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Finite Sample Analysis of
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Abstract—Approximate message passing (AMP) refers to a
class of efficient algorithms for statistical estimation in high-
dimensional problems such as compressed sensing and low-rank
matrix estimation. This paper analyzes the performance of AMP
in the regime where the problem dimension is large but finite.
For concreteness, we consider the setting of high-dimensional
regression, where the goal is to estimate a high-dimensional
vector β0 from a noisy measurement y = Aβ0 + w. AMP is
a low-complexity, scalable algorithm for this problem. Under
suitable assumptions on the measurement matrix A, AMP has
the attractive feature that its performance can be accurately
characterized in the large system limit by a simple scalar iteration
called state evolution. Previous proofs of the validity of state
evolution have all been asymptotic convergence results. In this
paper, we derive a concentration inequality for AMP with i.i.d.
Gaussian measurement matrices with finite size n×N . The result
shows that the probability of deviation from the state evolution
prediction falls exponentially in n. This provides theoretical
support for empirical findings that have demonstrated excellent
agreement of AMP performance with state evolution predictions
for moderately large dimensions. The concentration inequality
also indicates that the number of AMP iterations t can grow no
faster than order log n

log log n
for the performance to be close to the

state evolution predictions with high probability. The analysis can
be extended to obtain similar non-asymptotic results for AMP in
other settings such as low-rank matrix estimation.

Index Terms—Approximate message passing, compressed sens-
ing, state evolution, non-asymptotic analysis, large deviations,
concentration inequalities.

I. INTRODUCTION

C
Onsider the high-dimensional regression problem, where

the goal is to estimate a vector β0 ∈ R
N from a noisy

measurement y ∈ R
n given by

y = Aβ0 + w. (1.1)

Here A is a known n × N real-valued measurement matrix,

and w ∈ R
n is the measurement noise. The sampling ratio

n
N ∈ (0,∞) is denoted by δ.

Approximate Message Passing (AMP) [1]–[6] is a class of

low-complexity, scalable algorithms to solve the above prob-

lem, under suitable assumptions on A and β0. AMP algorithms

are derived as Gaussian or quadratic approximations of loopy

belief propagation algorithms (e.g., min-sum, sum-product) on

the dense factor graph corresponding to (1.1).

This work was supported in part by a Marie Curie Career Integration Grant
under Grant Agreement Number 631489. This paper was presented in part at
the 2016 IEEE International Symposium on Information Theory.

C. Rush is with the Department of Statistics, Columbia University, New
York, NY 10027, USA (e-mail: cynthia.rush@columbia.edu).

R. Venkataramanan is with Department of Engineering, University of
Cambridge, Cambridge CB2 1PZ, UK (e-mail: rv285@cam.ac.uk).

Given the observed vector y, AMP generates successive

estimates of the unknown vector, denoted by βt ∈ R
N for

t = 1, 2, . . .. Set β0 = 0, the all-zeros vector. For t = 0, 1, . . .,
AMP computes

zt = y −Aβt +
zt−1

n

N
∑

i=1

η′t−1([A
∗zt−1 + βt−1]i), (1.2)

βt+1 = ηt(A
∗zt + βt), (1.3)

for an appropriately-chosen sequence of functions {ηt}t≥0 :
R → R. In (1.2) and (1.3), A∗ denotes the transpose of A, ηt
acts component-wise when applied to a vector, and η′t denotes

its (weak) derivative. Quantities with a negative index are set

to zero throughout the paper. For a demonstration of how the

AMP updates (1.2) and (1.3) are derived from a min-sum-like

message passing algorithm, we refer the reader to [1].

For a Gaussian measurement matrix A with entries that are

i.i.d. ∼ N (0, 1/n), it was rigorously proven [1], [7] that the

performance of AMP can be characterized in the large system

limit via a simple scalar iteration called state evolution. This

result was extended to the class of matrices with i.i.d. sub-

Gaussian entries in [8]. In particular, these results imply that

performance measures such as the L2-error 1
N ‖β0−βt‖2 and

the L1-error 1
N ‖β0−βt‖1 converge almost surely to constants

that can be computed via the distribution of β0. (The large

system limit is defined as n,N → ∞ such that n
N = δ, a

constant.)

AMP has also been applied to a variety of other high-

dimensional estimation problems. Some examples are low-

rank matrix estimation [9]–[14], decoding of sparse superposi-

tion codes [15]–[17], matrix factorization [18], and estimation

in generalized linear and bilinear models [5], [19], [20].

Main Contributions: In this paper, we obtain a non-

asymptotic result for the performance of the AMP iteration

in (1.2)–(1.3), when the measurement matrix A has i.i.d.

Gaussian entries ∼ N (0, 1/n). We derive a concentration

inequality (Theorem 1) that implies that the probability of

ǫ-deviation between various performance measures (such as
1
N ‖β0−βt‖2) and their limiting constant values fall exponen-

tially in n. Our result provides theoretical support for empirical

findings that have demonstrated excellent agreement of AMP

performance with state evolution predictions for moderately

large dimensions, e.g., n of the order of several hundreds [2].

In addition to refining earlier asymptotic results, the con-

centration inequality in Theorem 1 also clarifies the effect of

the iteration number t versus the problem dimension n. One

implication is that the actual AMP performance is close to the

state evolution prediction with high probability as long as t is
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of order smaller than log n
log logn . This is particularly relevant for

settings where the number of AMP iterations and the problem

dimension are both large, e.g., solving the LASSO via AMP

[6].

We prove the concentration result in Theorem 1 by analyz-

ing the following general recursion:

bt = Aft(h
t, β0)− λtgt−1(b

t−1, w),

ht+1 = A∗gt(b
t, w) − ξtft(h

t, β0).
(1.4)

Here, for t ≥ 0, the vectors bt ∈ R
n, ht+1 ∈ R

N describe

the state of the algorithm, ft, gt : R → R are Lipschitz

functions that are separable (act component-wise when applied

to vectors), and λt, ξt are scalars that can be computed from

the state of the algorithm. The algorithm is initialized with

f0(h
0 = 0, β0). Further details on the recursion in (1.4),

including how the AMP in (1.2)–(1.3) can be obtained as a

special case, are given in Section IV-A.

For ease of exposition, our analysis will focus on the re-

cursion (1.4) and the problem of high-dimensional regression.

However, it can be extended to a number of related problems.

A symmetric version of the above recursion yields AMP

algorithms for problems such as solving the TAP equations

in statistical physics [21] and symmetric low-rank matrix

estimation [10], [12]. This recursion is defined in terms of

a symmetric matrix G ∈ R
N×N with entries {Gij}i<j i.i.d.

∼ N (0, 1
N ), and {Gii} i.i.d. ∼ N (0, 2

N ) for i ∈ [N ]. (In other

words, G can be generated as (A+A∗)/2, where A ∈ R
N×N

has i.i.d. N (0, 1
N ) entries.) Then, for t ≥ 0, let

mt+1 = Apt(m
t)− bt pt−1(m

t−1). (1.5)

Here, for t ≥ 0, the state of the algorithm is represented by a

single vector mt ∈ R
N , the function pt : R → R is Lipschitz

and separable, and bt is a constant computed from the state

of the algorithm (see [1, Sec. IV] for details). The recursion

(1.5) is initialized with a deterministic vector m1 ∈ R
N .

Our analysis of the recursion (1.4) can be easily extended to

obtain an analogous non-asymptotic result for the symmetric

recursion in (1.5). Therefore, for problems of estimating

either symmetric or rectangular low-rank matrices in Gaussian

noise, our analysis can be used to refine existing asymptotic

AMP guarantees (such as those in [9]–[11]), by providing a

concentration result similar to that in Theorem 1. We also

expect that the non-asymptotic analysis can be generalized to

the case where the recursion in (1.4) generates matrices rather

than vectors, i.e, bt ∈ R
n×q and ht+1 ∈ R

N×q (where q
remains fixed as n,N grow large; see [7] for details). Ex-

tending the analysis to this matrix recursion would yield non-

asymptotic guarantees for the generalized AMP [5] and AMP

for compressed sensing with spatially coupled measurement

matrices [22].

Since the publication of the conference version of this paper,

the analysis described here has been used in a couple of recent

papers: an error exponent for sparse regression codes with

AMP decoding was obtained in [23], and a non-asymptotic

result for AMP with non-separable denoisers was given in

[24].

A. Assumptions

Before proceeding, we state the assumptions on the model

(1.1) and the functions used to define the AMP. In what

follows, K,κ > 0 are generic positive constants whose values

are not exactly specified but do not depend on n. We use the

notation [n] to denote the set {1, 2, . . . , n}.

Measurement Matrix: The entries of measurement matrix

A ∈ R
n×N are i.i.d. ∼ N (0, 1/n).

Signal: The entries of the signal β0 ∈ R
N are i.i.d.

according to a sub-Gaussian distribution pβ . We recall that

a zero-mean random variable X is sub-Gaussian if there exist

positive constantsK,κ such that P (|X−EX | > ǫ) ≤ Ke−κǫ2 ,

∀ǫ > 0 [25].

Measurement Noise: The entries of the measurement noise

vector w are i.i.d. according to some sub-Gaussian distribution

pw with mean 0 and E[w2
i ] = σ2 < ∞ for i ∈ [n]. The sub-

Gaussian assumption implies that, for ǫ ∈ (0, 1),

P

(∣

∣

∣

∣

1

n
‖w‖2 − σ2

∣

∣

∣

∣

≥ ǫ

)

≤ Ke−κnǫ2, (1.6)

for some constants K,κ > 0 [25].

The Functions ηt: The denoising functions, ηt : R → R,

in (1.3) are Lipschitz continuous for each t ≥ 0, and are

therefore weakly differentiable. The weak derivative, denoted

by η′t, is assumed to be differentiable, except possibly at a

finite number of points, with bounded derivative everywhere

it exists. Allowing η′t to be non-differentiable at a finite number

of points covers denoising functions like soft-thresholding

which is used in applications such as the LASSO [6].

Functions defined with scalar inputs are assumed to act

component-wise when applied to vectors.

The remainder of the paper is organized as follows. In

Section II we review state evolution, the formalism predicting

the performance of AMP, and discuss how knowledge of

the signal distribution pβ and the noise distribution pw can

help choose good denoising functions {ηt}. However, we

emphasize that our result holds for the AMP with any choice

of {ηt} satisfying the above condition, even those that do

not depend on pβ and pw. In Section II-A, we introduce

a stopping criterion for termination of the AMP. In Section

III, we give our main result (Theorem 1) which proves that

the performance of AMP can be characterized accurately via

state evolution for large but finite sample size n. Section IV

gives the proof of Theorem 1. The proof is based on two

technical lemmas: Lemmas 3 and 5. The proof of Lemma 5

is long; we therefore give a brief summary of the main ideas

in Section IV-F and then the full proof in Section V. In the

appendices, we list a number of concentration inequalities that

are used in the proof of Lemma 5. Some of these, such as

the concentration inequality for the sum of pseudo-Lipschitz

functions of i.i.d. sub-Gaussian random variables (Lemma

B.4), may be of independent interest.

II. STATE EVOLUTION AND THE CHOICE OF ηt

In this section, we briefly describe state evolution, the

formalism that predicts the behavior of AMP in the large

system limit. We only review the main points followed by
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a few examples; a more detailed treatment can be found in

[1], [4].

Given pβ , let β ∈ R ∼ pβ . Let σ2
0 = E[β2]/δ > 0,

where δ = n/N . Iteratively define the quantities {τ2t }t≥0 and

{σ2
t }t≥1 as

τ2t = σ2 + σ2
t , σ2

t =
1

δ
E

[

(ηt−1(β + τt−1Z)− β)2
]

,

(2.1)

where β ∼ pβ and Z ∼ N (0, 1) are independent random

variables.

The AMP update (1.3) is underpinned by the following key

property of the vector A∗zt + βt: for large n, A∗zt + βt is

approximately distributed as β0 + τtZ , where Z is an i.i.d.

N (0, 1) random vector independent of β0. In light of this

property, a natural way to generate βt+1 from the “effective

observation” A∗zt+βt = s is via the conditional expectation:

βt+1(s) = E[β | β + τtZ = s ], (2.2)

i.e., βt+1 is the MMSE estimate of β0 given the noisy

observation β0+ τtZ . Thus if pβ is known, the Bayes optimal

choice for ηt(s) is the conditional expectation in (2.2).

In the definition of the “modified residual” zt, the third

term on the RHS of (1.2) is crucial to ensure that the effective

observation A∗zt + βt has the above distributional property.

For intuition about the role of this ‘Onsager term’, the reader

is referred to [1, Section I-C].

We review two examples to illustrate how full or partial

knowledge of pβ can guide the choice of the denoising

function ηt. In the first example, suppose we know that each

element of β0 is chosen uniformly at random from the set

{+1,−1}. Computing the conditional expectation in (2.2) with

this pβ , we obtain ηt(s) = tanh(s/τ2t ) [1]. The constants τ2t
are determined iteratively from the state evolution equations

(2.1).

As a second example, consider the compressed sensing

problem, where δ < 1, and pβ is such that P (β0 = 0) = 1−ξ.

The parameter ξ ∈ (0, 1) determines the sparsity of β0. For

this problem, the authors in [2], [4] suggested the choice

ηt(s) = η(s; θt), where the soft-thresholding function η is

defined as

η(s; θ) =







(s− θ), if s > θ,
0 if − θ ≤ s ≤ θ,
(s− θ), if s < −θ.

The threshold θt at step t is set to θt = ατt, where α is

a tunable constant and τt is determined by (2.1), making

the threshold value proportional to the standard deviation of

the noise in the effective observation. However, computing τt
using (2.1) requires knowledge of pβ . In the absence of such

knowledge, we can estimate τ2t by 1
n‖zt‖2: our concentration

result (Lemma 5(e)) shows that this approximation is increas-

ingly accurate as n grows large. To fix α, one could run the

AMP with several different values of α, and choose the one

that gives the smallest value of 1
n‖zt‖2 for large t.

We note that in each of the above examples ηt is Lipschitz,

and its derivative satisfies the assumption stated in Section I-A.

A. Stopping Criterion

To obtain a concentration result that clearly highlights the

dependence on the iteration t and the dimension n, we include

a stopping criterion for the AMP algorithm. The intuition is

that the AMP algorithm can be terminated once the expected

squared error of the estimates (as predicted by state evolution

equations in (2.1)) is either very small or stops improving

appreciably.

For Bayes-optimal AMP where the denoising function ηt(·)
is the conditional expectation given in (2.2), the stopping

criterion is as follows. Terminate the algorithm at the first

iteration t > 0 for which either

σ2
t < ε0, or

σ2
t

σ2
t−1

> 1− ε′0, (2.3)

where ε0 > 0 and ε′0 ∈ (0, 1) are pre-specified constants.

Recall from (2.1) that σ2
t is expected squared error in the

estimate. Therefore, for suitably chosen values of ε0, ε
′
0, the

AMP will terminate when the expected squared error is either

small enough, or has not significantly decreased from the

previous iteration.

For the general case where ηt(·) is not the Bayes-optimal

choice, the stopping criterion is: terminate the algorithm at the

first iteration t > 0 for which at least one of the following is

true:

σ2
t < ε1, or (σ⊥

t )2 < ε2, or (τ⊥t )2 < ε3, (2.4)

where ε1, ε2, ε3 > 0 are pre-specified constants, and

(σ⊥
t )2, (τ⊥t )2 are defined in (4.19). The precise definitions of

the scalars (σ⊥
t )

2, (τ⊥t )2 are postponed to Sec. IV-B as a few

other definitions are needed first. For now, it suffices to note

that (σ⊥
t )2, (τ⊥t )2 are measures of how close σ2

t and τ2t are

to σ2
t−1 and τ2t−1, respectively. Indeed, for the Bayes-optimal

case, we show in Sec IV-C that

(σ⊥
t )2 := σ2

t

(

1− σ2
t

σ2
t−1

)

, (τ⊥t )2 := τ2t

(

1− τ2t
τ2t−1

)

.

Let T ∗ > 0 be the first value of t > 0 for which at least

one of the conditions is met. Then the algorithm is run only

for 0 ≤ t < T ∗. It follows that for 0 ≤ t < T ∗,

σ2
t > ε1, τ2t > σ2 + ε1, (σ⊥

t )2 > ε2, (τ⊥t )2 > ε3.
(2.5)

In the rest of the paper, we will use the stopping criterion to

implicitly assume that σ2
t , τ

2
t , (σ

⊥
t )

2, (τ⊥t )2 are bounded below

by positive constants.

III. MAIN RESULT

Our result, Theorem 1, is a concentration inequality for

pseudo-Lipschitz (PL) loss functions. As defined in [1], a

function φ : R
m → R is pseudo-Lipschitz (of order 2) if

there exists a constant L > 0 such that for all x, y ∈ R
m,

|φ(x)−φ(y)| ≤ L(1+ ‖x‖+ ‖y‖)‖x− y‖, where ‖·‖ denotes

the Euclidean norm.

Theorem 1. With the assumptions listed in Section I-A, the

following holds for any (order-2) pseudo-Lipschitz function
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φ : R2 → R, ǫ ∈ (0, 1) and 0 ≤ t < T ∗, where T ∗ is the first

iteration for which the stopping criterion in (2.4) is satisfied.

P

(
∣

∣

∣

∣

∣

1

N

N
∑

i=1

φ(βt+1
i , β0i)− E[φ(ηt(β + τtZ), β)]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Kte
−κtnǫ

2

.
(3.1)

In the expectation in (3.1), β ∼ pβ and Z ∼ N (0, 1) are

independent, and τt is given by (2.1). The constants Kt, κt
are given by Kt = C2t(t!)10, κt =

1
c2t(t!)22 , where C, c > 0

are universal constants (not depending on t, n, or ǫ) that are

not explicitly specified.

