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Abstract
A key challenge in cross-lingual NLP is de-
veloping general language-independent archi-
tectures that are equally applicable to any lan-
guage. However, this ambition is largely ham-
pered by the variation in structural and seman-
tic properties, i.e. the typological profiles of
the world’s languages. In this work, we anal-
yse the implications of this variation on the lan-
guage modeling (LM) task. We present a large-
scale study of state-of-the art n-gram based
and neural language models on 50 typolog-
ically diverse languages covering a wide va-
riety of morphological systems. Operating in
the full vocabulary LM setup focused on word-
level prediction, we demonstrate that a coarse
typology of morphological systems is predic-
tive of absolute LM performance. Moreover,
fine-grained typological features such as expo-
nence, flexivity, fusion, and inflectional synthe-
sis are borne out to be responsible for the pro-
liferation of low-frequency phenomena which
are organically difficult to model by statisti-
cal architectures, or for the meaning ambiguity
of character n-grams. Our study strongly sug-
gests that these features have to be taken into
consideration during the construction of next-
level language-agnostic LM architectures, ca-
pable of handling morphologically complex
languages such as Tamil or Korean.

1 Introduction

Deep learning has allowed NLP algorithms to dis-
pose of manually-crafted features, and to virtually
achieve language independence. However, their per-
formance still varies noticeably across languages
due to different underlying data distributions (Ben-
der, 2013; O’Horan et al., 2016). Linguistic ty-
pology, the systematic comparison of the world’s
languages, holds promise to explain these idiosyn-
crasies and interpret statistical models in terms of
variation in language structures (Ponti et al., 2017).

∗Both authors equally contributed to this work.

In order to evaluate how cross-lingual structural
variation hinders the design of effective general-
purpose algorithms, we propose the task of lan-
guage modeling (LM) as a testbed. In particular,
we opt for a full-vocabulary setup where no word
encountered at training time is treated as an un-
known symbol, in order to a) ensure a fair compari-
son across languages with different word frequency
rates and b) avoid setting an arbitrary threshold on
vocabulary size (Cotterell et al., 2018).

Although there has recently been a tendency
towards expanding test language samples, the
datasets considered in previous works (Botha and
Blunsom, 2014; Vania and Lopez, 2017; Kawakami
et al., 2017; Cotterell et al., 2018) are not entirely
adequate yet to represent the typological variation
and to ground cross-lingual generalisations empiri-
cally. Hence, we test several LM architectures (in-
cluding n-gram, neural, and character-aware mod-
els) on a novel and wider set of 50 languages sam-
pled according to stratification principles.

Through this large-scale multilingual analysis,
we shed new light on the current limitations of
standard LM models and offer support to fur-
ther developments in multilingual NLP. In par-
ticular, we demonstrate that the previous fixed-
vocabulary assumption in fact ignores the limita-
tions of language modeling for morphologically
rich languages. Moreover, we find a strong corre-
lation across the board between LM model per-
formances and the type of morphological system
adopted in each language.

To motivate this correlation we show how fine-
grained typological properties interact with the fre-
quency distribution (Zipf, 1949) by regulating word
boundaries and the proliferation of word forms;
and 2) with the mapping between morphemes (here
intended as character n-grams) and meaning, by
possibly blurring it.

The paper is organised as follows. After provid-
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ing a short overview of multilingual LM and its
possible setups (§2), we describe the cross-lingual
variation in morphological systems and propose a
novel typologically diverse dataset for LM in §3.
We outline the data in §4 and benchmarked lan-
guage models in §5. Finally, we discuss the results
in light of linguistic typology in §6.

2 Multilingual Language Modeling

A language model computes a probability distribu-
tion over sequences of word tokens, and is typically
trained to maximise the likelihood of word input
sequences. The LM objective is expressed as:

P (w1, ...wn) =
∏
i

P (wi|w1, ...wi−1) (1)

wi is a word token with the index i in the sequence.
LM is considered a central task in NLP and lan-
guage understanding, with applications in speech
recognition (Mikolov et al., 2010), text summari-
sation (Filippova et al., 2015; Rush et al., 2015),
and information retrieval (Ponte and Croft, 1998;
Zamani and Croft, 2016). The importance of lan-
guage modeling has been accentuated even more in
representation learning recently, where it is used as
a novel form of unsupervised pre-training (and an
alternative to static word embeddings) for the ben-
efit of a variety of NLP applications (Peters et al.,
2018; Howard and Ruder, 2018).

