with aggregate volatility though, clearly, our model - which only carries predictions for real sales - would
be rejected by data.

55The alternative measures of dispersion (based on the ASM and graciously made available by Bloom et al (2018) and
Kehrig (2015)) which we use as a robustness check in Table 7, are only available for the manufacturing sector.

56Note that this is also consistent with the recent literature on the rise of market power and concentration (e.g. Autor et
al (2017) and De Loecker and Eeckhout (2017)).

57Bachmann and Bayer (2014) use a linear trend
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C.3 Aggregate Data

The aggregate data comes from two sources. We take quarterly time series of aggregate TFP and
Output from Fernald (2014). Note that our measure of aggregate TFP is Fernald’s Solow residual
quarterly TFP series (not utilization adjusted). To be precise, from Fernald’s data, we use the "dtfp"
series, defined as output growth minus contribution of primary inputs. For the exercise in Section
5.4, since the BDS data are computed on March 12 of each year, we compute the average over 4 quar-
ters up to, and including, March. For example, for the year 1985 we compute the average of 1984Q2,
1984Q3, 1984Q4 and 1985Q1. We do this for TFP and Output before HP-filtering the resulting time
series with a smoothing parameter of 6.25. The other source for annual time series on aggregate out-
put is taken from the St-Louis FED. We use this series for the correlations reported in Table 4, either
after HP-filtering with smoothing parameter 6.25 or by computing its growth rate.

For the results in Table 5, we estimate a GARCH(1,1) on the de-meaned growth rate of both aggregate
TFP and output, both at a quarterly frequency. The source for this data is Fernald (2014). We take the
square of 4 quarter-average of the conditional standard deviation vector resulting from the estimated
GARCH. We then HP-filter these series with a smoothing parameter of 6.25.

C.4 Robustness Check

Sample Firms with more than 1k 5k 10k 15k 20k
Model Correlation in level −0.68

(0.000)
−0.72
(0.000)

−0.69
(0.000)

−0.64
(0.000)

−0.57
(0.000)

Correlation in growth rate −0.22
(0.000)

−0.29
(0.000)

−0.38
(0.000)

−0.41
(0.000)

−0.43
(0.000)

Data Correlation in (HP filtered) level −0.36
(0.005)

−0.17
(0.20)

−0.34
(0.008)

−0.51
(0.000)

−0.46
(0.000)

Correlation in growth rate −0.29
(0.030)

−0.21
(0.114)

−0.33
(0.011)

−0.43
(0.001)

−0.38
(0.004)

Table 6: Correlation of tail estimate with aggregate output.

NOTE: The tail in the model is estimated for simulated data based on our baseline calibration (cf. Table 2) for an economy
simulated during 20,000 periods. The tail in the data is estimated on Compustat data over the period 1958-2008. The
aggregate output data is from the St-Louis Fed.

(1) (2) (3)
IQR of Real Sales STD of Pdy (Durables) IQR of real sales

(Compustat) (Kehrig 2015) (Bloom et al (2018))
Aggregate Volatility in TFP growth 0.2532

(0.0825)
0.3636
(0.0269)

0.3583
(0.030)

Aggregate Volatility in GDP growth 0.1911
(0.1932)

0.2923
(0.079)

0.3504
(0.034)

Table 7: Correlation of Dispersion and Aggregate Volatility

NOTE: In this table, we display the correlation of various measures of micro-level dispersion with two measures of aggre-
gate volatility. Aggregate volatility is measured by the fitted values of an estimated GARCH on growth rates of TFP and
output. Both are sourced from Fernald (2014) (see description above). In column (1) the Inter Quartile Range (IQR) of real
sales is computed using Compustat data from 1960 to 2008 for manufacturing firms. Nominal values are deflated using the
NBER-CES Manufacturing Industry Database 4-digits price index. In column (2) we take the establishment-level median
standard deviation of productivity (levels) from Kherig (2015) who, in turn, computes it from Census data. In column (3)
we take the establishment-level IQR of sales growth from Bloom at al. (2018).
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D Calibration and Numerical Appendix

D.1 Firm-Level Productivity and its Volatility: Mapping the Model to the Data

In this appendix, we are explaining the details of the mapping between the model and the data in the
calibration. First, we discuss what is the data counterpart of firm-level productivityϕsi,t . Second, we
discuss how its volatility is measured. Third, we explain how the introduction of the fixed cost cf is
affecting this mapping between the data and the model for firm-level productivity.