The probability in (3.1) is with respect to the product

measure on the space of the measurement matrix A, signal

β0, and the noise w.

Remarks:

1. By considering the pseudo-Lipschitz function φ(a, b) =
(a−b)2, Theorem 1 proves that state evolution tracks the mean

square error of the AMP estimates with exponentially small

probability of error in the sample size n. Indeed, for all t ≥ 0,

P

(∣

∣

∣

∣

1

N
‖βt+1 − β0‖2 − δσ2

t+1

∣

∣

∣

∣

≥ ǫ

)

≤ Kte
−κtnǫ

2

. (3.2)

Similarly, taking φ(a, b) = |a−b| the theorem implies that the

normalized L1-error 1
N ‖βt+1 − β0‖1 is concentrated around

E|ηt(β + τtZ)− β|.
2. Asymptotic convergence results of the kind given in [1],

[6] are implied by Theorem 1. Indeed, from Theorem 1, the

sum

∞
∑

N=1

P
(∣

∣

∣

1

N

N
∑

i=1

φ(βt+1
i , β0i)− E[φ(ηt(β + τtZ), β)]

∣

∣

∣
≥ ǫ
)

is finite for any fixed t ≥ 0. Therefore the Borel-Cantelli

lemma implies that for any fixed t ≥ 0:

lim
N→∞

1

N

N
∑

i=1

φ(βt+1
i , β0i)

a.s.
= E[φ(ηt(β + τtZ), β)].

3. Theorem 1 also refines the asymptotic convergence result

by specifying how large t can be (compared to the dimension

n) for the state evolution predictions to be meaningful. Indeed,

if we require the bound in (3.1) to go to zero with growing

n, we need κtnǫ
2 → ∞ as n→ ∞. Using the expression for

κt from the theorem then yields t = o
(

logn
log logn

)

.

Thus, when the AMP is run for a growing number of itera-

tions, the state evolution predictions are guaranteed to be valid

until iteration t if the problem dimension grows faster than

exponentially in t. Though the constants Kt, κt in the bound

have not been optimized, we believe that the dependence of

these constants on t! is inevitable in any induction-based proof

of the result. An open question is whether this relationship

between t and n is fundamental, or a different analysis of the

AMP can yield constants which allow t to grow faster with n.

4. As mentioned in the introduction, we expect that non-

asymptotic results similar to Theorem 1 can be obtained for

other estimation problems (with Gaussian matrices) for which

rigorous asymptotic results have been proven for AMP. Ex-

amples of such problems include low-rank matrix estimation

[9]–[11], robust high-dimensional M-estimation [26], AMP

with spatially coupled matrices [22], and generalized AMP

[7], [27].

As our proof technique depends heavily on A being i.i.d.

Gaussian, extending Theorem 1 to AMP with sub-Gaussian

matrices [8] and to variants of AMP with structured measure-

ment matrices (e.g., [28]–[30]) is non-trivial, and an interesting

direction for future work.

IV. PROOF OF THEOREM 1

We first lay down the notation that will be used in the proof,

then state two technical lemmas (Lemmas 3 and 5) and use

them to prove Theorem 1.

A. Notation and Definitions

For consistency and ease of comparison, we use notation

similar to [1]. To prove the technical lemmas, we use the

general recursion in (1.4), which we write in a slightly

different form below. Given w ∈ R
n, β0 ∈ R

N , define the

column vectors ht+1, qt+1 ∈ R
N and bt,mt ∈ R

n for t ≥ 0
recursively as follows, starting with initial condition q0 ∈ R

N :

bt := Aqt − λtm
t−1, mt := gt(b

t, w),

ht+1 := A∗mt − ξtq
t, qt := ft(h

t, β0).
(4.1)

where the scalars ξt and λt are defined as

ξt :=
1

n

n
∑

i=1

g′t(b
t
i, wi), λt :=

1

δN

N
∑

i=1

f ′
t(h

t
i, β0i). (4.2)

In (4.2), the derivatives of gt : R2 → R and ft : R2 → R

are with respect to the first argument. The functions ft, gt
are assumed to be Lipschitz continuous for t ≥ 0, hence the

weak derivatives g′t and f ′
t exist. Further, g′t and f ′

t are each

assumed to be differentiable, except possibly at a finite number

of points, with bounded derivative everywhere it exists.

Let σ2
0 := E[f2

0 (0, β)] > 0 with β ∼ pβ . We let q0 =
f0(0, β0) and assume that there exist constants K,κ > 0 such

that

P

(∣

∣

∣

∣

1

n
‖q0‖2 − σ2

0

∣

∣

∣

∣

≥ ǫ

)

≤ Ke−κnǫ2. (4.3)

Define the state evolution scalars {τ2t }t≥0 and {σ2
t }t≥1 for

the general recursion as follows.

τ2t := E
[

(gt(σtZ,W ))2
]

, σ2
t :=

1

δ
E
[

(ft(τt−1Z, β))
2
]

,

(4.4)

where β ∼ pβ ,W ∼ pw, and Z ∼ N (0, 1) are independent

random variables. We assume that both σ2
0 and τ20 are strictly

positive.

The AMP algorithm is a special case of the general recur-

sion in (4.1) and (4.2). Indeed, the AMP can be recovered by

defining the following vectors recursively for t ≥ 0, starting

with β0 = 0 and z0 = y.

ht+1 = β0 − (A∗zt + βt), qt = βt − β0,

bt = w − zt, mt = −zt. (4.5)
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It can be verified that these vectors satisfy (4.1) and (4.2) with

ft(a, β0) = ηt−1(β0 − a)− β0, and gt(a, w) = a− w.
(4.6)

Using this choice of ft, gt in (4.4) yields the expressions for

σ2
t , τ

2
t given in (2.1). Using (4.6) in (4.2), we also see that for

AMP,

λt = − 1

δN

N
∑

i=1

η′t−1([A
∗βt−1 + zt−1]i), ξt = 1. (4.7)

Recall that β0 ∈ R
N is the vector we would like to recover

and w ∈ R
n is the measurement noise. The vector ht+1 is the

noise in the effective observation A∗zt + βt, while qt is the

error in the estimate βt. The proof will show that ht and mt

are approximately i.i.d. N (0, τ2t ), while qt is approximately

i.i.d. with zero mean and variance σ2
t .

For the analysis, we work with the general recursion given

by (4.1) and (4.2). Notice from (4.1) that for all t,

bt + λtm
t−1 = Aqt, ht+1 + ξtq

t = A∗mt. (4.8)

Thus we have the matrix equations Xt = A∗Mt and Yt =
AQt, where

Xt := [h1 + ξ0q
0 | h2 + ξ1q

1 | . . . | ht + ξt−1q
t−1],

Yt := [b0 | b1 + λ1m
0 | . . . | bt−1 + λt−1m

t−2],

Mt := [m0 | . . . | mt−1],

Qt := [q0 | . . . | qt−1].

(4.9)

The notation [c1 | c2 | . . . | ck] is used to denote a matrix

with columns c1, . . . , ck. Note that M0 and Q0 are the all-

zero vector. Additionally define the matrices

Ht := [h1| . . . |ht], Ξt := diag(ξ0, . . . , ξt−1),

Bt := [b0| . . . |bt−1], Λt := diag(λ0, . . . , λt−1).
(4.10)

Note that B0, H0, Λ0, and Ξ0 are all-zero vectors. Using the

above we see that Yt = Bt+[0|Mt−1]Λt and Xt = Ht+QtΞt.

We use the notation mt
‖ and qt‖ to denote the projection of

mt and qt onto the column space of Mt and Qt, respectively.

Let

αt := (αt
0, . . . , α

t
t−1)

∗, γt := (γt0, . . . , γ
t
t−1)

∗ (4.11)

be the coefficient vectors of these projections, i.e.,

mt
‖ :=

t−1
∑

i=0

αt
im

i, qt‖ :=

t−1
∑

i=0

γtiq
i. (4.12)

The projections of mt and qt onto the orthogonal complements

of Mt and Qt, respectively, are denoted by

mt
⊥ := mt −mt

‖, qt⊥ := qt − qt‖. (4.13)

Lemma 5 shows that for large n, the entries of αt and γt are

concentrated around constants. We now specify these constants

and provide some intuition about their values in the special

case where the denoising function in the AMP recursion is

the Bayes-optimal choice, as in (2.2).

B. Concentrating Values

Let {Z̆t}t≥0 and {Z̃t}t≥0 each be sequences of of zero-

mean jointly Gaussian random variables whose covariance is

defined recursively as follows. For r, t ≥ 0,

E[Z̆rZ̆t] =
Ẽr,t

σrσt
, E[Z̃rZ̃t] =

Ĕr,t

τrτt
, (4.14)

where

Ẽr,t :=
1

δ
E[fr(τr−1Z̃r−1, β)ft(τt−1Z̃t−1, β)],

Ĕr,t := E[gr(σrZ̆r,W )gt(σtZ̆t,W )],
(4.15)

where β ∼ pβ and W ∼ pw are independent random variables.

In the above, we take f0(·, β) := f0(0, β), the initial condition.

Note that Ẽt,t = σ2
t and Ĕt,t = τ2t , thus E[Z̃2

t ] = E[Z̆2
t ] = 1.

Define matrices C̃t, C̆t ∈ R
t×t for t ≥ 1 such that

C̃t
i+1,j+1 = Ẽi,j , and C̆t

i+1,j+1 = Ĕi,j , 0 ≤ i, j ≤ t− 1.
(4.16)

With these definitions, the concentrating values for γt and αt

(if C̃t and C̆t are invertible) are

γ̂t := (C̃t)−1Ẽt, and α̂t := (C̆t)−1Ĕt, (4.17)

with

Ẽt := (Ẽ0,t . . . , Ẽt−1,t)
∗, and Ĕt := (Ĕ0,t . . . , Ĕt−1,t)

∗.
(4.18)

Let (σ⊥
0 )

2 := σ2
0 and (τ⊥0 )2 := τ20 , and for t > 0 define

(σ⊥
t )2 := σ2

t − (γ̂t)∗Ẽt = Ẽt,t − Ẽ∗
t (C̃

t)−1Ẽt,

(τ⊥t )2 := τ2t − (α̂t)∗Ĕt = Ĕt,t − Ĕ∗
t (C̆

t)−1Ĕt.
(4.19)

Finally, we define the concentrating values for λt and ξt as

λ̂t :=
1

δ
E[f ′

t(τt−1Z̃t−1, β)], and ξ̂t = E[g′t(σtZ̆t,W )].

(4.20)

Since {ft}t≥0 and {gt}t≥0 are assumed to be Lipschitz

continuous, the derivatives {f ′
t} and {g′t} are bounded for

t ≥ 0. Therefore λt, ξt defined in (4.2) and λ̂t, ξ̂t defined

in (4.20) are also bounded. For the AMP recursion, it follows

from (4.6) that

λ̂t = −1

δ
E[η′t−1(β − τt−1Z̃t−1)], and ξ̂t = 1. (4.21)

Lemma 1. If (σ⊥
k )

2 and (τ⊥k )2 are bounded below by some

positive constants (say c̃ and c̆, respectively) for 1 ≤ k ≤ t,
then the matrices C̃k and C̆k defined in (4.16) are invertible

for 1 ≤ k ≤ t.

Proof: We prove the result using induction. Note that

C̃1 = σ2
0 and C̆1 = τ20 are both strictly positive by assumption

and hence invertible. Assume that for some k < t, C̃k and C̆k

are invertible. The matrix C̃k+1 can be written as

C̃k+1 =

[

M1 M2

M3 M4

]

,

where M1 = C̃k ∈ R
k×k , M4 = Ẽk,k = σ2

k , and M2 = M
∗
3 =

Ẽk ∈ R
k×1 defined in (4.18). By the block inversion formula,

C̃k+1 is invertible if M1 and the Schur complement M4 −
M3M

−1
1 M2 are both invertible. By the induction hypothesis
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M1 = C̃k is invertible, and

M4 −M3M
−1
1 M2 = Ẽk,k − Ẽ∗

k(C̃
k)−1Ẽk = (σ⊥

k )2 ≥ c̃ > 0.
(4.22)

Hence C̃t+1 is invertible. Showing that C̆t+1 is invertible is

very similar.

We note that the stopping criterion ensures that C̃t and C̆t

are invertible for all t that are relevant to Theorem 1.

C. Bayes-optimal AMP

The concentrating constants in (4.14)–(4.19) have simple

representations in the special case where the denoising func-

tion ηt(·) is chosen to be Bayes-optimal, i.e., the conditional

expectation of β given the noisy observation β + τtZ , as in

(2.2). In this case:

1) It can be shown that Ẽr,t in (4.15) equals σ2
t for 0 ≤

r ≤ t. This is done in two steps. First verify that the

following Markov property holds for the jointly Gaussian

Z̃r, Z̃t with covariance given by (4.14):

E[β | β+τtZ̃t, β+τrZ̃r] = E[β | β+τtZ̃t], 0 ≤ r ≤ t.

We then use the above in the definition of Ẽr,t (with ft
given by (4.6)), and apply the orthogonality principle to

show that Ẽr,t = σ2
t for r ≤ t.

2) Using Ẽr,t = σ2
t in (4.14) and (4.15), we obtain Ĕr,t =

σ2 + σ2
t = τ2t .

3) From the orthogonality principle, it also follows that for

0 ≤ r ≤ t,

E[‖βt‖2] = E[β∗βt], and E[‖βr‖2] = E[(βr)∗βt],

where βt = E[β | β + τt−1Z̃t−1].
4) With Ẽr,t = σ2

t and Ĕr,t = τ2t for r ≤ t, the quantities

in (4.17)–(4.19) simplify to the following for t > 0:

γ̂t = [0, . . . , 0, σ2
t /σ

2
t−1], α̂t = [0, . . . , 0, τ2t /τ

2
t−1],

(σ⊥
t )2 := σ2

t

(

1− σ2
t

σ2
t−1

)

, (τ⊥t )2 := τ2t

(

1− τ2t
τ2t−1

)

,

(4.23)

where γ̂t, α̂t ∈ R
t.

For the AMP, mt = −zt is the modified residual in iteration

t, and qt = βt − β is the error in the estimate βt. Also recall

that γt and αt are the coefficients of the projection of mt

and qt onto {m0, . . . ,mt−1} and {q0, . . . , qt−1}, respectively.

The fact that only the last entry of γ̂t is non-zero in the

Bayes-optimal case indicates that residual zt can be well

approximated as a linear combination of zt−1 and a vector

that is independent of {z0, . . . , zt−1}; a similar interpretation

holds for the error qt = βt − β.

D. Conditional Distribution Lemma

We next characterize the conditional distribution of the

vectors ht+1 and bt given the matrices in (4.9) as well as

β0, w. Lemmas 3 and 4 show that the conditional distributions

of ht+1 and bt can each be expressed in terms of a standard

normal vector and a deviation vector. Lemma 5 shows that the

norms of the deviation vectors are small with high probabil-

ity, and provides concentration inequalities for various inner

products and functions involving {ht+1, qt, bt,mt}.

We use the following notation in the lemmas. Given two

random vectors X,Y and a sigma-algebra S , X |S d
= Y

denotes that the conditional distribution of X given S equals

the distribution of Y . The t× t identity matrix is denoted by

It. We suppress the subscript on the matrix if the dimensions

are clear from context. For a matrix A with full column rank,

P
‖
A := A(A∗A)−1A∗ denotes the orthogonal projection matrix

onto the column space of A, and P
⊥
A := I − P

‖
A. If A does

not have full column rank, (A∗A)−1 is interpreted as the

pseudoinverse.

Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, w.

A key ingredient in the proof is the distribution of A condi-

tioned on the sigma algebra St1,t where t1 is either t+1 or t
from which we are able to specify the conditional distributions

of bt and ht+1 given St,t and St+1,t, respectively. Observing

that conditioning on St1,t is equivalent to conditioning on the

linear constraints1

AQt1 = Yt1 , A
∗Mt = Xt,

the following lemma from [1] specifies the conditional distri-

bution of A|St1,t
.

Lemma 2. [1, Lemma 10, Lemma 12] The conditional

distributions of the vectors in (4.8) satisfy the following,

provided n > t and Mt, Qt have full column rank.

A∗mt|St+1,t

d
= Xt(M

∗
t Mt)

−1M∗
t m

t
‖

+Qt+1(Q
∗
t+1Qt+1)

−1Y ∗
t+1m

t
⊥ + P

⊥
Qt+1

Ã∗mt
⊥,

Aqt|St,t

d
= Yt(Q

∗
tQt)

−1Q∗
t q

t
‖ +Mt(M

∗
t Mt)

−1X∗
t q

t
⊥

+ P
⊥
Mt
Âqt⊥,

where mt
‖,m

t
⊥, q

t
‖, q

t
⊥ are defined in (4.12) and (4.13). Here

Ã, Â
d
= A are random matrices independent of St+1,t and

St,t.