Related Work: Datasets and Evaluation. Lan-
guage modeling is predominantly tested on English
and other Western European languages. Standard
English LM benchmarks are the Penn Treebank
(PTB) (Marcus et al., 1993) and the 1 Billion Word
Benchmark (BWB) (Chelba et al., 2013). Datasets
extracted from BBC News (Greene and Cunning-
ham, 2006) and IMDB Movie Reviews (Maas et al.,
2011) are also used for LM evaluation in English
(Wang and Cho, 2016; Miyamoto and Cho, 2016;
Press and Wolf, 2017).

For multilingual LM evaluation, Botha and Blun-
som (2014) extract datasets for Czech, French,
Spanish, German, and Russian from the 2013 Work-
shop on Statistical Machine Translation (WMT)
data (Bojar et al., 2013). Kim et al. (2016) reuse
these datasets and add Arabic. Ling et al. (2015)
evaluate on English, Portuguese, Catalan, German
and Turkish datasets extracted from Wikipedia.
Kawakami et al. (2017) evaluate on 7 European
languages using Wikipedia data, including Finnish.

To the best of our knowledge, the largest datasets
used in previous work are from (Müller et al., 2012;
Cotterell et al., 2018) and amount to 21 languages
from the Europarl data (Koehn, 2005). Despite the
large coverage of languages, these sets are still
restricted only to the languages of the European
Union. On the other hand, the most typologically
diverse dataset thus far was released by Vania and
Lopez (2017). It includes 10 languages represent-
ing some morphological systems.

This short survey of related work demonstrates
a clear tendency towards extending LM evaluation
to other languages, abandoning English-centric as-
sumptions, and focusing on language-agnostic LM
architectures. However, a comprehensive evalua-
tion set that systematically covers a wide and bal-
anced spectrum of typologically diverse languages
is still missing. The novel dataset we discuss in this
paper aims at bridging this gap (see §4).

Fixed vs. Full Vocabulary Setup. A majority of
language models rely on the fixed-vocabulary as-
sumption: they use a special symbol <UNK> that
represents all words not present in the fixed vocabu-
lary V , which are termed out-of-vocabulary (OOV).
Selecting the set V typically slips under the radar,
and can be seen as “something of a black art” de-
spite its enormous impact on final LM performance
(Cotterell et al., 2018).1 Standard LM setups either
fix the vocabulary V to the top n most frequent
words, typically with n = 10, 000 or n = 5, 000
(Mikolov et al., 2010; Ling et al., 2015; Vania and
Lopez, 2017; Lee et al., 2017, inter alia), or include
in V only words with a frequency below a certain
threshold (typically 2 or 5) (Heafield et al., 2013).

The rationale behind fixing the set V is a) to
make the language model more robust to handling
OOVs and to effectively bypass the problem of
unreliable word estimates for low-frequency and
unseen words (by ignoring them), and b) to enable
direct comparisons of absolute perplexity scores
across different models. However, this posits a
critical challenge as cross-linguistic evaluation be-
comes uneven. In fact, we witness a larger propor-
tion of vocabulary words replaced by <UNK> in
morphologically rich languages because of their
higher OOV rates (see Table 3). What is more,
while the fixed-vocabulary assumption artificially

1For instance, Vania and Lopez (2017) report perplexity
scores of ≈20 for Finnish when V is fixed to the 5k most
frequent words. The same model in the full-vocabulary setup
obtains perplexity scores of ≈2,000.



FI Kreikkalaiset sijoittivat geometrian synnyn muinaiseen Egyptiin , jossa sitä tarvittiin maanmittaukseen .
FI (MIN-5) <UNK> <UNK> <UNK> synnyn <UNK> Egyptiin , jossa sitä tarvittiin <UNK> .
FI (10K) <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> , jossa sitä <UNK> <UNK> .