Firm-level Productivity: To understand what is the empirical counterpart of the firm-level pro-
ductivity ϕsi,t in the model, recall that the production function is yi,t = ϕsi,tnαi,t, and take logs to get
that:

log(ϕsi,t) = log(yi,t)− α log(ni,t). (45)

On the left hand side we have the log of firm-level productivity in the model, while on the right hand
side we have the difference between log quantity and the labor input weighted by the respective
elasticity. It follows that log(ϕsi,t) is a firm-level Solow residual, a measure of Quantity Total Factor
Productivity (TFPQ). In most empirical studies, given the absence of firm-level prices, firm-level
Solow residuals are measures of Revenue Total Factor Productivity (TFPR).

Unfortunately, there are very few studies that can accurately measure TFPQ at the firm/plant level
and, among those, to the best of our knowledge none reports the volatility of idiosyncratic TFPQ.
Thus, we are forced to follow the frontier in the quantitative firm dynamics literature (as in Bach-
mann and Bayer (2014), Clementi and Palazzo, 2016, or, Bloom et al, 2018), and acknowledge that
the TFPR residuals - whose moments we match - may combine TFP and demand shocks that are not
controlled for (as per the argument in Foster et al (2008, 2015).58

Comparing the expression in Equation 45 with expression (9) in Foster, Haltiwanger and Syverson
(2008), with expression (1) in Castro, Clementi and Lee (2015) or, with Online Appendix A.8 of Bach-
mann and Bayer (2014), we see that the expressions for TFPR in the model and in these studies
coincide, up to the netting out of additional, elasticity-weighted, variable inputs in the data (capital,
materials and, in Foster et al (2008), energy). Clearly, as is well known in the literature, nothing would
change in our analysis if we interpreted our model as one with additional fixed factors in the short
run, e.g. yi,t = ϕsi,tnαi,tk

1−α
i where ki is capital, the fixed factor. Alternatively, one can also directly

model multiple variable inputs as is done in frontier quantitative papers in the firm dynamics litera-
ture (e.g. Clementi and Palazzo, 2016). Because, as discussed early on in the paper, we wish to make
our point in the context of the canonical model in the literature (i.e. Hopenhayn, 1992), we stick
to the simpler production function but source studies for TFPR where the existence of additional
factors in data is acknowledged and controlled for.

From this discussion, we are now interpreting the empirical counterpart of the model firm-level
productivity ϕsi,t as TFPR as measured by Foster, Haltiwanger and Syverson (2008), Castro, Clementi
and Lee (2015) and Bachmann and Bayer (2014).

58Recall also that, as is well known, the model (without entry and exit) we write down is isomorphic to one with horizontal
product differentiation (i.e. where curvature comes from demand rather than decreasing returns), and where idiosyncratic
demand shocks play a major role. The important thing to note, is that in this setting, such demand innovations are isomor-
phic to our own disturbances. Now, for ten narrowly defined manufacturing industries, Foster et al (2008, 2015) argue that
the observed dynamics of TFPR was mostly the results of demand shocks. Further, the process for demand shocks posited
in Foster et al (2015) leads to TFPR dynamics very similar to ours. Therefore, as Clementi and Palazzo (2016), we conjecture
relabelling TFPR as demand shocks and working with the isomorphic demand-led model of firm dynamics should lead to
very similar conclusions.
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Firm-level Productivity Volatility: Let us look at how firm-level productivity volatility in the model
matches with its empirical counterpart. From the properties of our productivity process – as summa-
rized in Properties 1 in Section 4 –, recall that σe is the conditional variance of firm-level productivity
growth in the model, that is:

Var

[
ϕsi,t+1 − ϕsi,t

ϕsi,t
|ϕsi,t

]
= σ2e

To map this to the reported estimates in the literature, note that Foster et al (2008), Castro, Clementi
and Lee (2015) and Bachman and Bayer (2014), estimate AR(1) processes for the log-level of TFPR
and report the standard deviation of the residual of this equation.59 Adopting the notation of our
model, this is log(ϕsi,t+1) = κ1 + κ2log(ϕ

si,t) + ǫi,t+1, for some constants κ1 and κ2. Denoting ∆ as the
first difference operator, this is equivalent to ∆ log(ϕsi,t+1) = (κ2 − 1)log(ϕsi,t ) + ǫi,t+1 which in turn
implies that

Var [∆ log(ϕsi,t+1)|ϕsi,t ] = Var [ǫi,t+1|ϕsi,t ]

The LHS of the above expression is exactly the conditional variance of the growth rate of TFPR (up to
a log difference approximation to the exact growth rate) we wish to calibrate to (or rather its square
root to obtain the standard deviation). The (square root of the) RHS is the number reported by
Castro et al (2015), Bachman and Bayer (2014), and Haltiwanger (2011) based on Foster et al (2008).
It follows that this mapping between the empirical measure of firm-level volatility and the model
couterpart allows us to use the number reported in the above cited studies as calibration targets for
σe.

Fixed Cost: Note that the fixed cost is paid in units of output. Therefore, if the data used in the
above studies contains only information about the firm-level output net of fixed costs, the esti-
mation of TFPR volatility may be biased. To see this, let us denote by ygi,t = ϕsi,tnαi,t firm-level
gross output and by yni,t = ygi,t − cf firm-level output net of fixed costs. In the case where there
is only information about firm-level output net of fixed costs in the data, TFPR is then defined by

log TFPRi,t ≡ log yni,t − α log ni,t. Using the fact that at the first order ∆ log yni,t ≈
yg
i,t

yn
i,t
∆ log ygi,t, and,

∆ log ygi,t ≈ 1
1−α∆ logϕsi,t , it is easy to see that:

∆ logTFPRi,t =

(
1 +

1

1− α

(
ygi,t
yni,t

− 1

))
∆ logϕsi,t and Var [∆ logTFPRi,t] =

(
1 +

1

1− α

(
ygi,t
yni,t

− 1

))2

σ2
e

From the above equation, one can see that, when
yg
i,t

yn
i,t

=
yg
i,t

yg
i,t−cf

→ 1, that is, when ygi,t → ∞ , we have

Var [∆ log TFPRi,t] → σ2e . In other words, for large firms, the variance of change in log TFPR is equal
to the variance of log change in productivity ϕsi,t . That is, for sufficiently large firms, fixed costs are
irrelevant for the relation between the variance of change in log TFPR and the variance of change
in log productivity. Because this need not be the case for the average firm, this is an argument to
choose a conservative target for σe on the low end of the reported numbers in Castro et al (2015),
Bachman and Bayer (2014), or, Foster et al (2008).

D.2 Numerical Appendix

In this numerical appendix, we first describe the numerical solution algorithm and its implemen-
tation and assess the accuracy of the solution. We then present a set of results obtained under an
alternative calibration strategy.

59Castro et al (2015) also add a host of fixed effects in order to isolate the idiosyncratic component of volatility. For
Foster et al (2008), the implied standard deviation is most clearly spelled out in Haltiwanger (2011, p 121). Bachman and
Bayer (2014) also adopt a slightly different approach, for example, they introduce measurement errors (See their Online
Appendix A.8).
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D.2.1 Solution Method and Accuracy

In this appendix, we describe the numerical algorithm used to solve the model described in the pa-
per. Recall that given the Equation 2, At is a sufficient statistic to describe the wage. Using Equation
16, it is clear that the law of motion ofAt is a function of past values ofAt,Et(ϕ), and σt. As described
in the main text, we are assuming that firms do not take into account the time-varying volatility of
At and form their expectations by assuming that Et(ϕ)

At
, OA

t

At
and σt

At
are constant and equal to their

steady-state value. It follows that, from the perspective of the firms, At only depends on its past
value.60