Lemma 3 (Conditional Distribution Lemma). For the vectors

ht+1 and bt defined in (4.1), the following hold for t ≥ 1,

provided n > t and Mt, Qt have full column rank.

b0|S0,0

d
= σ0Z

′
0 +∆0,0,

bt|St,t

d
=

t−1
∑

r=0

γ̂trb
r + σ⊥

t Z
′
t +∆t,t,

(4.24)

h1|S1,0

d
= τ0Z0 +∆1,0,

ht+1|St+1,t

d
=

t−1
∑

r=0

α̂t
rh

r+1 + τ⊥t Zt +∆t+1,t,
(4.25)

where Z0, Zt ∈ R
N and Z ′

0, Z
′
t ∈ R

n are i.i.d. standard

Gaussian random vectors that are independent of the corre-

1While conditioning on the linear constraints, we emphasize that only A

is treated as random.
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sponding conditioning sigma-algebras. The terms γ̂ti and α̂t
i

for i ∈ [t− 1] are defined in (4.17) and the terms (τ⊥t )2 and

(σ⊥
t )2 in (4.19). The deviation terms are

∆0,0 =
(‖q0‖√

n
− σ0

)

Z ′
0, (4.26)

∆1,0 =
[(‖m0‖√

n
− τ0

)

IN − ‖m0‖√
n

P
‖
q0

]

Z0

+ q0
(‖q0‖2

n

)−1( (b0)∗m0

n
− ξ0

‖q0‖2
n

)

, (4.27)

and for t > 0, defining Qt := Q∗
tQt and Mt :=M∗

t Mt,

∆t,t =

t−1
∑

r=0

(γtr − γ̂tr)b
r +

[(‖qt⊥‖√
n

− σ⊥
t

)

In − ‖qt⊥‖√
n

P
‖
Mt

]

Z ′
t

+Mt

(Mt

n

)−1(H∗
t q

t
⊥

n
− Mt

n

∗[
λtm

t−1 −
t−1
∑

i=1

λiγ
t
im

i−1
])

,

(4.28)

∆t+1,t =

t−1
∑

r=0

(αt
r − α̂t

r)h
r+1

+
[(‖mt

⊥‖√
n

− τ⊥t

)

IN − ‖mt
⊥‖√
n

P
‖
Qt+1

]

Zt

+Qt+1

(Qt+1

n

)−1(B∗
t+1m

t
⊥

n
− Q∗

t+1

n

[

ξtq
t −

t−1
∑

i=0

ξiα
t
iq

i
])

.

(4.29)

Proof: We begin by demonstrating (4.24). By (4.1) it

follows that

b0|S0,0= Aq0
d
= (‖q0‖/√n)Z ′

0,

where Z ′
0 ∈ R

n is an i.i.d. standard Gaussian random vector,

independent of S0,0.

For the case t ≥ 1, we use Lemma 2 to write

bt|St,t
= (Aqt − λtm

t−1)|St,t

d
= YtQ

−1
t Q∗

t q
t
‖ +MtM

−1
t X∗

t q
t
⊥ + P

⊥
Mt
Ãqt⊥ − λtm

t−1

= BtQ
−1
t Q∗

t q
t
‖ + [0|Mt−1]ΛtQ

−1
t Q∗

t q
t
‖ +MtM

−1
t H∗

t q
t
⊥

+ P
⊥
Mt
Ãqt⊥ − λtm

t−1.

The last equality above is obtained using Yt = Bt +
[0|Mt−1]Λt, and Xt = Ht + ΞtQt. Noticing that

BtQ
−1
t Q∗

t q
t
‖ =

∑t−1
i=0 γ

t
ib

i and P
⊥
Mt
Ãqt⊥ = (I − P

‖
Mt

)Ãqt⊥
d
=

(I−P
‖
Mt

)
‖qt

⊥
‖√

n
Z ′
t where Z ′

t ∈ R
n is an i.i.d. standard Gaussian

random vector, it follows that

bt|St,t

d
= (I− P

‖
Mt

)
‖qt⊥‖√
n
Z ′
t +

t−1
∑

i=0

γtib
i

+ [0|Mt−1]ΛtQ
−1
t Q∗

t q
t
‖ +MtM

−1
t H∗

t q
t
⊥ − λtm

t−1.

(4.30)

All the quantities in the RHS of (4.30) except Z ′
t are in

the conditioning sigma-field. We can rewrite (4.30) with the

following pair of values:

bt|St,t

d
=

t−1
∑

r=0

γ̂trb
r + σ⊥

t Z
′
t +∆t,t,

∆t,t =

t−1
∑

r=0

(γtr − γ̂tr)b
r +

[(‖qt⊥‖√
n

− σ⊥
t

)

I− ‖qt⊥‖√
n

P
‖
Mt

]

Z ′
t

+ [0|Mt−1]ΛtQ
−1
t Q∗

t q
t
‖ +MtM

−1
t H∗

t q
t
⊥ − λtm

t−1.

The above definition of ∆t,t equals that given in (4.28) since

[0|Mt−1]ΛtQ
−1
t Q∗

t q
t
‖ − λtm

t−1 =
t−1
∑

i=1

λiγ
t
im

i−1 − λtm
t−1

= −MtM
−1
t M∗

t

(

λtm
t−1 −

t−1
∑

i=1

λiγ
t
im

i−1
)

.

This completes the proof of (4.24). Result (4.25) can be shown

similarly.

The conditional distribution representation in Lemma 3

implies that for each t ≥ 0, ht+1 is the sum of an i.i.d.

N (0, τ2t ) random vector plus a deviation term. Similarly bt

is the sum of an i.i.d. N (0, σ2
t ) random vector and a deviation

term. This is made precise in the following lemma.

Lemma 4. For t ≥ 0, let Z ′
t ∈ R

n, Zt ∈ R
N be independent

standard normal random vectors. Let b0pure = σ0Z
′
0, h1pure =

τ0Z0, and recursively define for t ≥ 1:

btpure =

t−1
∑

r=0

γ̂trb
r
pure + σ⊥

t Z
′
t, ht+1

pure =

t−1
∑

r=0

α̂t
rh

r+1
pure + τ⊥t Zt.

(4.31)

Then for t ≥ 0, the following statements hold.

1) For j ∈ [N ] and k ∈ [n],

(b0purej , . . . , b
t
purej

)
d
= (σ0Z̆0, . . . , σtZ̆t),

(h1purek, . . . , h
t+1
purek

)
d
= (τ0Z̃0, . . . , τtZ̃t),

(4.32)

where {Z̆t}t≥0 and {Z̃t}t≥0 are the jointly Gaussian

random variables defined in Sec. IV-B.

2) For t ≥ 0,

btpure =

t
∑

i=0

Z ′
i σ

⊥
i c

t
i, htpure =

t
∑

i=0

Zi τ
⊥
i d

t
i, (4.33)

where the constants {cti}0≤i≤t and {dti}0≤i≤t are recur-

sively defined as follows, starting with c
0
0 = 1 and d

0
0 = 1.

For t > 0,

c
t
t = 1, c

t
i =

t−1
∑

r=i

c
r
i γ̂

t
r, for 0 ≤ i ≤ (t− 1), (4.34)

d
t
t = 1, d

t
i =

t−1
∑

r=i

d
r
i α̂

t
r, for 0 ≤ i ≤ (t− 1). (4.35)

3) The conditional distributions in Lemma 3 can be ex-
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pressed as

bt|St,t

d
= btpure +

t
∑

r=0

c
t
r ∆r,r,

ht+1|St+1,t

d
= ht+1

pure +

t
∑

r=0

d
t
r ∆r+1,r.

(4.36)

Proof: We prove (4.32) by induction. We prove the btpure
result; the proof for htpure is very similar. The base case of

t = 0 holds by the definition of b0pure. Assume towards induc-

tion that (4.32) holds for (b0pure, . . . , b
t−1
pure). Then using (4.31),

btpure has the same distribution as
∑t−1

r=0 γ̂
t
rσrZ̆r+σ

⊥
t Z where

Z ∈ R
n is a standard Gaussian random vector independent of

Z̆0, . . . , Z̆t−1. We now show that
∑t−1

r=0 γ̂
t
rσrZ̆r + σ⊥

t Z
d
=

σtZ̆t by demonstrating that:

(i) var(
∑t−1

r=0 γ̂
t
rσrZ̆r + σ⊥

t Z) = σ2
t ; and

(ii) E[σkZ̆k(
∑t−1

r=0 γ̂
t
rσrZ̆r + σ⊥

t Z)] = σkσtE[Z̆kZ̆t] = Ẽk,t,

for 0 ≤ k ≤ (t− 1).
The variance is

E(

t−1
∑

r=0

γ̂trσrZ̆r + σ⊥
t Z)

2 =

t−1
∑

r=0

t−1
∑

k=0

γ̂trγ̂
t
kẼk,r + (σ⊥

t )2 = σ2
t ,

where the last equality follows from rewriting the double sum

as follows using the definitions in Section IV-A:
∑

r,k

γ̂trγ̂
t
kẼk,r = (γ̂t)∗C̃tγ̂t = [Ẽ∗

t (C̃
t)−1]C̃t[(C̃t)−1Ẽt]

= Ẽ∗
t (C̃

t)−1Ẽt = Ẽt,t − (σ⊥
t )2.

(4.37)

Next, for any 0 ≤ k ≤ t− 1, we have

E[σkZ̆k(

t−1
∑

r=0

γ̂trσrZ̆r + σ⊥
t Z )]

(a)
=

t−1
∑

r=0

Ẽk,r γ̂
t
r

(b)
= [C̃γ̂t]k+1

(c)
= Ẽk,t.

In the above, step (a) follows from (4.14); step (b) by

recognizing from (4.16) that the required sum is the inner

product of γ̂t with row (k + 1) of C̃t; step (c) from the

definition of γ̂t in (4.17). This proves (4.32).

Next we show the expression for btpure in (4.33) using

induction; the proof for htpure is similar. The base case of t = 0
holds by definition because σ⊥

1 = σ1. Using the induction

hypothesis that (4.33) holds for b0pure, . . . , b
t−1
pure, the defintion

(4.31) can be written as

btpure =

t−1
∑

r=0

γ̂tr

(

r
∑

i=0

Z ′
iσ

⊥
i c

r
i

)

+ σ⊥
t Z

′
t

=

t−1
∑

i=0

Z ′
iσ

⊥
i

(

t−1
∑

r=i

γ̂trc
r
i

)

+ σ⊥
t Z

′
t =

t
∑

i=0

Z ′
iσ

⊥
i c

t
i,

where the last inequality follows from the definition of cti for

0 ≤ i ≤ t in (4.35). This proves (4.33).

The expressions for the conditional distribution of bt and

ht+1 in (4.36) can be similarly obtained from (4.24) and (4.25)

using an induction argument.

E. Main Concentration Lemma

For t ≥ 0, let

Kt = C2t(t!)10, κt =
1

c2t(t!)22
,

K ′
t = C(t+ 1)5Kt, κ′t =

κt
c(t+ 1)11

,
(4.38)

where C, c > 0 are universal constants (not depending on t, n,

or ǫ). To keep the notation compact, we use K,κ, κ′ to denote

generic positive universal constants whose values may change

through the lemma statement and the proof.

Lemma 5. The following statements hold for 1 ≤ t < T ∗ and

ǫ ∈ (0, 1).
(a)

P
( 1

N
‖∆t+1,t‖2 ≥ ǫ

)

≤ Kt2K ′
t−1e

−κκ′

t−1nǫ/t
4

, (4.39)

P
( 1

n
‖∆t,t‖2 ≥ ǫ

)

≤ Kt2Kt−1e
−κκt−1nǫ/t

4

. (4.40)

(b) i) Let Xn
..
= c be shorthand for P (|Xn − c| ≥ ǫ) ≤

Kt3K ′
t−1e

−κκ′

t−1nǫ
2/t7 . Then for pseudo-Lipschitz func-

tions φh : Rt+2 → R

1

N

N
∑

i=1

φh(h
1
i , . . . , h

t+1
i , β0i)

..
= Eφh(τ0Z̃0, . . . , τtZ̃t, β).

(4.41)

The random variables Z̃0, . . . , Z̃t are jointly Gaussian

with zero mean and covariance given by (4.14), and are

independent of β ∼ pβ .

ii) Let ψh : R
2 → R be a bounded function that is

differentiable in the first argument except possibly at a

finite number of points, with bounded derivative where it

exists. Then,

P
(∣

∣

∣

1

N

N
∑

i=1

ψh(h
t+1
i , β0i)− Eψh(τtZ̃t, β)

∣

∣

∣
≥ ǫ
)

≤ Kt2K ′
t−1e

−κκ′

t−1nǫ
2/t4 .

(4.42)

As above, Z̃t ∼ N (0, 1) and β ∼ pβ are independent.

iii) Let Xn
.
= c be shorthand for P (|Xn − c| ≥ ǫ) ≤

Kt3Kt−1e
−κκt−1nǫ

2/t7 . Then for pseudo-Lipschitz func-

tions φb : R
t+2 → R

1

n

n
∑

i=1

φb(b
0
i , . . . , b

t
i, wi)

.
= Eφb(σ0Z̆0, . . . , σtZ̆t,W ).

(4.43)

The random variables Z̆0, . . . , Z̆t are jointly Gaussian

with zero mean and covariance given by (4.14), and are

independent of W ∼ pw.

iv) Let ψb : R → R be a bounded function that is

differentiable in the first argument except possibly at a

finite number of points, with bounded derivative where it

exists. Then,

P
(∣

∣

∣

1

n

n
∑

i=1

ψb(b
t
i, wi)− Eψb(σtZ̆t,W )

∣

∣

∣
≥ ǫ
)

≤ Kt2Kt−1e
−κκt−1nǫ

2/t4 .

(4.44)



9

As above, Z̆t ∼ N (0, 1) and W ∼ pw are independent.

(c)

1

n
(ht+1)∗q0

..
= 0,

1

n
(ht+1)∗β0

..
= 0, (4.45)

1

n
(bt)∗w

.
= 0. (4.46)

(d) For all 0 ≤ r ≤ t,

1

N
(hr+1)∗ht+1 ..

= Ĕr,t, (4.47)

1

n
(br)∗bt

.
= Ẽr,t. (4.48)

(e) For all 0 ≤ r ≤ t,

1

n
(q0)∗qt+1 ..

= Ẽ0,t+1,
1

n
(qr+1)∗qt+1 ..

= Ẽr+1,t+1,

(4.49)

1

n
(mr)∗mt .= Ĕr,t. (4.50)

(f) For all 0 ≤ r ≤ t,

λt
..
= λ̂t,

1

n
(ht+1)∗qr+1 ..

= λ̂r+1Ĕr,t,

1

n
(hr+1)∗qt+1 ..

= λ̂t+1Ĕr,t,
(4.51)

ξt
.
= ξ̂t,

1

n
(br)∗mt .= ξ̂tẼr,t,

1

n
(bt)∗mr .

= ξ̂rẼr,t.

(4.52)

(g) Let Qt+1 := 1
nQ

∗
t+1Qt+1 and Mt :=

1
nM

∗
t Mt. Then,

P (Qt+1 is singular) ≤ tKt−1e
−κt−1κn, (4.53)

P (Mt is singular) ≤ tKt−1e
−κt−1κn. (4.54)

When the inverses of Qt+1,Mt exist, for 1 ≤ i, j ≤ t+1,

P
(∣

∣

∣
[Q−1

t+1 − (C̃t+1)−1]i,j

∣

∣

∣
≥ ǫ
)

≤ KK ′
t−1e

−κκ′

t−1nǫ
2

,

P
(

|γt+1
i−1 − γ̂t+1

i−1 |≥ ǫ
)

≤ Kt4K ′
t−1e

−κκ′

t−1nǫ
2/t9 .

(4.55)

For 1 ≤ i, j ≤ t,

P
(
∣

∣

∣
[M−1

t − (C̆t)−1]i,j

∣

∣

∣
≥ ǫ
)

≤ KKt−1e
−κκt−1nǫ

2

,

P
(

|αt
i−1 − α̂t

i−1|≥ ǫ
)

≤ Kt4Kt−1e
−κκt−1nǫ

2/t9 .

(4.56)

where γ̂t+1 and α̂t are defined in (4.17).

(h) With σ⊥
t+1, τ

⊥
t defined in (4.19),

P
(∣

∣

∣

1

n
‖qt+1

⊥ ‖2 − (σ⊥
t+1)

2
∣

∣

∣
≥ ǫ
)

≤ Kt5K ′
t−1e

−κκ′

t−1nǫ
2/t11 ,

(4.57)

P
(
∣

∣

∣

1

n
‖mt

⊥‖2 − (τ⊥t )2
∣

∣

∣
≥ ǫ
)

≤ Kt5Kt−1e
−κκt−1nǫ

2/t11 .

(4.58)

F. Remarks on Lemma 5

The proof of Theorem 1 below only requires the concen-

tration result in part (b).(i) of Lemma 5, but the proof of part

(b).(i) hinges on the other parts of the lemma. The proof of

Lemma 5, given in Section V, uses induction starting at time

t = 0, sequentially proving the concentration results in parts

(a)− (h). The proof is long, but is based on a sequence of a

few key steps which we summarize here.

The main result that needs to be proved (part (b).(i), (4.41))

is that within the normalized sum of the pseudo-Lipschitz

function φh, the inputs h1, . . . , ht+1 can be effectively re-

placed by τ0Z̃0, . . . , τtZ̃t, respectively. To prove this, we use

the representation for ht+1 given by Lemma 3, and show that

the deviation term given by (3) can be effectively dropped. In

order to show that the deviation term can be dropped, we need

to prove the concentration results in parts (c) – (h) of Lemma

5. Parts (b).(ii), (b).(iii), and (b).(iv) of the lemma are used to

establish the results in parts (c) – (h).

The concentration constants κt,Kt: The concentration re-

sults in Lemma 5 and Theorem 1 for AMP iteration t ≥ 1 are

of the form Kte
−κtnǫ

2

, where κt,Kt are given in (4.38). Due

to the inductive nature of the proof, the concentration results

for step t depend on those corresponding to all the previous

steps — this determines how κt,Kt scale with t.

The t! terms in κt,Kt can be understood as follows.