KO 그뒤한시백일장에서장원하여신동으로알려졌다.그러나그의집은지독하게가난했다 .
KO (MIN-5) 그뒤 <UNK> <UNK> <UNK> <UNK>알려졌다 .그러나그의집은 <UNK> <UNK> .
KO (10K) 그뒤 <UNK> <UNK> <UNK> <UNK>알려졌다 .그러나그의 <UNK> <UNK> <UNK> .

Table 1: Examples from Finnish and Korean LM datasets after applying the standard fixed-vocabulary
assumption. MIN=5: only words with corpus frequency above 5 are retained in the final fixed vocabulary
V ; 10K: V comprises the 10k most frequent words.

improves the perplexity measure, it actually makes
the models less useful, especially in morphologi-
cally rich languages, as exemplified in Table 1.

Our goal is to get a clear picture on how dif-
ferent typological features and the corresponding
corpus frequency distributions affect LM perfor-
mance, without the influence of the unrealistic
fixed-vocabulary assumption. Therefore, we work
in the full-vocabulary LM setup (Adams et al.,
2017; Grave et al., 2017). This means that we ex-
plicitly decide to retain also infrequent words in
the modeled data: V contains all words occurring
at least once in the training set, only unseen words
from test data are treated as OOVs. We believe that
this setup leads to an evaluation that pinpoints the
crucial limitations of standard LM architectures.2

Why Not Open Vocabulary Setup? Recent neu-
ral LM architectures have also focused on han-
dling large vocabularies and unseen words using
character-aware modeling (Luong and Manning,
2016; Jozefowicz et al., 2016; Kawakami et al.,
2017, inter alia). This setup is commonly referred
to as the open-vocabulary setup. However, two dis-
tinct approaches with crucial modeling differences
are referred to by the same term in the literature.
a) Word-level generation constructs word vectors
for arbitrary words from constituent subword-level
components, but word-level prediction is still eval-
uated based on the fixed-vocabulary assumption.
b) Character-level generation predicts characters
instead of words.

Given that character-level prediction and word-
level prediction operate on entirely different sets
of symbols, their performance is hardly compara-
ble. Still, Jozefowicz et al. (2016) report that, in a
hybrid setup which evaluates character-level pre-
diction based on word-level perplexity with the

2For instance, as discussed later in §3 and validated empiri-
cally in §6, the vocabularies of morphologically rich languages
are inherently larger: it is simply more difficult to learn and
make LM predictions in such languages.

Type Fusion Exponence Flexivity Synthesis

Isolating low 1:1 1:1 low
Fusional mid many:1 1:many mid
Introflexive high many:1 1:many mid
Agglutinative mid 1:1 1:1 high

Table 2: Traditional morphological types described
in terms of selected features from WALS.

fixed-vocabulary assumption, current state-of-the-
art word-level prediction models (i.e., the ones we
discuss in §5) still significantly outperform such hy-
brid character-level prediction approaches. There-
fore, we operate in the full-vocabulary setup.

3 Typology of Morphological Systems

Aiming for a comprehensive multilingual LM
evaluation in this study, we survey all possible
types of morphological systems (Haspelmath and
Sims, 2013), which possibly lead to different per-
formances. Traditionally, languages have been
grouped into the four main categories: isolating,
fusional, introflexive and agglutinative, based on
their position along a spectrum measuring the pref-
erence on breaking up concepts in many words (on
one extreme) or rather compose them into single
words (on the other extreme).

The mono-dimensionality of this spectrum has
recently been challenged as languages exhibit a
multitude of morphological features that do not co-
vary across languages (Plank, 2017; Ponti et al.,
2018). The typological database WALS (Dryer and
Haspelmath, 2013) documents several of them that
are relevant for LM: inflectional synthesis, fusion,
exponence, and flexivity. Note that the prototypes of
traditional categories can be approximated in terms
of these features, as shown in Table 2, although
more combinations are possible.

Languages specify different subsets of grammat-
ical categories (such as tense for verbs, or num-



ber for nouns), and for each category different val-
ues are available in each language: for instance,
Finnish has less tense values (it lacks a future),
whereas Slovene has more number values (includ-
ing a dual) compared to English. The feature in-
flectional synthesis for verbs (Bickel and Nichols,
2013) measures how many categories appear on
the maximally inflected verb per language. More
available categories enlarge the vocabulary (and
consequently the OOV rate) with forms instantiat-
ing all possible combinations of their values.