It follows that the value of being a incumbent only depends onA. To solve the model we simply have
to solve for the following Bellman equation:

V (A,ϕs) = π∗(A,ϕs) + max



0, β

∫

A′

∑

ϕs′∈Φ
V (A′, ϕs′)F (ϕs′ |ϕs)Υ(dA′|A)





where Υ(.|A) is the conditional distribution of next period’s state A′, given the current period state
A. This distribution is given by Equation 16 with Et(ϕ)

At
= E(ϕ)

A , OA
t

At
= OA

A and σt

At
= σ

A . We also
assume that the shock εt+1 in this last equation follows a standard normal distribution, which is a
valid approximation as shown in the Theorem 3 in Appendix B.5.

To solve for the above Bellman equation we are using a standard value function iteration algorithm
implemented in Matlab with the Compecon toolbox developed by Miranda and Fackler (2004). To
do so, we define a grid for A (in logs) along with productivity grid of the idiosyncratic state space
Φ described in the paper. We then form a guess on the value function as a function of log(A) and
log(ϕs), and plug it to the right hand side of the above Bellman equation. This is repeated until
convergence. This algorithm converges to the solution of the above Bellman equation and allows
us to compute the policy function s∗(A). Figure 7 displays this policy function computed from the
value function iteration procedure described above. In this figure, we also plot the ergodic domain
of log(At) for a 20 000 period simulation of our model (using the results in Theorem 1). We observe
that the value of log(At) is concentrated on the part of the state space where the policy function s∗ is
constant. Note this is a numerical result rather than an assumption.

Given that firms solve their problem under the perceived law of motion given by Assumption 3, it is
important to see if there is an important deviation of this perceived law of motion from the actual law
of motion described in Theorem 3. To see this, we plot the two implied aggregate TFP time series for
a simulation path of our model in Figure 8. We observe that the actual (blue solid) and the perceived
(red dashed) series follow each other closely. Furthermore, on a 20 000 periods simulated path, the
correlation between these two series is 0.9963.

D.2.2 Alternative Calibrations

In this section, we detail further the strategy, the targets, the resulting parameters and the results
associated to the two alternative calibration described in Section 5.2.3. Online Appendix D.2.2.1
discusses the calibration strategy where we are matching the volatility of sales by calibrating the
value of the span of control parameter α. Online Appendinx D.2.2.2 discusses the calibration where
we match the volatility of the largest 10% of firms by reducing σe.

60We also explored the alternative assumption that firms form their expectations by assuming that Et(ϕ), OA
t and σt are

constant and equal to their steady-state value. With this alternative assumption, the policy function is barely affected and
all the results in the paper are quantitatively very similar.
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Figure 7: Policy Function and stochastic Domain of At

NOTE: The blue (dash-dot) line is the policy function s∗(A); For a 20 000 period simulation of the model, the vertical black

(solid) lines are the minimum and maximum of log(At) over this sample; the black (dashed) line is the mean of log(At)

over this sample; each of the vertical red (transparent) lines represent log(At) for a given time t.
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Figure 8: A simulated path for aggregate TFP under the actual and perceived law of motions.
NOTE: The red (dashed) line is the actual times series of aggregate TFP (by Theorem 3); The blue (solid) line is the time

series of aggregate TFP implied by Assumption 3. The correlation between these two series is 0.9965.
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D.2.2.1 Alternative Calibration 1 In this section, we explore an alternative calibration strategy
also discussed in Section 5.2.3. Instead of fixing the value of α, the span of control parameter, and
then matching the idiosyncratic volatility of productivity σe, we are now matching the volatility of
idiosyncratic sales while fixing the volatility of idiosyncratic productivity in the steady-state. To do
so, we calibrate the value of α rather than fix it. For the idiosyncratic volatility of sales, we choose
a 35% target following Gabaix (2011) and Comin and Mulani (2006). The targets of this alternative
calibration are summarized in Table 8, while the implied parameters can be found in Table 9. Note
that the calibrated α is now equal to 0.77.