Suppose that we want prove a concentration result for a

quantity that can be expressed as a sum of t terms with step

indices 1, . . . , t. (A typical example is ∆t+1,t in (3).) For

such a term, the deviation from the deterministic concentrating

value is less than ǫ if the deviation in each of the terms in

the sum is less than ǫ/t. The induction hypothesis (for steps

1, . . . , t) is then used to bound the ǫ/t-deviation probability

for each term in the sum. This introduces factors of 1/t and t
multiplying the exponent and pre-factor, respectively, in each

step t (see Lemma A.2), which results in the t! terms in Kt

and κt.

The (C2)
t and (c2)

t terms in κt,Kt arise due to quantities

that can be expressed as the product of two terms, for each

of which we have a concentration result available (due to

the induction hypothesis). This can be used to bound the

ǫ-deviation probability of the product, but with a smaller

exponent and a larger prefactor (see Lemma A.3). Since this

occurs in each step of the induction, the constants Kt, κt have

terms of the form (C2)
t, (c2)

t, respectively.

Comparison with earlier work: Lemmas 3 and 5 are similar

to the main technical lemma in [1, Lemma 1], in that they both

analyze the behavior of similar functions and inner products

arising in the AMP. The key difference is that Lemma 5

replaces the asymptotic convergence statements in [1] with

concentration inequalities. Other differences from [1, Lemma

1] include:

– Lemma 5 gives explicit values for the deterministic limits

in parts (c)–(h), which are needed in other parts of our

proof.

– Lemma 3 characterizes the the conditional distribution of

the vectors ht+1 and bt as the sum of an ideal distribution

and a deviation term. [1, Lemma 1(a)] is a similar
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distributional characterization of ht+1 and bt, however it

does not use the ideal distribution. We found that working

with the ideal distribution throughout Lemma 5 simplified

our proof.

G. Proof of Theorem 1

Applying Part (b).(i) of Lemma 5 to a pseudo-Lipschitz

function of the form φh(h
t+1, β0), for 0 ≤ t ≤ T ∗ we have

P
(∣

∣

∣

1

N

N
∑

i=1

φh(h
t+1
i , β0i)−E[φh(τtZ, β)]

∣

∣

∣
≥ ǫ
)

≤ Kte
−κtnǫ

2

,

(4.59)

where the random variables Z ∼ N(0, 1) and β ∼ pβ are

independent. (Though Lemma 5 is stated for 1 ≤ t ≤ T ∗, one

can see that (4.59) holds for t = 0 by considering the pseudo-

Lipschitz (PL) function φh(h
1, β0).) Now let φh(h

t+1
i , β0i) :=

φ(ηt(β0i − ht+1
i ), β0i), where φ is the PL function in the

statement of the theorem. The function φh(h
t+1
i , β0i) is PL

since φ is PL and ηt is Lipschitz. We therefore obtain

P
(∣

∣

∣

1

N

N
∑

i=1

φ(ηt(β0i − ht+1
i ), β0i)

− E[φ(ηt(β − τtZ), β)]
∣

∣ ≥ ǫ
)

≤ Kte
−κtnǫ

2

.

The proof is completed by noting from (1.3) and (4.5) that

βt+1 = ηt(A
∗zt + βt) = ηt(β0 − ht+1).

V. PROOF OF LEMMA 5

A. Mathematical Preliminaries

Some of the results below can be found in [1, Section III.G],

but we summarize them here for completeness.

Fact 1. Let u ∈ R
N and v ∈ R

n be deterministic vectors,

and let Ã ∈ R
n×N be a matrix with independent N (0, 1/n)

entries. Then:

(a)

Ãu
d
=

1√
n
‖u‖Zu and Ã∗v

d
=

1√
n
‖v‖Zv,

where Zu ∈ R
n and Zv ∈ R

N are i.i.d. standard Gaussian

random vectors.

(b) Let W be a d-dimensional subspace of Rn for d ≤ n.

Let (w1, ..., wd) be an orthogonal basis of W with ‖wℓ‖2 =

n for ℓ ∈ [d], and let P
‖
W denote the orthogonal projection

operator onto W . Then for D = [w1 | . . . | wd], we have

P
‖
WÃu

d
= 1√

n
‖u‖P‖

WZu
d
= 1√

n
‖u‖Dx where x ∈ R

d is a

random vector with i.i.d. N (0, 1/n) entries.

Fact 2 (Stein’s lemma). For zero-mean jointly Gaussian

random variables Z1, Z2, and any function f : R → R

for which E[Z1f(Z2)] and E[f ′(Z2)] both exist, we have

E[Z1f(Z2)] = E[Z1Z2]E[f
′(Z2)].

Fact 3. Let v1, . . . , vt be a sequence of vectors in R
n such

that for i ∈ [t], 1
n‖vi − P

‖
i−1(vi)‖2 ≥ c, where c is a positive

constant that does not depend on n, and P
‖
i−1 is the orthogonal

projection onto the span of v1, . . . , vi−1. Then the matrix C ∈

R
t×t with Cij = v∗i vj/n has minimum eigenvalue λmin ≥ c′t,

where c′t is a positive constant (not depending on n).

Fact 4. Let g : R → R be a bounded function. For all

s,∆ ∈ R such that g is differentiable in the closed interval

between s and s+∆, there exists a constant c > 0 such that

|g(s+∆)− g(s)| ≤ c|∆|.
We also use several concentration results listed in Appen-

dices A and B, with proofs provided for the results that are

non-standard. Some of these may be of independent interest,

e.g., concentration of sums of a pseudo-Lipschitz function of

sub-Gaussians (Lemma B.4).

The proof of Lemma 5. proceeds by induction on t. We label

as Ht+1 the results (4.39), (4.41), (4.42), (4.45), (4.47), (4.49),

(4.51), (4.53), (4.55), (4.57) and similarly as Bt the results

(4.40), (4.43), (4.44), (4.46), (4.48), (4.50), (4.52), (4.54),

(4.56), (4.58). The proof consists of showing four steps:

1) B0 holds.

2) H1 holds.

3) If Br,Hs holds for all r < t and s ≤ t, then Bt holds.

4) if Br,Hs holds for all r ≤ t and s ≤ t, then Ht+1 holds.

For the proofs of parts (b).(ii) and (b).(iv), for brevity

we assume that the functions ψh and ψb are differentiable

everywhere. The case where they are not differentiable at a

finite number of points involves additional technical details;

see Appendix D.

B. Step 1: Showing B0 holds

We wish to show results (a)-(h) in (4.40), (4.43), (4.44),

(4.46), (4.48), (4.50), (4.52), (4.54), (4.56), (4.58).

(a) We have

P
( 1

n
‖∆0,0‖2 ≥ ǫ

)

(a)

≤ P
(∣

∣

∣

1√
n
‖q0‖ − σ⊥

0

∣

∣

∣
≥
√

ǫ

2

)

+ P
(∣

∣

∣

1√
n
‖Z ′

0‖ − 1
∣

∣

∣
≥
√

ǫ

2

)

(b)

≤ Ke−κε2nǫ/4 + 2e−nǫ/8.

Step (a) is obtained using the definition of ∆0,0 in (4.26), and

then applying Lemma A.3. For step (b), we use (4.3), Lemma

A.4, and Lemma B.2.

(b).(iii) For t = 0, the LHS of (4.43) can be bounded as

P
(∣

∣

∣

1

n

n
∑

i=1

φb(b
0
i , wi)− E[φb(σ0Z̆0,W )]

∣

∣

∣
≥ ǫ
)

(a)
= P

(
∣

∣

∣

1

n

n
∑

i=1

φb(σ0Z
′
0i + [∆0,0]i, wi)

− E[φb(σ0Z̆0,W )]
∣

∣

∣
≥ ǫ
)

(b)

≤ P
(∣

∣

∣

1

n

n
∑

i=1

φb(σ0Z
′
0i , wi)

− E[φb(σ0Z̆0,W )]
∣

∣

∣
≥ ǫ

2

)

+ P
(
∣

∣

∣

1

n

n
∑

i=1

[

φb(σ0Z
′
0i + [∆0,0]i, wi)

− φb(σ0Z
′
0i , wi)

]∣

∣

∣
≥ ǫ

2

)

.

(5.1)



11

Step (a) uses the conditional distribution of b0 given in (4.24),

and step (b) follows from Lemma A.2. Label the terms on the

RHS of (5.1) as T1 and T2. Term T1 can be upper bounded

by Ke−κnǫ2 using Lemma B.4. We now show a similar upper

bound for term T2.

T2

(a)

≤ P
(L

n

n
∑

i=1

(1 + 2|σ0Z ′
0i |+ |∆0,0i |+ 2|wi|)|∆0,0i| ≥

ǫ

2

)

(b)

≤ P
(‖∆0,0‖√

n
‖ 1√

n
+

|∆0,0|√
n

+ 2σ0
|Z ′

0|√
n

+ 2
|w|√
n
‖ ≥ ǫ

2L

)

(c)

≤ P
(‖∆0,0‖√

n

(

1 +
‖∆0,0‖√

n
+ 2σ0

‖Z ′
0‖√
n

+ 2
‖w‖√
n

)

≥ ǫ

4L

)

,

(5.2)

where inequality (a) holds because φb is pseudo-Lipschitz with

constant L > 0. Inequality (b) follows from Cauchy-Schwarz

(with 1 denoting the all-ones vector). Inequality (c) is obtained

by applying Lemma C.3. From (5.2), we have

T2 ≤ P
(‖w‖√

n
≥ σ + 1

)

+ P
(‖Z ′

0‖√
n

≥ 2
)

+ P
(‖∆0,0‖√

n
≥ ǫmin{1, (4L)−1}

4 + 4σ0 + 2σ

)

(a)

≤ Ke−κn + e−n +Ke−κnǫ2,

(5.3)

where to obtain (a), we use assumption (1.6), Lemma B.2,

and B0(a) proved above.

(b).(iv) For t = 0, the probability in (4.44) can be bounded

as

P
(
∣

∣

∣

1

n

n
∑

i=1

ψb(b
0
i , wi)− E[ψb(σ0Z̆0,W )]

∣

∣

∣
≥ ǫ
)

(a)
= P

(
∣

∣

∣

1

n

n
∑

i=1

ψb(σ0Z
′
0i + [∆0,0]i, wi)

− E[ψb(σ0Z̆0,W )]
∣

∣

∣
≥ ǫ
)

(b)

≤ P
(∣

∣

∣

1

n

n
∑

i=1

[ψb(σ0Z
′
0i + [∆0,0]i, wi)

− ψb(σ0Z
′
0i , wi)]

∣

∣

∣
≥ ǫ

2

)

+ P
(∣

∣

∣

1

n

n
∑

i=1

ψb(σ0Z
′
0i , wi)− E[ψb(σ0Z̆0,W )]

∣

∣

∣
≥ ǫ

2

)

.

(5.4)

Step (a) uses the conditional distribution of b0 given in (4.24),

and step (b) follows from Lemma A.2. Label the two terms

on the RHS of (5.4) as T1 and T2, respectively. We now show

that each term is bounded by Ke−κnǫ2 . Since |ψb| is bounded

(say it takes values in an interval of length B), the term T2
can be bounded using Hoeffding’s inequality (Lemma A.1) by

2e−nǫ2/(2B2).

Next, consider T1. Let Π0 be the event under consideration,

so that T1 = P (Π0), and define an event F as follows.

F :=
{∣

∣

∣

1√
n
‖q0‖ − σ0

∣

∣

∣
≥ ǫ0

}

, (5.5)

where ǫ0 > 0 will be specified later. With this definition,

T1 = P (Π0) ≤ P (F) + P (Π0|Fc)

≤ Ke−κnǫ20 + P (Π0|Fc). (5.6)

The final inequality in (5.6) follows from the concentration of

‖q0‖ in (4.3). To bound the last term P (Π0|Fc), we write it

as

P (Π0|Fc) = E[I{Π0}|Fc] = E[E[I{Π0}|Fc,S0,0] | Fc]

= E[P (Π0|Fc,S0,0) | Fc],
(5.7)

where I{·} denotes the indicator function, and

P (Π0|Fc,S0,0) equals

P
(∣

∣

∣

1

n

n
∑

i=1

[

ψb

(‖q0‖√
n
Z ′
0i , wi

)

− ψb(σ0Z
′
0i , wi)

]
∣

∣

∣
≥ ǫ

2

∣

∣

∣
Fc,S0,0

)

.

(5.8)

To obtain (5.8), we use the fact that σ0Z
′
0i + [∆0,0]i =

1√
n
‖q0‖Z ′

0i which follows from the definition of ∆0,0 in

Lemma 3. Recall from Section IV-D that S0,0 is the sigma-

algebra generated by {w, β0, q0}; so in (5.8), only Z ′
0 is

random — all other terms are in S0,0. We now derive a bound

for the upper tail of the probability in (5.8); the lower tail

bound is similarly obtained. From here on, we suppress the

conditioning on Fc,S0,0 for brevity.

Define the shorthand diff(Z ′
0i) := ψb(

1√
n
‖q0‖Z ′

0i , wi) −
ψb(σ0Z

′
0i , wi). Since ψb is bounded, so is diff(Z ′

0i). Let |ψb| ≤
B/2, so that |diff(Z ′

0i)| ≤ B for all i. Then the upper tail of

the probability in (5.8) can be written as

P
( 1

n

n
∑

i=1

diff(Z ′
0i)− E[diff(Z ′

0i)] ≥
ǫ

2
− 1

n

n
∑

i=1

E[diff(Z ′
0i)]
)

.

(5.9)

We now show that |E[diff(Z ′
0i)]| ≤ 1

4ǫ for all i ∈ [n]. Denoting

the standard normal density by φ, we have

|E[diff(Z ′
0i)]| ≤

∫

R

φ(z) |diff(z)|dz
(a)

≤
∫

R

φ(z)C
∣

∣

∣
z
(‖q0‖√

n
− σ0

)
∣

∣

∣
dz

(b)

≤ 2Cǫ0.

The above is bounded by 1
4ǫ if we choose ǫ0 ≤ ǫ/8C. In

the chain above, (a) follows by Fact 4 for a suitable constant

C > 0 as ψb is bounded and assumed to be differentiable.

Step (b) follows since | 1√
n
‖q0‖ − σ0| ≤ ǫ0 under Fc.

The probability in (5.9) can then be bounded using Hoeffd-

ing’s inequality (Lemma A.1):

P
( 1

n

n
∑

i=1

diff(Z ′
0i)−E[diff(Z ′

0i)] ≥
ǫ

4

∣

∣

∣
Fc,S0,0

)

≤ e
− nǫ2

(8B2) .

Substituting in (5.8) and using a similar bound for the lower

tail, we have shown via (5.7) that P (Π0 | Fc) ≤ 2e−nǫ2/(8B2).

Using this in (5.6) with ǫ0 ≤ ǫ/8C proves that the first term

in (5.4) is bounded by Ke−nκǫ2 .

(c) The function φb(b
0
i , wi) := b0iwi ∈ PL(2) by Lemma
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C.1. By B0(b).(iii),

P
(∣

∣

∣

1

n
(b0)∗w − E[σ0Z̆0W ]

∣

∣

∣
≥ ǫ
)

≤ Ke−κnǫ2 .

This result follows since E[σ0Z̆0W ] = 0 by the independence

of W and Ẑ0.

(d) The function φb(b
0
i , wi) := (b0i )

2 ∈ PL(2) by Lemma

C.1. By B0(b).(iii),

P
(
∣

∣

∣

1

n
‖b0‖2 − E[(σ0Z̆0)

2]
∣

∣

∣
≥ ǫ
)

≤ Ke−κnǫ2.

This result follows since E[(σ0Ẑ0)
2] = σ2

0 .

(e) Since g0 is Lipschitz, the function φb(b
0
i , wi) :=

(g0(b
0
i , wi))

2 ∈ PL(2) by Lemma C.1. By B0(b).(iii),

P
(
∣

∣

∣

1

n
‖m0‖2 − E[(g0(σ0Z̆0,W ))2]

∣

∣

∣
≥ ǫ
)

≤ Ke−κnǫ2.

This result follows since E[(g0(σ0Z̆0,W ))2] = τ20 by (4.4).

(f) The concentration of ξ0 around ξ̂0 follows from

B0(b).(iv) applied to the function ψb(b
0
i , wi) := g′0(b

0
i , wi).

Next, the function φb(b
0
i , wi) := b0i g0(b

0
i , wi) ∈ PL(2) by

Lemma C.1. Then by B0(b).(iii),

P
(∣

∣

∣

1

n
(b0)∗m0 − E[σ0Z̆0g0(σ0Z̆0,W )]

∣

∣

∣
≥ ǫ
)

≤ Ke−κnǫ2.

This result follows since E[σ0Z̆0g0(σ0Z̆0,W )] =
σ2
0E[g

′
0(σ0Z̆0,W )] = ξ̂0Ẽ0,0 by Stein’s Lemma given

in Fact 2.

(g) Nothing to prove.

(h) The result is equivalent to B0(e) since ‖m0
⊥‖ = ‖m0‖

and (τ⊥0 )2 = τ20 .

C. Step 2: Showing H1 holds

We wish to show results (a)–(h) in (4.39), (4.41), (4.42),

(4.45), (4.47), (4.49), (4.51), (4.53), (4.55), (4.57).

(a) From the definition of ∆1,0 in (4.27) of Lemma 3, we

have

∆1,0
d
= Z0

(‖m0‖√
n

− τ⊥0

)

− ‖m0‖q̃0Z̄0√
n

+ q0
( n

‖q0‖2
)((b0)∗m0

n
− ξ0‖q0‖2

n

)

.