Another crucial aspect is how the available gram-
matical categories are expressed, which can be de-
scribed by fusion, exponence, and flexivity. Fusion
measures the degree of connectedness between a
grammatical marker to another word. The marker
can be (from lower to higher fusion) a separate
word, a clitic, an affix, or can affect the form of the
root itself (e.g. an umlaut or a tone).

Exponence measures the number of categories
(e.g., tense, number) a single morpheme tends to
convey. Exponence is separative if one grammatical
category is conveyed by one morpheme (1:1), and
cumulative if multiple categories are grouped into
one morpheme (many:1).

Flexivity indicates the possibility that the value
of a grammatical category be mapped into differ-
ent morphological forms (1:many). In other terms,
lemmas belonging to the same part-of-speech are
divided into inflectional classes (such as declension
classes for nouns or conjugation classes for verbs),
each characterised by a different paradigm, that is,
a different set of value-to-form mappings.

The three last features are illustrated by the ex-
amples Ex. (2)-Ex. (5), all uttering the sentence “I
will guard the doors and I will not open (them)”.3

(2) tôi
I

sẽ
FUT

bảo
guard

vệ cửa
door

và
and

tôi
I

sẽ
FUT

không
NEG

mở
open (Vietnamese)

(3) kapı-lar-ı
door-PL-ACC

koruy-acağ-ım
guard-FUT-1SG

ve
and

aç-may-acağ-ım
open-NEG-FUT-1SG (Turkish)

(4) sorvegli-erò
guard-FUT.1SG

le
DEF

port-e
door-PL

e
and

non
NEG

apr-irò
open-FUT.1SG (Italian)

3All morphological glosses follow the Leipzig glossing
rules, listed at https://www.eva.mpg.de/lingua/
resources/glossing-rules.php

(5) ‘e-šmor
1SG-guard.FUT

‘al
on

ha-d‘lat-ót
DEF-door-PL

v‘-lo
and-NEG

‘e-ftach
1SG-wait.FUT

otán
them (Hebrew)

In particular, consider how tense and person are
expressed on verbs. Vietnamese in Ex. (2) puts
two particles tôi and sẽ before the verb, which are
distinct (separate exponence), autonomous from
the root (no fusion), and fixed (absence of flexiv-
ity). Turkish in Ex. (3) attaches suffixes: -acak- for
tense and -ım for person. These are distinct (sepa-
rate exponence), joined to the roots (concatenative
fusion), and (phonologically determined variants
of) the same morpheme (1:1 flexivity). Italian in
Ex. (4) uses affixes -erò and -irò: they are concate-
nated to the root with respect to fusion, convey
both tense and person (cumulative exponence), and
are dissimilar (presence of flexivity). Finally, in
Ex. (5) for Hebrew the consonant pattern of the
verb š-m-r is interdigitated by the vowel -o- for
tense, and preceded by a prefix ‘e- for person. The
first phenomenon alters the root itself (introflexive
fusion), is distinct from the second (separate ex-
ponence), and changes its realisation based on the
verb’s lemma (presence of flexivity).

The above evidence strongly motivates us, as
well as recent previous work (Vania and Lopez,
2017; Kawakami et al., 2017; Cotterell et al., 2018),
to approach LM with models that are aware of the
inner structure of their input words, and to bench-
mark these modeling choices on a typologically
diverse range of languages, as shown in §4.

4 Data

Selection of Languages. Our selection of test
languages is guided by the following goals: a) we
have to ensure the coverage of typological prop-
erties from §3, and b) we want to analyse a large
set of languages which extends and surpasses other
work in the LM literature (see §2).

Since cross-lingual NLP aims at modeling extant
languages rather than possible languages (includ-
ing, e.g., extinct ones), creating a balanced sample
is challenging. In fact, attested languages, intended
as a random variable, are extremely sparse and not
independent-and-identically-distributed (Cotterell
and Eisner, 2017). First, available and reliable data
exist only for a fraction of the world’s languages.
Second, these data are biased because their features
may not stem from the underlying distribution, i.e.,
from what is naturally possible/frequent, but rather

https://www.eva.mpg.de/lingua/resources/glossing-rules.php
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can be inherited by genealogical relatedness or bor-
rowed by areal proximity (Bakker, 2010). To mit-
igate these biases, theoretical works resorted to
stratification approaches, where each subgroup of
related languages is sampled independently. maxi-
mizing their diversity (Dryer, 1989, inter alia). We
perform our selection in the same spirit.