The results are qualitatively unchanged. If anything, the implied aggregate volatility is stronger as
the reallocation mechanism is weaker. We reproduce here the business cycle statistics (Table 10)
described in Section 5.2.2. Note also that the correlation of cross-sectional variance of firm-level
output and employment with aggregate volatility is respectively 0.9966 and 0.9980. These numbers
are similar to the one for our baseline calibration in Table 5.

Statistic Model Data References

Entry Rate 0.085 0.109 BDS firm data
Idiosyncratic Vol. σe 0.08 0.1− 0.2 See main text

Sales Vol. 0.35 0.2− 0.4 See main text
Tail index of Firm size dist. 1.097 1.097 BDS firm data

Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data
Share of Employment of the top 0.02% firms 0.264 0.255 BDS firm data

Number of Firms 4.5× 106 4.5× 106 BDS firm data

Table 8: Targets for the calibration of parameters (alternative calibration 1)
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Parameters Value Description

a 0.5980 Pr. of moving down
c 0.4020 Pr. of moving up
S 42 Number of productivity levels
ϕ 1.0868 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid
γ 2 Labor Elasticity
α 0.77 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate
M 3.6435 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.7652 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

Table 9: Alternative calibration 1

Model Data
σ(x) σ(x)

σ(y) ρ(x, y) σ(x) σ(x)
σ(y) ρ(x, y)

Output 0.58 1.0 1.0 1.83 1.00 1.00
Hours 0.39 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.28 0.48 1.0 1.04 0.57 0.66

Table 10: Business Cycle Statistics

NOTE: The model statistics are computed for the alternative calibration 1 (cf. Table 9) for an economy simulated for 20,000

periods. The data statistics are computed from annual data in deviations from an HP trend. The source of the data is

Fernald (2014). The Aggregate Productivity series is the Solow residual series. For further details refer to Appendix C.
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D.2.2.2 Alternative Calibration 2 In this section, we explore a different calibration strategy dis-
cussed in Section 5.2.3. We choose σe to match a standard deviation of annual employment volatility
of 15%, corresponding to that of the largest 10% of firms (as measured by the number of employees)
present in Compustat. The targets of this alternative calibration are summarized in Table 11, while
the implied parameters can be found in Table 12. Note that the calibrated σe is now equal to 0.03.

The results are qualitatively unchanged. The volatility of aggregate output is now 0.44%, that is, 24%
of the same number in the data. We reproduce here the business cycle statistics (Table 13) described
in Section 5.2.2. Note also that the correlation of cross-sectional variance of firm-level output and
employment with aggregate volatility is respectively 0.9976 and 0.9981. These numbers are similar to
the one for our baseline calibration in Table 5.

Statistic Model Data References

Entry Rate 0.0174 0.109 BDS firm data
Idiosyncratic Vol. σe 0.03 0.1− 0.2 See main text

Empl. Vol. 0.15 0.2− 0.4 See main text
Tail index of Firm size dist. 1.097 1.097 BDS firm data

Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data
Share of Employment of the top 0.02% firms 0.235 0.255 BDS firm data

Number of Firms 4.5× 106 4.5× 106 BDS firm data

Table 11: Targets for the calibration of parameters (alternative calibration 2)
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Parameters Value Description

a 0.5172 Pr. of moving down
c 0.4364 Pr. of moving up
S 105 Number of productivity levels
ϕ 1.0314 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid
γ 2 Labor Elasticity
α 0.8 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate
M 4.281 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.2749 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

Table 12: Alternative calibration 2

Model Data
σ(x) σ(x)

σ(y) ρ(x, y) σ(x) σ(x)
σ(y) ρ(x, y)

Output 0.44 1.0 1.0 1.83 1.00 1.00
Hours 0.29 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.20 0.46 1.0 1.04 0.57 0.66

Table 13: Business Cycle Statistics

NOTE: The model statistics are computed for the alternative calibration 1 (cf. Table 12) for an economy simulated for

20,000 periods. The data statistics are computed from annual data in deviations from an HP trend. The source of the data

is Fernald (2014). The Aggregate Productivity series is the Solow residual series. For further details refer to Appendix C.
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