(5.10)

where q̃0 = q0/‖q0‖, and Z̄0 ∈ R is a standard Gaussian

random variable. The equality in (5.10) is obtained using Fact

1 to write P
‖
q0Z0

d
= q̃0Z̄0. Then, from (5.10) we have

P
( 1

N
‖∆1,0‖2 ≥ ǫ

) (a)

≤ P
(∣

∣

∣

‖m0‖√
n

− τ0

∣

∣

∣

‖Z0‖√
N

≥
√

ǫ

9

)

+ P
(‖m0‖|Z̄0|√

nN
≥
√

ǫ

9

)

+ P
(∣

∣

∣

(b0)∗m0

√
n‖q0‖ − ξ0‖q0‖√

n

∣

∣

∣
≥
√

ǫ

9δ

)

.

(5.11)

Step (a) follows from Lemma C.3 applied to ∆1,0 in (5.10)

and Lemma A.2. Label the terms on the RHS of (5.11) as

T1 − T3. To complete the proof, we show that each term is

bounded by Ke−κnǫ for generic positive constants K,κ that

do not depend on n, ǫ.

Indeed, T1 ≤ Ke−κnǫ using Lemma A.3, Lemma A.4,

result B0(e), and Lemma B.2. Similarly, T2 ≤ Ke−κnǫ using

Lemma A.3, Lemma A.4, result B0(e), and Lemma B.1.

Finally,

T3
(a)

≤ P
(∣

∣

∣

(b0)∗m0

n
·
√
n

‖q0‖ − ξ̂0σ0

∣

∣

∣
≥ 1

2

√

ǫ

9δ

)

+ P
(
∣

∣

∣
ξ0
‖q0‖√
n

− ξ̂0σ0

∣

∣

∣
≥ 1

2

√

ǫ

9δ

)

(b)

≤ 2Ke
−κnǫ

δ max(1,ξ̂2
0
σ4
0
,σ

−2
0

) + 2Ke
−κnǫ

δ max(1,ξ̂2
0
,σ2

0
) .

Step (a) follows from Lemma A.2, and step (b) from Lemma

A.3, B0(f), the concentration of ‖q0‖ given in (4.3), and

Lemma A.6.

(b)(i) The proof of (4.41) is similar to analogous B0(b)(iii)
result (4.43).

(b)(ii) First,

P
(∣

∣

∣

1

N

N
∑

i=1

ψh(h
1
i , β0i)− E[ψh(τ0Z̃0, β)]

∣

∣

∣
≥ ǫ
)

(a)
= P

(∣

∣

∣

1

N

N
∑

i=1

ψh(τ0Z0i + [∆1,0]i, β0i)

− E[ψh(τ0Z̃0, β)]
∣

∣

∣
≥ ǫ
)

(b)

≤ P
(∣

∣

∣

1

N

N
∑

i=1

[ψh(τ0Z0i + [∆1,0]i, β0i)

−ψh(τ0Z0i , β0i)]
∣

∣

∣
≥ ǫ

2

)

+ P
(
∣

∣

∣

1

N

N
∑

i=1

ψh(τ0Z0i , β0i)− E[ψh(τ0Z̃0, β)]
∣

∣

∣
≥ ǫ

2

)

.

(5.12)

Step (a) follows from the conditional distribution of h1 stated

in (4.25) and step (b) from Lemma A.2. Label the two terms on

the RHS as T1 and T2. Term T2 is upper bounded by Ke−κnǫ2

by Hoeffding’s inequality (Lemma A.1). To complete the

proof, we show that T1 has the same bound.

Consider the first term in (5.12). From the definition of ∆1,0

in Lemma 3,

τ0Z0i + [∆1,0]i =
1√
n
‖m0‖[(I− P

‖
q0)Z0]i + ui, (5.13)

where

ui := q0i

( (b0)∗m0

‖q0‖2 − ξ0

)

. For ǫ0 > 0 to be specified later, define event F as

F :=
{∣

∣

∣

‖m0‖√
n

− τ0

∣

∣

∣
≥ ǫ0

}

∪
{∣

∣

∣

(b0)∗m0

n
− ξ0‖q0‖2

n

∣

∣

∣
≥ ǫ0

}

.

(5.14)

Denoting the event we are considering in T1 by Π1, so that

T1 = P (Π1), we write

T1 = P (Π1) ≤ P (F)+P (Π1 | Fc) ≤ Ke−κnǫ20+P (Π1 | Fc)
(5.15)
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where the last inequality is by B0(e),B0(f) and the con-

centration assumption (4.3) on q0. Writing P (Π1|Fc) =
E[P (Π1|Fc,S1,0) | Fc], we now bound P (Π1|Fc,S1,0). In

what follows, we drop the explicit conditioning on Fc and

S1,0 for brevity. Then using Lemma A.2, P (Π1|Fc,S1,0)
can be written as

P
(∣

∣

∣

1

N

N
∑

i=1

[

ψh

(‖m0‖√
n

[(I− P
‖
q0)Z0]i + ui, β0i

)

− ψh(τ0Z0i , β0i)
]
∣

∣

∣
≥ ǫ

2

)

≤ P
(∣

∣

∣

1

N

N
∑

i=1

ψh

(‖m0‖√
n

[(I− P
‖
q0)Z0]i + ui, β0i

)

− ψh

(‖m0‖√
n
Z0i + ui, β0i

)∣

∣

∣
≥ ǫ

4

)

+ P
(∣

∣

∣

1

N

N
∑

i=1

ψh

(‖m0‖√
n
Z0i + ui, β0i

)

− ψh(τ0Z0i , β0i)
∣

∣

∣
≥ ǫ

4

)

.

(5.16)

Note that in (5.16), only Z0 is random as the other terms are

all in S1,0. Label the two terms on the RHS of (5.16) as

T1,a and T1,b. To complete the proof we show that both are

bounded by Ke−κnǫ2 .

First consider T1,a.

T1,a
(a)

≤ P
(C

N

N
∑

i=1

∣

∣

∣

‖m0‖√
n

[P
‖
q0Z0]i

∣

∣

∣
≥ ǫ

4

)

(b)

≤ P
(C

N

N
∑

i=1

|τ0 + ǫ0|
∣

∣

∣
[P

‖
q0Z0]i

∣

∣

∣
≥ ǫ

4

)

(c)

≤ P
(C

N

N
∑

i=1

|q0i |
‖q0‖|Z| ≥

ǫ

4|τ0 + ǫ0|
)

(d)

≤ P
( |Z|√

N
≥ ǫ

4C|τ0 + ǫ0|
) (e)

≤ e−κNǫ2.

Step (a) holds by Fact 4 for a suitable constant C > 0. Step

(b) follows because we are conditioning on Fc defined in

(5.14). Step (c) is obtained by writing out the expression for

the vector P
‖
q0Z0:

P
‖
q0Z0 =

q0

‖q0‖
N
∑

j=1

q0j
‖q0‖Z0j

d
=

q0

‖q0‖Z,

where Z ∈ R is standard Gaussian (Fact 1). Step (d) follows

from Cauchy-Schwarz and step (e) by Lemma B.1.

Considering T1,b, the second term of (5.16), and noting that

all quantities except Z0 are in S1,0, define the shorthand

diff(Z0i) := ψh(
1√
n
‖m0‖Z0i + ui, β0i) − ψh(τ0Z0i , β0,i).

Then the upper tail of T1,b can be written as

P
( 1

N

N
∑

i=1

diff(Z0i)−E[diff(Z0i)] ≥
ǫ

4
− 1

N

N
∑

i=1

E[diff(Z0i)]
)

.

(5.17)

Since ψh is bounded, so is diff(Z0i). Using the conditioning

on Fc and steps similar to those in B0(b)(iv), we can show

that 1
N

∑N
i=1 E[diff(Z0i)] ≤ 1

8ǫ for ǫ0 ≤ Cτ0ǫ, where

C > 0 can be explicitly computed. For such ǫ0, using

Hoeffding’s inequality the probability in (5.17) can be bounded

by e−nǫ2/(128B2) when ψh takes values within an interval of

length B. A similar bound holds for the lower tail of T1,b.

Thus we have now bounded both terms of (5.16) by Ke−nκǫ2 .

The result follows by substituting the value of ǫ0 (chosen as

described above) in (5.15).

(c),(d),(e),(f) These results can be proved by appealing to

H1(b) in a manner similar to B0(c)(d)(e)(f).

(g) From the definitions in Section IV-A and defining Q1 :=
1
n‖q0‖2, we have γ10 = Q−1

1
1
n (q

0)∗q1 and γ̂10 = Ẽ0,1/Ẽ0,0 =

Ẽ0,1σ
−2
0 . Therefore,

P (|γ10 − γ̂10 |≥ ǫ)
(a)

≤ P (|Q−1
1 − σ−2

0 |≥ ǫ̃)

+ P
(∣

∣

∣

1

n
(q0)∗q1 − Ẽ0,1

∣

∣

∣
≥ ǫ̃
)

(5.18)

where (a) follows from Lemma A.3 with ǫ̃ :=
min{

√

ǫ/3, ǫ/(3Ẽ0,1), ǫσ2
0/3}. We now show that each

of the two terms in (5.18) is bounded by Ke−κnǫ̃2 .

Since σ2
0 > 0, by Lemma A.6 and (4.3), we have

P (|Q−1
1 − σ−2

0 |≥ ǫ̃) ≤ 2Ke−κnǫ̃2σ2
0 min(1,σ2

0). The

concentration bound for 1
n (q

0)∗q1 follows from H1(e).

(h) From the definitions in Section IV-A, we have ‖q1⊥‖2 =
‖q1‖2 − ‖q1‖‖2 = ‖q1‖2 − (γ10)

2‖q0‖2, and (σ⊥
1 )2 = σ2

1 −
(γ̂10)

2σ2
0 . We therefore have

P
(∣

∣

∣

1

n
‖q1⊥‖2 − (σ⊥

1 )
2
∣

∣

∣
≥ ǫ
)

(a)

≤ P
(∣

∣

∣

‖q1‖2
n

− σ2
1

∣

∣

∣
≥ ǫ

2

)

+ P
(
∣

∣

∣
(γ10)

2 ‖q0‖2
n

− (γ̂10)
2σ2

0

∣

∣

∣
≥ ǫ

2

)

(b)

≤ K exp{−κnǫ2}+K exp
{ −κnǫ2
4(9)max(1, (γ̂10)

4, σ4
0)

}

In the chain above, (a) uses Lemma A.2 and (b) is obtained

using H1(e) for bounding the first term and by applying

Lemma A.3 to the second term along with the concentration

of ‖q0‖ in (4.3), H1(g), and Lemma A.5 (for concentration

of the square).

D. Step 3: Showing Bt holds

We prove the statements in Bt assuming that B0, . . . ,Bt−1,

and H1, . . . ,Ht hold due to the induction hypothesis. The

induction hypothesis implies that for 0 ≤ r ≤ (t − 1),
the deviation probabilities P ( 1n‖∆r,r‖2 ≥ ǫ) in (4.40) and

P ( 1n‖∆r+1,r‖2 ≥ ǫ) in (4.39) are each bounded by Kre
−κrnǫ.

Similarly, the LHS in each of (4.41) – (4.58) is bounded by

Kre
−κrnǫ

2

.

We begin with a lemma that is required to prove Bt(a). The

lemma as well as other parts of Bt assume the invertibility of

M1, . . . ,Mt, but for the sake of brevity, we do not explicitly

specify the conditioning.

Lemma 6. Let v := 1
nH

∗
t q

t
⊥ − 1

nM
∗
t [λtm

t−1 −
∑t−1

i=1 λiγ
t
im

i−1] and Mt :=
1
nM

∗
t Mt. If M1, . . . ,Mt are
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invertible, we have for j ∈ [t],

P (|[M−1
t v]j |≥ ǫ) ≤ Kt2Kt−1 exp{−nκκt−1ǫ

2/t2}.

Proof: We can represent Mt as

Mt =
1

n

[

nMt−1 M∗
t−1m

t−1

(M∗
t−1m

t−1)∗ ‖mt−1‖2
]

,

Then, if Mt−1 is invertible, by the block inversion formula

we have

M−1
t =





M−1
t−1 +

nαt−1(αt−1)∗

‖mt−1
⊥

‖2
− nαt−1

‖mt−1
⊥

‖2

−n(αt−1)∗

‖mt−1
⊥

‖2

n
‖mt−1

⊥
‖2



 , (5.19)

where we have used αt−1 = 1
nM

−1
t−1M

∗
t−1m

t−1 and

(M∗
t−1m

t−1)∗αt−1 = (mt−1)∗mt−1
‖ . Therefore,

M−1
t v =

[

M−1
t−1v[t−1] + αt−1((αt−1)∗v[t−1] − vt)at−1

−((αt−1)∗v[t−1] − vt)at−1

]

,

(5.20)

where ar := n/‖mr
⊥‖2 for r ∈ [t], and v[r] ∈ R

r denotes

the vector consisting of the first r elements of v ∈ R
t. Now,

using the block inverse formula again to express M−1
t−1v[t−1]

and noting that αt−1 = (αt−1
0 , . . . , αt−1

t−2), we obtain

M−1
t v

=













M−1
t−2v[t−2] + αt−2((αt−2)∗v[t−2] − vt−1)at−2

+αt−1
[t−2]((α

t−1)∗v[t−1] − vt)at−1

−((αt−2)∗v[t−2] − vt−1)at−2

+αt−1
t−2((α

t−1)∗v[t−1] − vt)at−1

−((αt−1)∗v[t−1] − vt)at−1













.

Continuing in this fashion, we can express each element of

M−1
t v as follows:

[M−1
t v]k =















v1a0 +
∑t−1

j=1 α
j
0((α

j)∗v[j] − vj+1)aj , k = 1,

−((αk−1)∗v[k−1] − vk)ak−1

+
∑t−1

j=k α
j
k−1((α

j)∗v[j] − vj+1)aj , 2 ≤ k < t,

−((αt−1)∗v[t−1] − vt)at−1, k = t.
(5.21)

We will prove that each entry of M−1
t v concentrates around 0

by showing that each entry of v concentrates around zero, and

the entries of αj , aj concentrate around constants for j ∈ [t].

For k ∈ [t], bound |vk| as follows. Substituting qt⊥ =
qt −∑t−1

j=0 γ
t
jq

j in the definition of v and using the triangle

inequality, we have

|vk| ≤
∣

∣

∣

(hk)∗qt

n
− λt

(mk−1)∗mt−1

n

∣

∣

∣
+ |γt0|

∣

∣

∣

(hk)∗q0

n

∣

∣

∣

+

t−1
∑

i=1

|γti |
∣

∣

∣

(hk)∗qi

n
− λi

(mk−1)∗mi−1

n

∣

∣

∣
.

(5.22)

Therefore,

P (|vk| ≥ ǫ) ≤ P
(∣

∣

∣

1

n
(hk)∗qt − λt

1

n
(mk−1)∗mt−1

∣

∣

∣
≥ ǫ′

)

+ P
(

|γt0|
∣

∣

∣

1

n
(hk)∗q0

∣

∣

∣
≥ ǫ′

)

+
t−1
∑

i=1

P
(

|γti |
∣

∣

∣

1

n
(hk)∗qi − λi

1

n
(mk−1)∗mi−1

∣

∣

∣
≥ ǫ′

)

(5.23)

where ǫ′ = ǫ
t+1 . The first term in (5.23) can be bounded using

Lemma A.3 and induction hypotheses Ht(f) and Bt−1(e) as

follows.

P
(
∣

∣

∣

(hk)∗qt

n
− λt

(mk−1)∗mt−1

n

∣

∣

∣
≥ ǫ′

)

≤ P
(∣

∣

∣

(hk)∗qt

n
− λ̂tĔk−1,t−1

∣

∣

∣
≥ ǫ′

2

)

+ P
(
∣

∣

∣
λt

(mk−1)∗mt−1

n
− λ̂tĔk−1,t−1

∣

∣

∣
≥ ǫ′

2

)

≤ Kt−1e
−κκt−1nǫ

′2

+ 2Kt−1e
− κκt−1nǫ′2

max(1,λ̂2
t ,Ĕ2

k−1,t−1
) .

For k ∈ [t], the second term in (5.23) can be bounded as

P
(

|γt0|
∣

∣

∣

1

n
(hk)∗q0

∣

∣

∣
≥ ǫ′

)

≤ P
(

(|γt0 − γ̂t0|+ |γ̂t0|)|
1

n
(hk)∗q0| ≥ ǫ′

)

≤ P (|γt0 − γ̂t0| ≥
√
ǫ′)

+ P
(

| 1
n
(hk)∗q0| ≥ ǫ′

2
min{1, |γ̂t0|−1}

)

≤ Kt−1e
−κκt−1nǫ

′

+Kt−1e
−κκt−1nǫ

′2

,

where the last inequality follows from induction hypotheses

Ht(g) and Ht(c). Similarly, for k ∈ [t], i ∈ [t− 1], the third

term in (5.23) can be bounded as

P
(

|γti |
∣

∣

∣

(hk)∗qi

n
− λi

(mk−1)∗mi−1

n

∣

∣

∣
≥ ǫ′

)

≤ P
(

(|γti − γ̂ti |+ |γ̂ti |)|
(hk)∗qi

n
− λi

(mk−1)∗mi−1

n
| ≥ ǫ′

)

≤ P (|γti − γ̂ti | ≥
√
ǫ′)

+ P
(∣

∣

∣

(hk)∗qi

n
− λi

(mk−1)∗mi−1

n

∣

∣

∣
≥ ǫ′

2
min{1, (γ̂ti)−1}

)

≤ Kt−1e
−κκt−1nǫ

′

+ 2Kt−1e
−κκt−1nǫ

′2

.