We start from the Polyglot Wikipedia (PW)
project (Al-Rfou et al., 2013) which provides
cleaned and tokenised Wikipedia data in 40 lan-
guages. However, the majority of the PW lan-
guages are similar from the perspective of geneal-
ogy (26/40 are Indo-European), geography (28/40
are Western European), and typology (26/40 are
fusional). Consequently, the PW set is not a repre-
sentative sample of the world’s languages.

To amend this limitation, we source additional
languages with the data coming from the same
domain, Wikipedia, considering candidates in de-
scending order of corpus size cleaned and prepro-
cessed by the Polyglot tokeniser (Al-Rfou et al.,
2013). Since fusional languages are already repre-
sented in the PW, we add new languages from other
morphological types: isolating (Min Nan, Burmese,
Khmer), agglutinative (Basque, Georgian, Kan-
nada, Tamil, Mongolian, Javanese), and introflex-
ive languages (Amharic).

Partition. We construct datasets for all 50 lan-
guages by extracting the first 40K sentences for
each language, and split them into train (34K), vali-
dation (3K), and test (3K). This choice has been mo-
tivated by the following observations: a) we require
similarly-sized datasets from the same domain for
all languages; b) the size of the datasets has to be
similar to the standard English PTB dataset (Mar-
cus et al., 1993) which has been utilised to guide
LM development in English for more than 20 years.
The final list of 50 languages along with their lan-
guage codes (ISO 639-1), morphological type (i.e.,
isolating, fusional, introflexive, agglutinative), and
corpus statistics is provided in Table 3.

5 Models and Experimental Setup

Benchmarked Language Models. The avail-
ability of LM evaluation sets in a large number
of diverse languages, as described in §4, gives
an opportunity to conduct a full-fledged multilin-
gual analysis of representative LM architectures
for word-level prediction. First, we evaluate a state-
of-the-art model from the n-gram family of models

(Goodman, 2001) from the KenLM package.4 It
is based on 5-grams with extended Kneser-Ney
smoothing (Kneser and Ney, 1995; Heafield et al.,
2013). We refer to this model as KN5.

Modern LM architectures are almost exclusively
based on recurrent neural networks (RNNs), and
especially on Long-Short-Term Memory networks
(LSTMs). (Mikolov et al., 2010; Sundermeyer et al.,
2015; Chen et al., 2016, inter alia). They map a
sequence of input words to embedding vectors us-
ing a look-up matrix and then perform word-level
prediction by passing the vectors to the LSTM.

Finally, we also evaluate a character-aware vari-
ant of the neural LSTM LM architecture. We use
the Char-CNN-LSTM model (Kim et al., 2016)
due to its public availability and strong perfor-
mance in several languages. In this model, each
character is embedded and passed through a convo-
lutional neural network with max-over-time pool-
ing (LeCun et al., 1989), followed by a highway
network transformation (Srivastava et al., 2015) to
build word representations from their constituent
characters. By resorting to character-level informa-
tion, the model is able to provide better parame-
ter estimates for lower-frequency words, which is
particularly important for morphologically rich lan-
guages. The CNN-based word representations are
then processed in a sequence by a regular LSTM
network to obtain word-level predictions.

Evaluation Setup. We report perplexity scores
(Jurafsky and Martin, 2017, chapter 4.2.1) using
the full vocabulary for each respective LM dataset.
This means that we explicitly decide to retain also
infrequent words in the data and analyse the diffi-
culty of modeling such words in morphologically
rich languages (see §2 for the discussion).

In the full-vocabulary setup, the set V comprises
all words occurring at least once in the training
set. Unseen test words are mapped to one <UNK>
vector, sampled from the the space of trained word
vectors relying on a normal distribution and the
same fixed random seed for all models. On the other
hand, KN5 by design has a slightly different way
of handling unseen test words: they are regarded as
outliers and assigned low-probability estimates.

Training Setup and Parameters. For LSTM
and Char-CNN-LSTM language models, we re-
produce the standard LM setup of Zaremba et al.
(2015) and parameter choices of Kim et al. (2016).

4https://github.com/kpu/kenlm

https://github.com/kpu/kenlm


Batch size is 20 and a sequence length is 35, where
one step corresponds to one word token. The max-
imum word length is chosen dynamically based
on the longest word in the corpus. The corpus is
processed continuously; the RNN hidden states re-
set at the beginning of each epoch. Parameters are
optimised with SGD, and the gradient is averaged
over the batch size and sequence length. We then
scale the averaged gradient by the sequence length
(=35) and clip to 5.0 for more stable training. The
learning rate is 1.0, decayed by 0.5 after each epoch
if the validation perplexity does not improve. All
models are trained for 15 epochs, which is typically
sufficient for model convergence. Finally, KN5 is
trained relying on the suggested parameters from
the KenLM package.

6 Results and Discussion

In this section, we present our main empirical find-
ings on the connection between LM performance
and corpus statistics emerging from different ty-
pological profiles (see §3). Before proceeding, we
stress that the absolute perplexity scores across dif-
ferent languages are not directly comparable, but
their values provide evidence on the difficulty and
limitations of language modeling in each language,
considering the fact that all language models were
trained on similarly-sized datasets. The results for
all three benchmarked language models on all 50
languages are summarised in Table 3.

Comparison of Language Models. A quick in-
spection of the results from Table 3 reveals that the
Char-CNN-LSTM model is the best-performing
model overall. We report the best results with that
model for 48/50 languages and across all traditional
morphological types. Gains over the simpler recur-
rent LM architecture (i.e., the LSTM model) are
present for all 50/50 languages. In short, this means
that character-level information on the input side of
neural architectures, in addition to leading to fewer
parameters, is universally beneficial for the final
performance of word-level prediction, as also sug-
gested by Kim et al. (2016) on a much smaller set
of languages. By relying on character-level knowl-
edge, Char-CNN-LSTM model provides better es-
timates for lower-frequency words.

Moreover, the results show that KN5 is a compet-
itive baseline for several languages (e.g., Kannada,
Thai, Amharic). This further highlights the impor-
tance of testing models on a typologically diverse
set of languages: despite the clear superiority of
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Figure 1: Perplexity scores with the Char-CNN-
LSTM language model (Kim et al., 2016) on PTB-
sized language modeling data in 50 languages as a
function of type-to-token ratios in training data.

neural LM architectures such as Char-CNN-LSTM
in a large number of languages, the results and the
marked outliers still suggest that there is currently
no “one-size-fits-all” model.

In general, large perplexity scores for certain
languages (e.g., agglutinative languages such as
Finnish, Korean, Tamil, or introflexive languages),
especially when compared to performance on En-
glish on a similarly-sized dataset, clearly point at
the limitations of all the “language-agnostic” LM
architectures. As suggested by Jozefowicz et al.
(2016), LM performance in English can be boosted
by simply collecting more data and working with
large vocabularies (e.g., reducing the number of
relevant OOVs). However, this solution is certainly
not applicable to a majority of the world’s lan-
guages (Bird, 2011; Gandhe et al., 2014; Adams
et al., 2017), see later in §6: Further Discussion.

Frequency Analysis and Traditional Morpho-
logical Types. We now analyse all languages in
our collection according to word-level frequency
properties also listed in Table 3 for all 50 lan-
guages. We report: 1) the vocabulary size (i.e., the
total number of vocabulary words in each training
dataset); 2) the total number of test words not occur-
ring in the corresponding training data; 3) the total
number of tokens in both training and test data;
and finally 4) type-to-token ratios (TTR) in train-
ing data. We also plot absolute perplexity scores
of Char-CNN-LSTM (Kim et al., 2016), the best-
performing model overall (see §6), in relation to
TTR ratios in Figure 1.