Substituting ǫ′ = ǫ
t+1 in each of the above bounds and using

them in (5.23),

P (|vk| ≥ ǫ) ≤ KtKt−1e
−κκt−1ǫ

2/t2 . (5.24)

Furthermore, from induction hypotheses B0(g)−Bt−1(g), for

0 ≤ i < j ≤ (t− 1):

P (|αj
i − α̂j

i | ≥ ǫ) ≤ Kt−1e
−nκt−1ǫ

2

. (5.25)

Also, using induction hypotheses B0(h)−Bt−1(h) and Lemma

A.6, for 0 ≤ r ≤ (t− 1):

P (|ar − (τ⊥t )−2| ≥ ǫ) ≤ Kt−1e
−nκt−1ǫ

2

. (5.26)
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Finally, from (5.21), we have for k ∈ [t],

P
(

|[M−1
t v]k| ≥ ǫ

)

(a)

≤ P
(

∪k∈[t] {|vk| ≥ ǫ} ∪0≤r<t {|ar − (τ⊥t )−2| ≥ κ1ǫ/t}

∪0≤i<j<t {|αj
i − α̂j

i | ≥ κ2ǫ/t}
)

(b)

≤ Kt2Kt−1e
−nκκt−1ǫ

2/t2 .

where in step (a), κ1, κ2 are appropriately chosen positive

constants, and step (b) follows from the bounds in (5.24),

(5.25), and (5.26).

(a) Recall the definition of ∆t,t from (4.28). Then using

Fact 1, it follows 1√
n
‖qt⊥‖P

‖
Mt
Z ′
t

d
= 1

n‖qt⊥‖M̃tZ̄
′
t, where the

columns of M̃t ∈ R
n×t form an orthogonal basis for the

column space of Mt with M̃∗
t M̃t = nIt, and Z̄ ′

t ∈ R
t is an

independent random vector with i.i.d. N (0, 1) entries. Then,

∆t,t =

t−1
∑

r=0

(γtr − γ̂tr)b
r + Z ′

t

( 1√
n
‖qt⊥‖ − σ⊥

t

)

− 1

n
‖qt⊥‖M̃tZ̄

′
t +MtM

−1
t v,

where Mt ∈ R
t×t and v ∈ R

t are defined in Lemma 6.

Writing MtM
−1
t v =

∑t−1
j=0m

j [M−1
t v]j+1 and using Lemma

C.3, we have

‖∆t,t‖2
2(t+ 1)

≤
t−1
∑

r=0

(γtr − γ̂tr)
2‖br‖2 + ‖Z ′

t‖2
( 1√

n
‖qt⊥‖ − σ⊥

t

)2

+
1

n2
‖qt⊥‖2‖M̃tZ̄

′
t‖2 +

t−1
∑

j=0

‖mj‖2[M−1
t v]2j+1,

Applying Lemma A.2,

P
(‖∆t,t‖2

n
≥ ǫ
)

≤
t−1
∑

r=0

P
(

|γtr − γ̂tr|
‖br‖√
n

≥
√

ǫ̃t

)

+ P
(‖qt⊥‖√

n

‖M̃tZ̄
′
t‖

n
≥
√

ǫ̃t

)

+ P
(∣

∣

∣

‖qt⊥‖√
n

− σ⊥
t

∣

∣

∣

‖Z ′
t‖√
n

≥
√

ǫ̃t

)

+

t−1
∑

j=0

P
(∣

∣

∣
[M−1

t v]j+1

∣

∣

∣

‖mj‖√
n

≥
√

ǫ̃t

)

,

(5.27)

where ǫ̃t := ǫ
4(t+1)2 . We now bound each of the terms in

(5.27).

For 0 ≤ r ≤ t− 1, the first term is bounded as

P
(

|γtr − γ̂tr|
1√
n
‖br‖ ≥

√

ǫ̃t

)

≤ P
(

|γtr − γ̂tr|
(∣

∣

∣

1√
n
‖br‖ − σr

∣

∣

∣
+ σr

)

≥
√

ǫ̃t

)

≤ P
(

|γtr − γ̂tr|≥
√
ǫ̃t
2

min{1, 1

σr
}
)

+ P
(∣

∣

∣

‖br‖√
n

− σr

∣

∣

∣
≥ √

ǫ
)

(a)

≤ Kt−1e
−κκt−1nǫ̃t +Kt−1e

−κκt−1nǫ,

where step (a) follows from induction hypotheses Ht(g),
B0(d) − Bt−1(d), and Lemma A.4. Next, the third term in

(5.27) is bounded as

P
(∣

∣

∣

1√
n
‖qt⊥‖ − σ⊥

t

∣

∣

∣

1√
n
‖Z ′

t‖ ≥
√

ǫ̃t

)

≤ P
(∣

∣

∣

1√
n
‖qt⊥‖ − σ⊥

t

∣

∣

∣
≥

√
ǫ̃t√
2

)

+ P
( 1√

n
‖Z ′

t‖ ≥
√
2
)

(b)

≤ Kt−1e
−κκt−1nǫ̃t + e−n/8,

where step (b) is obtained using induction hypothesis Ht(h),
Lemma A.4, and Lemma B.2. Since 1√

n
‖qt⊥‖ concentrates on

σ⊥
t by Ht(h), the second term in (5.27) can be bounded as

P
( 1√

n
‖qt⊥‖ ·

1

n
‖M̃tZ̄

′
t‖ ≥

√

ǫ̃t

)

≤ P
(
∣

∣

∣

1√
n
‖qt⊥‖ − σ⊥

t

∣

∣

∣
≥ √

ǫ
)

+ P
( 1

n
‖M̃tZ̄

′
t‖ ≥ 1

2

√

ǫ̃t min{1, (σ⊥
t )

−1}
)

≤ Kt−1e
−κκt−1nǫ̃t + tKKt−1e

−κκt−1nǫ̃t/t,

(5.28)

where the last inequality is obtained as follows. The concentra-

tion for ‖qt⊥‖/
√
n has already been shown above. For the sec-

ond term, denoting the columns of M̃t by {m̃0, . . . , m̃t−1}, we

have ‖M̃tZ̄
′
t‖2 =

∑t−1
i=0‖m̃i‖2(Z̄ ′

ti)
2 = n

∑t−1
i=0(Z̄

′
ti)

2 since

the {m̃i} are orthogonal, and ‖m̃i‖2 = n for 0 ≤ i ≤ t − 1.

Therefore,

P
( 1

n2
‖M̃tZ̄

′
t‖2 ≥ ǫ̃t

)

= P
(

t−1
∑

i=0

(Z̄ ′
ti)

2 ≥ nǫ̃t

)

(c)

≤
t−1
∑

i=0

P
(

|Z̄ ′
ti | ≥

√

nǫ̃t
t

) (d)

≤ 2te−
nǫ̃t
2t .

Step (c) is obtained from Lemma A.2, and step (d) from

Lemma B.1. This yields the second term in (5.28).

Finally, for 0 ≤ j ≤ (t− 1), the last term in (5.27) can be
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bounded by

P
(

|[M−1
t v]j+1|

‖mj‖√
n

≥
√

ǫ̃t

)

= P
(

|[M−1
t v]j+1|

(∣

∣

∣

‖mj‖√
n

− τj

∣

∣

∣
+ τj

)

≥
√

ǫ̃t

)

≤ P
(∣

∣

∣

‖mj‖√
n

− τj

∣

∣

∣
≥ √

ǫ
)

+ P
(

|[M−1
t v]j+1|≥

√
ǫ̃t
2

min{1, 1
τj
}
)

(e)

≤ Kt−1e
−κκt−1nǫ +Kt2Kt−1e

−κκt−1nǫ̃t/t
2

,

where step (e) follows from induction hypothesis Bt−1(e), and

Lemma 6. Substituting ǫ̃t = ǫ
4(t+1)2 , we have bounded each

term of (5.27) as desired.

(b).(iii) For brevity, let Eφb := E[φb(σ0Z̆0, ..., σtZ̆t,W )],
and

ai = (b0i , ..., b
t
i, wi), ci = (b0purei, ..., b

t
purei

, wi). (5.29)

Using Lemma A.2, we have

P
(∣

∣

∣

1

n

n
∑

i=1

φb(b
0
i , ..., b

t
i, wi)− Eφb

∣

∣

∣
≥ ǫ
)

≤ P
(∣

∣

∣

1

n

n
∑

i=1

φb(ci)− Eφb

∣

∣

∣
≥ ǫ

2

)

+ P
(∣

∣

∣

1

n

n
∑

i=1

(φb(ai)− φb(ci))
∣

∣

∣
≥ ǫ

2

)

.

(5.30)

Lemma 4 (Eq. (4.32)) shows the joint distribution of

(b0purei, ..., b
t
purei

) is jointly Gaussian for i ∈ [N ]. The first

term in (5.30) can therefore be bounded as

P
(∣

∣

∣

1

n

n
∑

i=1

φb(ci)− Eφb

∣

∣

∣
≥ ǫ

2

)

= P
(
∣

∣

∣

1

n

n
∑

i=1

φb(σ0Z̆0,i, . . . , σtZ̆t,i, wi)− Eφb

∣

∣

∣
≥ ǫ

2

)

≤ 2e−κnǫ2/t3 , (5.31)

where the last inequality is obtained from Lemma B.4. Here

κ > 0 is a generic absolute constant.

We now bound the second term in (5.30) using the pseudo-

Lipschitz property of φb. Denoting the pseudo-Lipschitz con-

stant by L, we have

∣

∣

∣

1

n

n
∑

i=1

(φb(ai)− φb(ci))
∣

∣

∣

2

≤
[ 1

n

n
∑

i=1

|φb(ai)− φb(ci)|
]2

≤
[L

n

n
∑

i=1

(1 + 2‖ci‖+ ‖ai − ci‖)‖ai − ci‖
]2

≤ 3L2

n

n
∑

j=1

‖aj − cj‖2
[

1 +
4

n

n
∑

i=1

‖ci‖2 +
1

n

n
∑

i=1

‖ai − ci‖2
]

,

(5.32)

where the last inequality is obtained by first applying Cauchy-

Schwarz, and then using Lemma C.3.

For j ∈ [N ], note that E‖cj‖2 = σ2
1 + . . .+ σ2

t + σ2. Now

using (5.32) we bound the second term in (5.30) as follows.

P
(∣

∣

∣

1

n

n
∑

i=1

(φb(ai)− φb(ci))
∣

∣

∣
≥ ǫ

2

)

= P
(∣

∣

∣

1

n

n
∑

i=1

(φb(ai)− φb(ci))
∣

∣

∣

2

≥ ǫ2

4

)

≤ P
( 1

n

n
∑

i=1

‖ai − ci‖2 ≥ ǫ2 min{1, 1
12L2 }

2 + 8(σ2
1 + . . .+ σ2

t + σ2)

)

+ P
( 1

n

n
∑

j=1

‖cj‖2 ≥ 2(σ2
1 + . . .+ σ2

t + σ2)
)

. (5.33)

Label the two terms above as T1 and T2. We bound T2 as

P
( 1

n

n
∑

j=1

‖cj‖2 ≥ 2(σ2 +

t
∑

r=1

σ2
r )
)

= P
( 1

n

n
∑

j=1

(

‖cj‖2 − E‖cj‖2
)

≥ (σ2 +

t
∑

r=1

σ2
r )
)

≤ e−κn/t3

(5.34)

for an absolute constant κ > 0, where the last inequality is

obtained by applying the concentration result in Lemma B.4

to the pseudo-Lipschitz function φb(cj) = ‖cj‖2.

n
∑

i=1

‖ai − ci‖2 =
n
∑

i=1

t
∑

k=0

(bkpurei − bki )
2

=

n
∑

i=1

t
∑

k=0

[

k
∑

r=0

c
k
r [∆r,r]i

]2

≤
n
∑

i=1

t
∑

k=0

[

k
∑

r′=0

(ckr′)
2

k
∑

r=0

([∆r,r]i)
2
]

=

t
∑

k=0

[

k
∑

r′=0

(ckr′)
2

k
∑

r=0

‖∆r,r‖2
]

=

t
∑

r=0

‖∆r,r‖2
t
∑

k=r

k
∑

r′=0

(ckr′)
2,

(5.35)

where the inequality is obtained by applying Cauchy-Schwarz.

Comparing (4.32) and (4.33) in Lemma 4, we observe that

for k ≥ 0 and j ∈ [n],

E(bkpurej)
2 = σ2

k =

t
∑

i=0

(σ⊥
i )

2(cki )
2. (5.36)

Therefore,

k
∑

i=0

(cki )
2 ≤ σ2

t

min0≤i≤k(σ⊥
i )

2
≤ σ2

k

ε2
, (5.37)

where the last inequality follows from the stopping criterion

in (2.5). Using (5.37) and (5.35) we have

1

n

n
∑

i=1

‖ai − ci‖2 ≤ 1

n

t
∑

r=0

‖∆r,r‖2
t
∑

k=r

σ2
k

ε2
.
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Therefore we can bound the first term T1 in (5.33) as follows.

T1 =

P
( 1

n

t
∑

r=0

‖∆r,r‖2 ≥ ε2(σ
2
1 + . . .+ σ2

t )
−1ǫ2 min{1, 1

12L2 }
(2 + 8(σ2

1 + . . .+ σ2
t + σ2))

)

≤
t
∑

r=0

P
( 1

n
‖∆r,r‖2 ≤

κǫ2

t3

) (a)

≤ Kt3Kt−1e
−κκt−1nǫ

2/t7 ,

(5.38)

where K,κ > 0 are some absolute constants. The inequality

(a) follows from steps B0(a)− Bt(a).

Finally, substituting (5.38) and (5.34) in (5.33), and then

combining with (5.31) and (5.30), we obtain

P
(∣

∣

∣

1

n

n
∑

i=1

φb(b
0
i , ..., b

t
i, wi)− Eφb

∣

∣

∣
≥ ǫ
)

≤ Kt3Kt−1e
−κκt−1nǫ

2/t7 . (5.39)

(b).(iv) For brevity, we write bt,i :=
∑t−1

r=0 γ̂
t
rb

r
i . Then using

the conditional distribution of bt in (4.24) and Lemma A.2, we

write

P
(∣

∣

∣

1

n

n
∑

i=1

ψb(b
t
i, wi)− E[ψb(σtZ̆t,W )]

∣

∣

∣
≥ ǫ
)

= P
(∣

∣

∣

1

n

n
∑

i=1

ψb(bt,i + σ⊥
t Z

′
ti + [∆t,t]i, wi)

− E[ψb(σtZ̆t,W )]
∣

∣

∣
≥ ǫ
)

≤ P
(∣

∣

∣

1

n

n
∑

i=1

[

ψb(bt,i + σ⊥
t Z

′
ti + [∆t,t]i, wi)

− ψb(bt,i + σ⊥
t Z

′
ti , wi)

]
∣

∣

∣
≥ ǫ

3

)

+ P
(
∣

∣

∣

1

n

n
∑

i=1

[

ψb(bt,i + σ⊥
t Z

′
ti , wi)

− EZ′

t
[ψb(bt,i + σ⊥

t Z
′
ti , wi)]

]∣

∣

∣
≥ ǫ

3

)

+ P
(∣

∣

∣

1

n

n
∑

i=1

EZ′

t
[ψb(bt,i + σ⊥

t Z
′
ti , wi)]

− E[ψb(σtZ̆t,W )]
∣

∣

∣
≥ ǫ

3

)

.

(5.40)

Label the terms of (5.40) as T1 −T3. First consider T2. Since

ψb is bounded, Hoeffding’s inequality yields T2 ≤ 2e−κnǫ2 .

To bound T3, first note that the R2 → R function EZ [ψb(x+
Z, y)], Z ∼ N (0, 1), is bounded and differentiable in the first

argument (due to the smoothness of the Gaussian density).

Hence, using induction hypotheses B0(b).(iv) − Bt−1(b).(iv),

the probability of each of the following events is bounded by

Kt−1 exp{−κt−1nǫ
2/t2}:

∣

∣

∣

1

n

n
∑

i=1

Eψb(
t−1
∑

r=0

γ̂trb
r
i + σ⊥

t Z
′
ti , wi)

− Eψb(

t−2
∑

r=0

γ̂trb
r
i + γ̂tt−1σt−1Z̆t−1 + σ⊥

t Z
′
ti ,W )

∣

∣

∣
≥ ǫ

t
,

∣

∣

∣

1

n

n
∑

i=1

Eψb(

t−2
∑

r=0

γ̂trb
r
i + γ̂tt−1σt−1Z̆t−1 + σ⊥

t Z
′
ti ,W )

− Eψb(
t−3
∑

r=0

γ̂trb
r
i +

t−1
∑

r′=t−2

γ̂tr′σr′Z̆r′ + σ⊥
t Z

′
ti ,W )

∣

∣

∣
≥ ǫ

t
,

...

∣

∣

∣

1

n

n
∑

i=1

Eψb(γ̂
t
0b

0
i +

t−1
∑

r′=1

γ̂tt−1σt−1Z̆t−1 + σ⊥
t Z

′
ti ,W )}

− Eψb(

t−1
∑

r′=0

γ̂tr′σr′Z̆r′ + σ⊥
t Z

′
ti ,W )

∣

∣

∣
≥ ǫ

t
.

(5.41)

In the above, the expectation in each term is over the random

variables denoted in upper case. Recall from the proof of

Lemma 4 above that
∑t−1

r′=1 γ̂
t
t−1σt−1Z̆t−1 + σ⊥

t Z
′
ti

d
= σtZ̆t.

Thus T3, the third term in (5.40), can be bounded by the

probability of the union of the events in (5.41), which is no

larger than tKt−1 exp{−κt−1nǫ
2/t2}.