Data Stats Baseline Models
Language (code) Vocab

Size
(Train)

New
Test
Vocab

Number
Tokens
(Train)

Number
Tokens
(Test)

Type /
Token
(Train)

KN5 LSTM Char-
CNN-
LSTM

× Amharic (am) 89749 4805 511K 39.2K 0.18 1252 1535 981
× Arabic (ar) 89089 5032 722K 54.7K 0.12 2156 2587 1659
� Bulgarian (bg) 71360 3896 670K 49K 0.11 610 651 415
� Catalan (ca) 61033 2562 788K 59.4K 0.08 358 318 241
� Czech (cs) 86783 4300 641K 49.6K 0.14 1658 2200 1252
� Danish (da) 72468 3618 663K 50.3K 0.11 668 710 466
� German (de) 80741 4045 682K 51.3K 0.12 930 903 602
� Greek (el) 76264 3767 744K 56.5K 0.10 607 538 405
� English (en) 55521 2480 783K 59.5K 0.07 533 494 371
� Spanish (es) 60196 2721 781K 57.2K 0.08 415 366 275
F Estonian (et) 94184 3907 556K 38.6K 0.17 1609 2564 1478
F Basque (eu) 81177 3365 647K 47.3K 0.13 560 533 347
� Farsi (fa) 52306 2041 738K 54.2K 0.07 355 263 208
F Finnish (fi) 115579 6489 585K 44.8K 0.20 2611 4263 2236
� French (fr) 58539 2575 769K 57.1K 0.08 350 294 231
× Hebrew (he) 83217 3862 717K 54.6K 0.12 1797 2189 1519
� Hindi (hi) 50384 2629 666K 49.1K 0.08 473 426 326
� Croatian (hr) 86357 4371 620K 48.1K 0.14 1294 1665 1014
F Hungarian (hu) 101874 5015 672K 48.7K 0.15 1151 1595 929
� Indonesian (id) 49125 2235 702K 52.2K 0.07 454 359 286
� Italian (it) 70194 2923 787K 59.3K 0.09 567 493 349
F Japanese (ja) 44863 1768 729K 54.6K 0.06 169 156 136
F Javanese (jv) 65141 4292 622K 52K 0.10 1387 1443 1158
F Georgian (ka) 80211 3738 580K 41.1K 0.14 1370 1827 1097
� Khmer (km) 37851 1303 579K 37.4K 0.07 586 637 522
F Kannada (kn) 94660 4604 434K 29.4K 0.22 2315 5310 2558
F Korean (ko) 143794 8275 648K 50.6K 0.22 5146 10063 4778
� Lithuanian (lt) 81501 3791 554K 41.7K 0.15 1155 1415 854
� Latvian (lv) 75294 4564 587K 45K 0.13 1452 1967 1129
� Malay (ms) 49385 2824 702K 54.1K 0.07 776 725 525
F Mongolian (mng) 73884 4171 629K 50K 0.12 1392 1716 1165
� Burmese (my) 20574 755 576K 46.1K 0.04 209 212 182
� Min-Nan (nan) 33238 1404 1.2M 65.6K 0.03 61 43 39
� Dutch (nl) 60206 2626 708K 53.8K 0.08 397 340 267
� Norwegian (no) 69761 3352 674K 47.8K 0.10 534 513 379
� Polish (pl) 97325 4526 634K 47.7K 0.15 1741 2641 1491
� Portuguese (pt) 56167 2394 780K 59.3K 0.07 342 272 214
� Romanian (ro) 68913 3079 743K 52.5K 0.09 384 359 256
� Russian (ru) 98097 3987 666K 48.4K 0.15 1128 1309 812
� Slovak (sk) 88726 4521 618K 45K 0.14 1560 2062 1275
� Slovene (sl) 83997 4343 659K 49.2K 0.13 1114 1308 776
� Serbian (sr) 81617 3641 628K 46.7K 0.13 790 961 582
� Swedish (sv) 77499 4109 688K 50.4K 0.11 843 832 583
F Tamil (ta) 106403 6017 507K 39.6K 0.21 3342 6234 3496
� Thai (th) 30056 1300 628K 49K 0.05 233 241 206
� Tagalog (tl) 72416 3791 972K 66.3K 0.07 379 298 219
F Turkish (tr) 90840 4608 627K 45K 0.14 1724 2267 1350
� Ukranian (uk) 89724 4983 635K 47K 0.14 1639 1893 1283
� Vietnamese (vi) 32055 1160 754K 61.9K 0.04 197 190 158
� Chinese (zh) 43672 1653 746K 56.8K 0.06 1064 826 797
� Isolating (avg) 40930 1825 759K 54K 0.05 440 392 326
� Fusional (avg) 73499 3532 689K 51.3K 0.11 842 969 618
× Introflexive (avg) 87352 4566 650K 49.5K 0.14 1735 2104 1386
F Agglutinative (avg) 91051 4687 603K 45K 0.16 1898 3164 1727