Finally, consider T1, the first term of (5.40). From the

definition of ∆t,t in Lemma 3, we have bt,i+σ
⊥
t Z

′
ti+[∆t,t]i =

bt,i +
1
n‖qt⊥‖[(I− P

‖
Mt

)Z ′
t]i + ui, where u = (u1, . . . , un) is

defined u :=
∑t−1

r=0(γ
t
r − γ̂tr)b

r +
∑t−1

j=0m
j[M−1

t v]j+1, with

v and Mt defined as in Lemma 6. For ǫ0 > 0 to be specified

later, define the event F as

F :=
{
∣

∣

∣

‖qt⊥‖√
n

− σ⊥
t

∣

∣

∣
≥ ǫ0

}

∪
{‖u‖2

n
≥ ǫ0

}

∪t−1
r=0

{∣

∣

∣

‖br‖√
n

− σr

∣

∣

∣
≥ ǫ0

}

.

(5.42)

Denoting the event we are considering in T1 by Πt and

following steps analogous to (5.15)–(5.16) in H1(b).(ii), we

obtain

P (T1) ≤ P (F) + E[P (Πt | Fc,St,t) | Fc]

≤ Kt2Kt−1e
−κκt−1nǫ

2
0/t

4

+ E[P (Πt | Fc,St,t) | Fc],
(5.43)

where the bound on P (F) is obtained by the induction

hypotheses Ht(h), B0(d) − Bt−1(d), Lemma A.4, and steps

similar to the proof of Bt(a) for the concentration of ‖u‖2/n
(cf. (5.27)).

For the second term in (5.43), we have
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P (Πt|Fc,St,t)

= P
(
∣

∣

∣

1

n

n
∑

i=1

[

ψb(bt,i +
‖qt⊥‖√
n

[(I− P
‖
Mt

)Z ′
t]i + ui, wi)

− ψb(bt,i + σ⊥
t Z

′
ti , wi)

]∣

∣

∣
≥ ǫ
)

≤ P
(∣

∣

∣

1

n

n
∑

i=1

[

ψb(bt,i +
‖qt⊥‖√
n
Z ′
ti + ui, wi)

− ψb(bt,i + σ⊥
t Z

′
ti , wi)

]
∣

∣

∣
≥ ǫ

2

)

+
(
∣

∣

∣

1

n

n
∑

i=1

[

ψb(bt,i +
‖qt⊥‖√
n

[(I− P
‖
Mt

)Z ′
t]i + ui, wi)

− ψb(bt,i +
‖qt⊥‖√
n
Z ′
ti + ui, wi)

]∣

∣

∣
≥ ǫ

2

)

,

(5.44)

where we have omitted the conditioning on the RHS to shorten

notation. Label the two terms in (5.44) as T1,a and T1,b. To

complete the proof we show that both terms are bounded by

Ke−κnǫ2/t.

First consider T1,b. We note that

P
‖
Mt
Z ′
t =

t−1
∑

r=0

m̃r

√
n

[ (m̃r)∗Z ′
t√

n

]

d
=

t−1
∑

r=0

m̃r

√
n
Ur, (5.45)

where m̃r, 0 ≤ r ≤ t− 1, are columns of M̃t, which form an

orthogonal basis for Mt with M̃∗
t M̃t = nIt, and U1, . . . , Ut

are i.i.d. ∼ N (0, 1). Then,

T1,b
(a)

≤ P
(C

n

n
∑

i=1

∣

∣

∣

‖qt⊥‖√
n

[P
‖
Mt
Z ′
t]i

∣

∣

∣
≥ ǫ

2

)

(b)

≤ P
(C

n

n
∑

i=1

∣

∣

∣
(σ⊥

t + ǫ0)[P
‖
Mt
Z ′
t]i

∣

∣

∣
≥ ǫ

2

)

= P
(
∣

∣

∣

C

n

n
∑

i=1

t−1
∑

r=0

m̃r
iUr√
n

∣

∣

∣
≥ ǫ

2|σ⊥
t + ǫ0|

)

(c)
= P

(∣

∣

∣

C

n

n
∑

i=1

(

t−1
∑

r=0

(m̃r
i )

2
)1/2 Z√

n

∣

∣

∣
≥ ǫ

2|σ⊥
t + ǫ0|

)

(d)

≤ P
(

√

t

n
|Z| ≥ ǫ

2C|σ⊥
t + ǫ0|

)

≤ 2e−κnǫ2/t.

(5.46)

In the above, (a) follows from Fact 4 for a suitable constant

C > 0. Step (b) holds since we are conditioning on event Fc

defined in (5.42). In step (c), Z ∼ N (0, 1) since
∑

r m̃
r
iUr is

a zero-mean Gaussian with variance
∑

r(m̃
r
i )

2. Step (d) uses

the Cauchy-Schwarz inequality and the fact that ‖m̃r‖ =
√
n

for 0 ≤ r < t.

Finally T1,a, the first term in (5.44), can be bounded using

Hoeffding’s inequality. Noting that all quantities except Z ′
t are

in St,t, define the shorthand diff(Z ′
ti) := ψb(

∑t−1
r=0 γ̂

t
rb

r
i +

1√
n
‖qt⊥‖Z ′

ti + ui, wi) − ψb(
∑t−1

r=0 γ̂
t
rb

r
i + σ⊥

t Z
′
ti , wi). Then

the upper tail of T1,a can be written as

P
( 1

n

n
∑

i=1

diff(Z ′
ti)− E[diff(Z ′

ti)] ≥
ǫ

2
− 1

n

n
∑

i=1

E[diff(Z ′
ti)]
)

.

(5.47)

Using the conditioning on Fc and steps similar to those in

B0(b).(iv), we can show that 1
n

∑

i E[diff(Z ′
ti)]] ≤ 1

4 ǫ for

ǫ0 ≤ C(σ⊥
t )ǫ, where the constant C > 0 can be explicitly

computed. For such ǫ0, using Hoeffding’s inequality the prob-

ability in (5.47) can be bounded by e−nǫ2/(32B2), where B
is the upper bound on |diff(·)|. A similar bound holds for the

lower tail of T1,a. Thus both terms of (5.44) are bounded by

K exp{−κnǫ2/t}.

The proof is completed by collecting the above bounds for

each of the terms in (5.40), and observing that the overall

bound is dominated by P (T1) in (5.43). Hence the final bound

is of the form Kt2Kt−1 exp{−κκt−1nǫ
2/t4}.

(c) The function φb(b
t
i, wi) := btiwi ∈ PL(2) by Lemma

C.1. Then by Bt(b).(iii),
1
n (b

t)∗w
.
= σtE[Z̆tW ] = 0.

(d) The function φb(b
r
i , b

t
i, wi) := bri b

t
i ∈ PL(2) by Lemma

C.1. The result then follows from Bt(b).(iii).

(e) The function φb(b
r
i , b

t
i, wi) := gr(b

r
i , wi)gt(b

t
i, wi) ∈

PL(2) since gt is Lipschitz continuous (by Lemma C.1). Then

by Bt(b).(iii),

1

n
(mr)∗mt .= E[gr(σrZ̆r,W )gt(σtZ̆t,W )] = Ĕr,t.

where the last equality is due to the definition in (4.15).

(f) The concentration of ξt around ξ̂t follows from Bt(b).(iv)

applied to the function ψb(b
t
i, wi) := g′t(b

t
i, wi). Next, for r ≤

t, φb(b
0
i , . . . , b

t
i, wi) := bri gt(b

t
i, wi) = brimi ∈ PL(2), by

Lemma C.1. Thus by Bt(b).(iii),

1

n
(br)∗mt .= E[σrZ̆r gt(σtZ̆t,W )]

and

E[σrZ̆r gt(σtZ̆t,W )]
(a)
= σrσtE[Z̆rZ̆t]E[g

′
t(σtZ̆t,W )]

= Ẽr,tE[g
′
t(σtZ̆t,W )] = Ẽr,tξ̂t,

where (a) holds due to Stein’s lemma (Fact 2).

(g) For 1 ≤ r, s ≤ t, note that [Mt]r,s = 1
n (m

r−1)∗ms−1.

Hence by Bt−1(e), [Mt]r,s concentrates on [C̆t]r,s =
Ĕr−1,s−1. We first show (4.54). By Fact 3, if 1

n‖mr
⊥‖2 ≥

c > 0 for all 0 ≤ r ≤ t− 1, then Mt is invertible. Note from

Bt−1(h) that 1
n‖mr

⊥‖2 concentrates on (τ⊥r )2, and (τ⊥r )2 > ε3
by the stopping criterion assumption. Choosing c = 1

2ε3, we

therefore have

P (Mt singular) ≤
t−1
∑

r=0

P
(∣

∣

∣

1

n
‖mr

⊥‖2 − (τ⊥r )2
∣

∣

∣
≥ 1

2
ε3

)

≤
t−1
∑

r=0

Kr−1e
−κr−1n(ε3)

2/4 ≤ tKt−1e
−κκt−1n(ε3)

2

,

(5.48)

where the second inequality follows from B0(h)− Bt−1(h).

Next, we show (4.56). Recall the expression for M−1
t from
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(5.19):

M−1
t =





M−1
t−1 +

nαt−1(αt−1)∗

‖mt−1
⊥

‖2
− nαt−1

‖mt−1
⊥

‖2

−n(αt−1)∗

‖mt−1
⊥

‖2

n
‖mt−1

⊥
‖2



 , (5.49)

Block inversion can be similarly used to decompose C̆t in

terms of C̆t−1, which gives the concentrating values of the

elements in (5.49).

Let Fr denote the event that M−1
r is invertible, for r ∈ [t].

Then, for i, j ∈ [t], we have

P
(
∣

∣

∣
[M−1

t ]i,j − [C̆−1
t ]i,j

∣

∣

∣
≥ ǫ | Ft

)

≤ P (Fc
t−1) + P

(∣

∣

∣
[M−1

t ]i,j − [C̆−1
t ]i,j

∣

∣

∣
≥ ǫ | Ft,Ft−1

)

≤ (t− 1)Kt−2e
−κκt−2n

+ P
(∣

∣

∣
[M−1

t ]i,j − [C̆−1
t ]i,j

∣

∣

∣
≥ ǫ | Ft,Ft−1

)

,

(5.50)

where the final inequality follows from the inductive hypothe-

sis Bt−1(g). Using the representation in (5.49), we bound the

second term in (5.50) for i, j ∈ [t]. In what follows, we drop

the conditioning on Ft,Ft−1 for brevity.

First, consider the entry at i = j = t. By Bt−1(h) and

Lemma A.6,

P (|n‖m⊥
t−1‖−2 − (τ⊥t−1)

−2| ≥ ǫ) ≤ Kt−1e
−κκt−1nǫ

2

.

Next, consider the ith element of −n‖mt−1
⊥ ‖−2αt−1. For i ∈

[t− 1],

P (|n‖mt−1
⊥ ‖−2αt−1

i−1 − (τ⊥t−1)
−2α̂t−1

i−1 |≥ ǫ)

≤ 2Kt−1e
−κκt−1nǫ

2

, (5.51)

which follows from Bt−1(g), the concentration bound obtained

above for n‖mt−1
⊥ ‖−2, and combining these via Lemma A.3.

Finally consider element (i, j) of M−1
t−1 +

n‖mt−1
⊥ ‖−2αt−1(αt−1)∗ for i, j ∈ [t− 1]. We have

P
(
∣

∣

∣
[M−1

t−1]i,j +
nαt−1

i−1α
t−1
j−1

‖mt−1
⊥ ‖2 − [C̆−1

t ]i,j −
α̂t−1
i−1α̂

t−1
j−1

(τ⊥t−1)
2

∣

∣

∣
≥ ǫ
)

(a)

≤ P
(∣

∣

∣
[M−1

t−1]i,j − [C̆−1
t ]i,j

∣

∣

∣
≥ ǫ

2

)

+ P
(

|αt−1
j−1 − α̂t−1

j−1|≥
ǫ′

2

)

+ P
(

|n‖mt−1
⊥ ‖−2αt−1

i−1 − (τ⊥t−1)
−2α̂t−1

i−1 |≥
ǫ′

2

)

(b)

≤ Kt−1e
−κt−1nǫ2

4 + 2Kt−1e
−κκt−1nǫ′2

4 +Kt−1e
−κt−1nǫ′2

4

≤ 4Kt−1e
−κκt−1nǫ

2

.

Step (a) follows from Lemma A.2 and Lemma A.3 with

ǫ′ := min
(

√

ǫ
3 ,

ǫ(τ⊥

t−1)
2

3α̂t−1
i−1

, ǫ
3α̂t−1

j−1

)

. Step (b) follows from the

inductive hypothesis, Ht(g), and (5.51).

Next, we prove the concentration of αt around α̂t. Re-

call from Section IV-A that αt = 1
nM−1

t M∗
t m

t where

Mt := 1
nM

∗
t Mt. Thus for 1 ≤ i ≤ t, αt

i−1 =
1
n

∑t
j=1[M

−1
t ]i,j(m

j−1)∗mt. Then from the definition of α̂t

in (4.17), for 1 ≤ i ≤ t,

P (|αt
i−1 − α̂t

i−1|≥ ǫ) =

P
(∣

∣

∣

t
∑

j=1

[ 1

n
[M−1

t ]i,j(m
j−1)∗mt − [(C̆t)−1]i,jĔj−1,t

]∣

∣

∣
≥ ǫ
)

(a)

≤
t
∑

j=1

P
(∣

∣

∣

1

n
(mj−1)∗mt − Ĕj−1,t

∣

∣

∣
≥ ǫ̃j

)

+

t
∑

j=1

P (|[M−1
t ]i,j − [(C̆t)−1]i,j |≥ ǫ̃j)

(b)

≤ Kt4Kt−1e
−κκt−1nǫ

2/t9 + 4tKt−1e
−κκt−1t

−2nǫ2 .

Step (a) uses ǫ̃j := min
{

√

ǫ
3t ,

ǫ
3tĔj−1,t

, ǫ
3t[(C̆t)−1]k,j

}

and

follows from Lemma A.2 and Lemma A.3. Step (b) uses Bt(e)
and the work above.

(h) First, note that ‖mt
⊥‖2 = ‖mt‖2 − ‖mt

‖‖2 = ‖mt‖2 −
‖Mtα

t‖2. Using the definition of τ⊥t in (4.19),

P
(
∣

∣

∣

1

n
‖mt

⊥‖2 − (τ⊥t )2
∣

∣

∣
≥ ǫ
)

= P
(∣

∣

∣

1

n
‖mt‖2 − 1

n
‖Mtα

t‖2 − τ2t + (α̂t)∗Ĕt

∣

∣

∣
≥ ǫ
)

≤ P
(
∣

∣

∣

‖mt‖2
n

− τ2t

∣

∣

∣
≥ ǫ

2

)

+ P
(∣

∣

∣

‖Mtα
t‖2

n
− (α̂t)∗Ĕt

∣

∣

∣
≥ ǫ

2

)

.

(5.52)

The bound for the first term in (5.52) follows by Bt(e). For

the second term,

‖Mtα
t‖2 = n(αt)∗Mtα

t (a)
= (αt)∗MtM

−1
t M∗

t m
t

= (αt)∗M∗
t m

t =

t−1
∑

i=0

αt
i(m

i)∗mt,

where (a) holds because αt = M−1
t M∗

t m
t/n. Hence

P
(
∣

∣

∣

1

n
‖Mtα

t‖2 − (α̂t)∗Ĕt

∣

∣

∣
≥ ǫ

2

)

= P
(∣

∣

∣

t−1
∑

i=0

[ 1

n
αt
i(m

i)∗mt − α̂t
iĔi,t

]∣

∣

∣
≥ ǫ

2

)

(a)

≤
t−1
∑

i=0

P (|αt
i − α̂t

i|≥ ǫ̃i) +

t−1
∑

i=0

P
(∣

∣

∣

1

n
(mi)∗mt − Ĕi,t

∣

∣

∣
≥ ǫ̃i

)

(b)

≤ Kt5Kt−1e
−κκt−1nǫ

2/t11 +Kt4Kt−1e
−κκt−1nǫ

2/t9 .

Step (a) follows Lemma A.2 and Lemma A.3, using ǫ̃i :=

min
{

√

ǫ
6t ,

ǫ
6tĔi,t

, ǫ
6tα̂t

i

}

, and step (b) using Bt(e) and the

proof of Bt(g) above.

E. Step 4: Showing Ht+1 holds

The statements in Ht+1 are proved assuming that Bt,Ht

hold due to the induction hypothesis.

(a) The proof of Ht+1(a) is similar to that of Bt(a), and

uses the following lemma, which is analogous to Lemma 6.
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Lemma 7. Let v := 1
nB

∗
t+1m

⊥
t − 1

nQ
∗
t+1(ξtq

t−∑t−1
i=0 α

t
iξiq

i)
and Qt+1 := 1

nQ
∗
t+1Qt+1. Then for j ∈ [t+ 1],

P (|[Q−1
t+1v]j |≥ ǫ) ≤ Kt2K ′

t−1 exp{−κ′t−1nǫ
2/t2}.

(b)–(h) The proofs of the results in Ht+1(b) − Ht+1(h)
are along the same lines as Bt(b) − Bt(h). By the end of

step Ht+1(h), we will similarly pick up a t5K term in the

pre-factor in front of the exponent, and a κt−11 term in the

exponent. It then follows that the Kt, κt are as given in (4.38).

APPENDIX A

CONCENTRATION LEMMAS

In the following, ǫ > 0 is assumed to be a generic constant,

with additional conditions specified whenever needed.

Lemma A.1 (Hoeffding’s inequality). If X1, . . . , Xn are

bounded random variables such that ai ≤ Xi ≤ bi, then for

ν = 2[
∑

i(bi − ai)
2]−1

P
( 1

n

n
∑

i=1

(Xi − EXi) ≥ ǫ
)

≤ e−νn2ǫ2 ,

P
(∣

∣

∣

1

n

n
∑

i=1

(Xi − EXi)
∣

∣

∣
≥ ǫ
)

≤ 2e−νn2ǫ2 .

Lemma A.2 (Concentration of Sums). If random variables

X1, . . . , XM satisfy P (|Xi| ≥ ǫ) ≤ e−nκiǫ
2

for 1 ≤ i ≤ M ,

then

P
(

|
M
∑

i=1

Xi|≥ ǫ
)

≤
M
∑

i=1

P
(

|Xi| ≥
ǫ

M

)

≤Me−n(mini κi)ǫ
2/M2

.

Lemma A.3 (Concentration of Products). For random vari-

ables X,Y and non-zero constants cX , cY , if

P (|X − cX | ≥ ǫ) ≤ Ke−κnǫ2,

and

P (|Y − cY | ≥ ǫ) ≤ Ke−κnǫ2,

then the probability P (|XY − cXcY | ≥ ǫ) is bounded by

P
(

|X − cX | ≥ min
(

√

ǫ

3
,
ǫ

3cY

))

+ P
(

|Y − cY | ≥ min
(

√

ǫ

3
,
ǫ

3cX

))

≤ 2Ke
− κnǫ2

9max(1,c2
X

,c2
Y

) .

Proof: The probability of interest,

P (|XY − cXcY | ≥ ǫ), equals

P (|(X − cX)(Y − cY ) + (X − cX)cY + (Y − cY )cX | ≥ ǫ) .

The result follows by noting that if |X − cX | ≤
min(

√

ǫ
3 ,

ǫ
3cY

) and |Y − cY | ≤ min(
√

ǫ
3 ,

ǫ
3cX

), then the

following terms are all bounded by ǫ
3 :

|(X − cX)cY |, |(Y − cX)cY |, and |(X − cX)(Y − cY )|.

Lemma A.4 (Concentration of Square Roots). Let c 6= 0.

If P (|X2
n − c2|≥ ǫ) ≤ e−κnǫ2 ,

then

P (||Xn| − |c||≥ ǫ) ≤ e−κn|c|2ǫ2 .

Proof: If ǫ ≤ c2, then the event c2 − ǫ ≤ X2
n ≤ c2 + ǫ

implies that
√
c2 − ǫ ≤ |Xn| ≤

√
c2 + ǫ. On the other hand,

if ǫ ≥ c2, then c2 − ǫ ≤ X2
n ≤ c2 + ǫ implies that 0 ≤ |Xn| ≤√

c2 + ǫ. Therefore, |X2
n − c2|≤ ǫ implies

||Xn| − |c|| ≤ |c|max(1−
√

(1− (ǫ/c2))+,
√

1 + (ǫ/c2)−1),

where x+ := max{x, 0}. Note, (1 + x)1/2 ≤ 1 + 1
2x for

x ≥ 0, and (1 − x)1/2 ≥ 1 − x for x ∈ (0, 1). Using these,

we conclude that |X2
n − c2|≤ ǫ implies

||Xn| − |c|| ≤ |c|max
(

1−
√

(

1− ǫ

c2

)

+
,

√

1 +
ǫ

c2
− 1
)

≤ |c|max
( ǫ

c2
,
ǫ

2c2

)

=
ǫ

|c| .

Lemma A.5 (Concentration of Powers). Assume c 6= 0 and

0 < ǫ ≤ 1. Then for any integer k ≥ 2,

if P (|Xn − c|≥ ǫ) ≤ e−κnǫ2 ,

then

P (|Xk
n − ck|≥ ǫ) ≤ e−κnǫ2/[(1+|c|)k−|c|k]2 .

Proof: Without loss of generality, assume that c > 0.

First consider the case where ǫ < c. Then c− ǫ ≤ Xn ≤ c+ ǫ
implies

(c− ǫ)k − ck ≤ Xk
n − ck ≤ (c+ ǫ)k − ck =

k
∑

i=1

(

k

i

)

ck−iǫi.

Hence, |Xn − c| ≤ ǫ implies |Xk
n − ck| ≤ ǫc0, where

c0 =

k
∑

i=1

(

k

i

)

ck−iǫi−1 <

k
∑

i=1

(

k

i

)

ck−i = (1 + c)k − ck.

Therefore,

P (|Xk
n−ck|≥ ǫ) ≤ P (|Xn − c| ≥ ǫ/c0) ≤ e−κnǫ2/[(1+c)k−ck]2 .

(A.1)

For the case where 0 < c < ǫ < 1, Xn ∈ [c − ǫ, c + ǫ]
implies (c− ǫ)k− ck ≤ Xk− ck ≤ (c+ ǫ)k− ck. Using ǫ < 1,

we note that the absolute values of

(c− ǫ)k − ck =

k
∑

i=1

(

k

i

)

ck−i(−ǫ)i,

and

(c+ ǫ)k − ck =
k
∑

i=1

(

k

i

)

ck−iǫi,

are bounded by c1 := (1+c)k−ck. Thus |Xn−c| ≤ ǫ implies

|Xk
n − ck| ≤ ǫc1. Therefore the same bound as in (A.1) holds

when 0 < c < ǫ < 1 (though a tighter bound could be obtained

in this case).

Lemma A.6 (Concentration of Scalar Inverses). Assume c 6= 0
and 0 < ǫ < 1. If

P (|Xn − c|≥ ǫ) ≤ e−κnǫ2 ,
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then

P (|X−1
n − c−1|≥ ǫ) ≤ 2e−nκǫ2c2 min{c2,1}/4.

Proof: Without loss of generality, we can assume that

c > 0. We have

P (|X−1
n − c−1|≤ ǫ)

= P (c−1 − ǫ ≤ X−1
n ≤ c−1 + ǫ).

First consider the case 0 < ǫ < c−1. Then, Xn is strictly

positive in the interval of interest, and therefore

P (c−1 − ǫ ≤ X−1
n ≤ c−1 + ǫ) (A.2)

= P
( −ǫc
c−1 + ǫ

≤ Xn − c ≤ ǫc

c−1 − ǫ

)

≥ 1− e−nκǫ2c2/(ǫ+c−1)2 ≥ 1− e−nκǫ2c4/4. (A.3)

Next consider 0 < c−1 < ǫ < 1. The probability to be bounded

can be written as

P (X−1
n ≥ c−1 + ǫ) + P (−(ǫ− c−1) ≤ X−1

n < 0)

= P
(

Xn − c ≤ −ǫc
ǫ+ c−1

)

+ P
( −ǫc
ǫ − c−1

≤ Xn − c ≤ −c
)

≤ e
− nκǫ2c2

(ǫ+c−1)2 + e−nκc2 ≤ e−nκc2/4 + e−nκc2 ≤ 2e−nκc2/4,
(A.4)

where the last two inequalities are obtained using ǫ > c−1 and

ǫ < 1, respectively. The bounds (A.2) and (A.4) together give

the result of the lemma.

APPENDIX B

GAUSSIAN AND SUB-GAUSSIAN CONCENTRATION

Lemma B.1. For a random variable Z ∼ N (0, 1) and ǫ > 0,

P
(

|Z| ≥ ǫ
)

≤ 2e−
1
2 ǫ

2

.

Lemma B.2 (χ2-concentration). For Zi, i ∈ [n] that are i.i.d.

∼ N (0, 1), and 0 ≤ ǫ ≤ 1,

P
(
∣

∣

∣

1

n

n
∑

i=1

Z2
i − 1

∣

∣

∣
≥ ǫ
)

≤ 2e−nǫ2/8.

Lemma B.3. [25] Let X be a centered sub-Gaussian random

variable with variance factor ν, i.e., lnE[etX ] ≤ t2ν
2 , for all

t ∈ R. Then X satisfies:

1) For all x > 0, P (X > x)∨P (X < −x) ≤ e−
x2

2ν , for all

x > 0.

2) For every integer k ≥ 1,

E[X2k] ≤ 2(k!)(2ν)k ≤ (k!)(4ν)k. (B.1)

Lemma B.4. Let Z1, . . . , Zt ∈ R
N be random vectors

such that (Z1,i, . . . , Zt,i) are i.i.d. across i ∈ [n], with

(Z1,i, . . . , Zt,i) being jointly Gaussian with zero mean, unit

variance and covariance matrix K ∈ R
t×t. Let G ∈ R

N

be a random vector with entries G1, . . . , GN i.i.d. ∼ pG,

where pG is sub-Gaussian with variance factor ν. Then for

any pseudo-Lipschitz function f : Rt+1 → R, non-negative

constants σ1, . . . , σt, and 0 < ǫ ≤ 1, we have

P
(∣

∣

∣

1

N

N
∑

i=1

f(σ1Z1,i, . . . , σtZt,i, Gi)

− E[f(Z1,1, . . . , Zt,1, G)]
∣

∣

∣
≥ ǫ
)

≤ 2 exp
{ −Nǫ2
128L2(t+ 1)2(ν + 4ν2 +

∑t
m=1(σ

2
m + 4σ4

m))

}

,

where L > 0 is an absolute constant. (L can be bounded

above by three times the pseudo-Lipschitz constant of f .)

Proof: Without loss of generality, assume

E[f(σ1Z1,i, . . . , σtZt,i, Gi)] = 0 for i ∈ [N ]. In what

follows we demonstrate the upper-tail bound:

P
( 1

N

N
∑

i=1

f(σ1Z1,i, . . . , σtZt,i, Gi) ≥ ǫ
)

≤ exp
{−Nǫ2

4κ̃t

}

,

(B.2)

where

κ̃t = 32L2(t+ 1)2(ν + 4ν2 +

t
∑

m=1

(σ2
m + 4σ4

m)). (B.3)

The lower-tail bound follows similarly.

Using the Cramér-Chernoff method, for any s > 0 we can

write

P
( 1

N

N
∑

i=1

f(σ1Z1,i, . . . , σtZt,i, Gi) ≥ ǫ
)

(B.4)

≤ E

[

es
∑N

i=1 f(σ1Z1,i,...,σtZt,i,Gi)
]

e−sNǫ. (B.5)

To prove (B.2), we will show that for 0 < s <
√

1
κ̃t

,

E

[

exp{s
N
∑

i=1

f(σ1Z1,i, . . . , σtZt,i, Gi)}
]

≤ exp{Nκ̃ts2}.

(B.6)

Then, using (B.6) in (B.5) and taking s = ǫ/2κ̃t yields the

upper tail bound in (B.2).

We now prove (B.6). For i ∈ [N ], let (Z̃1,i, . . . , Z̃t,i, G̃i)
be an independent copy of (Z1,i, . . . , Zt,i, Gi). Since

E[f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)] = 0, using Jensen’s inequality

we have

E[exp(−sf(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i))]

≥ exp(−sE[f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)]) = 1.

Therefore, using the independence of Z̃ and Z we write

E[esf(σ1Z1,i,...,σtZt,i,Gi)] (B.7)

≤ E[esf(σ1Z1,i,...,σtZt,i,Gi)] · E[e−sf(σ1Z̃1,i,...,σtZ̃t,i,G̃i)]

= E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]. (B.8)

Using (B.8) we prove (B.6) by demonstrating that for each

i ∈ [N ],

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))] ≤ exp{κ̃ts2},
(B.9)
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for 0 < s <
√

1
κ̃t

. For i ∈ [N ] we have

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]

=
∞
∑

q=0

sq

q!
E

[

f(σ1Z1,i, . . . , σtZt,i, Gi) (B.10)

− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)
]q

(a)
=

∞
∑

k=0

s2k

(2k)!
E

[

f(σ1Z1,i, . . . , σtZt,i, Gi) (B.11)

− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)
]2k

, (B.12)

where step (a) holds because the odd moments of the differ-

ence equal 0. Next, using the pseudo-Lipschitz property of f ,

for an absolute constant L > 0, we have for k ≥ 1:
[

f(σ1Z1,i, . . . , σtZt,i, Gi)− f(σ1Z̃1,i, . . . , σtZ̃t,i, G̃i)
]2k

≤ L2k
[

1 +
t
∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k

×

[

t
∑

m=1

σ2
m(Zm,i − Z̃m,i)

2 + (Gi − G̃i)
2
]k

(a)

≤ L2k
[

1 +
t
∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k

×

2k
[

t
∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

]k

(b)

≤ (2L2)k
[

t
∑

m=1

σ2
m(Z2

m,i + Z̃2
m,i) +G2

i + G̃2
i

+ (2t+ 2)
(

t
∑

m=1

σ4
m(Z4

m,i + Z̃4
m,i) +G4

i + G̃4
i

)]k

,

(c)

≤ (2L2(4t+ 4))k

4t+ 4

[

t
∑

m=1

σ2k
m (Z2k

m,i + Z̃2k
m,i) +G2k

i + G̃2k
i

]

+
(2L2(4t+ 4)(2t+ 2))k

4t+ 4

[(

t
∑

m=1

σ4k
m (Z4k

m,i + Z̃4k
m,i)

+G4k
i + G̃4k

i

)]

≤ (2L(2t+ 2))2k

4t+ 4

[

t
∑

m=1

σ2k
m (Z2k

m,i + Z̃2k
m,i) +G2k

i + G̃2k
i

]

+
(2L(2t+ 2))2k

4t+ 4

[

t
∑

m=1

σ4k
m (Z4k

m,i + Z̃4k
m,i) +G4k

i + G̃4k
i

]

,

(B.13)

where inequalities (a), (b), (c) are all obtained using us-

ing Lemma C.3. Using (B.13) in (B.12) and recall-

ing that {(Zm,i)1≤k≤t, Gi} are identically distributed as

{(Z̃m,i)1≤k≤t, G̃i}, we get

E[es(f(σ1Z1,i,...,σtZt,i,Gi)−f(σ1Z̃1,i,...,σtZ̃t,i,G̃i))]

≤ 1 +
∞
∑

k=1

(s2L(2t+ 2))2k

(2k)!(4t+ 4)
2
[

t
∑

m=1

σ2k
m EZ2k

m,i + EG2k
i

+
t
∑

m=1

σ4k
m EZ4k

m,i + EG4k
i

]

(a)

≤ 1 +
∞
∑

k=1

(s2L(2t+ 2))2k

(2k)!(2t+ 2)

[

t
∑

m=1

σ2k
m 2(k!)2k

+ 2(k!)(2ν)k +

t
∑

m=1

σ4k
m 2(2k!)22k + 2(2k!)(2ν)2k

]

(b)

≤ 1 +

∞
∑

k=1

(s2L(2t+ 2))2k

t+ 1

[

t
∑

m=1

σ2k
m

k!
+
νk

k!

+

t
∑

m=1

(4σ4
m)k + (4ν2)k

]

≤ 1 +

∞
∑

k=1

(s2L(2t+ 2))2k
[

ν + 4ν2 +

t
∑

m=1

(σ2
m + 4σ4

m)
]k

(c)
=
(

1− s216L2(t+ 1)2[ν + 4ν2 +

t
∑

m=1

(σ2
m + 4σ4

m)]
)−1

(d)

≤ es
232L2(t+1)2[ν+4ν2+

∑t
m=1(σ

2
m+4σ4

m)]. (B.14)

In the chain of inequalities above, (a) is obtained using

the sub-Gaussian moment bound (B.1); step (b) using the

inequality
(2k)!
k! ≥ 2kk!, which can be seen as follows.

(2k)!

k!
=

k
∏

j=1

(k + j) = k!

k
∏

j=1

(k

j
+ 1
)

≥ (k!)2k.

The equality (c) holds because s lies in the range specified by

(B.6), and (d) holds because 1
1−x ≤ e2x for x ∈ [0, 12 ]. This

completes the proof of (B.9), and hence the result.

APPENDIX C

OTHER USEFUL LEMMAS

Lemma C.1 (Product of Lipschitz Functions is PL(2)). Let

f : Rp → R and g : Rp → R be Lipschitz continuous. Then

the product function h : Rp → R defined as h(x) := f(x)g(x)
is pseudo-Lipschitz of order 2.

Lemma C.2. Let φ : Rt+2 → R be PL(2). For (c1, . . . , ct+1)
constants and Z ∼ N (0, 1), the function φ̃ : R

t+1 → R

defined as φ̃(v1, . . . , vt, w) = EZ [φ(v1, . . . , vt,
∑t

r=1 crvr +
ct+1Z,w)] is then also PL(2).

Lemma C.3. For any scalars a1, ..., at and positive integer

m, we have (|a1|+ . . .+ |at|)m ≤ tm−1
∑t

i=1|ai|m. Conse-

quently, for any vectors u1, . . . , ut ∈ R
N , ‖∑t

k=1 uk‖2 ≤
t
∑t

k=1‖uk‖2.

Proof: The first result follows from applying Hölder’s in-

equality to the length-t vectors (|a1|, . . . , |at|) and (1, . . . , 1).
The second statement is obtained by applying the result with

m = 2.



23

APPENDIX D

SUPPLEMENTARY MATERIAL: PROOF OF LEMMA 5 PARTS

(B).(II) AND (B).(IV)

The supplement available at http://bit.ly/2iWMgbr contains

the proof of Lemma 5 parts (b).(ii) and (b).(iv) for the case

where the denoising functions {ηt(·)}t>0 are differentiable in

the first argument except at a finite number of points. The

proof in Sec. V covers the case where the denoising functions

{ηt(·)}t>0 are differentiable everywhere. The proof of the

general case is longer and somewhat tedious, so we include it

in the supplement.
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