Table 3: Test perplexities for 50 languages (ISO 639-1 codes sorted alphabetically) in the full-vocabulary
prediction LM setup; Left: Basic statistics of LM evaluation data (see §4 and §5). Right: Results with all
three language models in our comparison. Best absolute perplexity scores for each language are in bold,
but note that the absolute scores in the KN5 column are not directly comparable to the scores obtained
with neural models due to a different handling of OOVs at test time (see §5).

In isolating and some fusional languages (e.g.,
Vietnamese, Thai, English) the TTR tends to be
small: we have a comparatively low number of
infrequent words. Agglutinative languages such
as Finnish, Estonian, and Korean are on the other

side of the spectrum. Introflexive and fusional lan-
guages, typically over-represented in prior work
(see the discussion in §3), are found in the middle.

This emerges clearly in Figure 1, grouping isolat-
ing languages to the left side of the x-axis, followed



by fusional languages (Germanic and Romance
first to the left, and then Balto-Slavic to the right),
and placing agglutinative languages towards the
far right. Crucially, TTR is an excellent predictor
of LM performance. To measure the correlation
between this corpus statistics variable and absolute
LM performance, we compute their Pearson’s r cor-
relation. We find a strong positive correlation, with
a value of r = 0.83 and significance p < 0.001.

We do observe a strong link between each lan-
guage’s morphological type, and the correspond-
ing perplexity score. A transition in terms of the
spectrum of morphological systems (see §3) can
be traced again on the y-axis of Figure 1, roughly
following the reported LM performance: from iso-
lating, over fusional and introflexive to agglutina-
tive languages. In fact, a correlation exists also
between traditional morphological types and LM
performance. We assessed its strength with the one-
way ANOVA statistical test, obtaining a value of
η2 = 0.37 and a significance of p < 0.001.

Finally, it should be noted that the choice of TTP
over other corpus statistics such as vocabulary size
is motivated by the fact that the corpora are compa-
rable, and not parallel. Because of this, the variation
of V may stem from the contents rather than the
intrinsic linguistic properties. As a counter-check,
the correlation between V and LM performance is
in fact milder, with r = 0.64. Yet, notwithstanding
the stronger correlation, TTP is unable to explain
the results entirely. Only through finer-grained ty-
pological features it becomes possible to justify
several outliers, as shown in the next subsection.

Fine-Grained Typological Analysis. Among
the relevant typological features (see §3 and Table
2), fusion and inflectional synthesis have the largest
impact on word-level predictions. In fact, the for-
mer determines the word boundaries, whereas the
latter regulates the amount of possible morpheme
combinations. Consider their effect on the fre-
quency distribution of words, expressed as follows
(Zipf, 1949):

f =
1
ks∑V

n=1
1
ns

(6)

f is the frequency, k the rank, and s ≥ 0 the expo-
nent characteristic of the distribution. If high, both
typological features enlarge V and s, assigning less
probability mass to each word.

Low fusion means a preference for separate
words (as in isolating languages such as Viet-

namese and Chinese), leading to a smaller vocab-
ulary with less (but more frequent) words. This
property, additionally boosted by low inflectional
synthesis, facilitates statistical language modeling
in isolating languages. Vice versa, high fusion re-
sults in preference for concatenation of morphemes
or introflection, and consequently sparser vocabu-
laries. Yet, this distinction cannot justify the figures
by itself, as it equates agglutinative languages and
traditional fusional languages. Here, inflectional
synthesis is also at play. Through the statistical
test of one-way ANOVA, we found a weak effect
of η2 = 0.09 for fusion and a medium effect of
η2 = 0.21 for inflection synthesis.

On the other hand, the fine-grained typological
features of exponence and flexivity play a role in
the ambiguity of the mapping between morphemes
and meanings or grammatical functions. This turns
out to be especially relevant for character-aware
models. The intuition is that if the mapping is
straightforward, injecting character information is
more advantageous. To validate this claim, we eval-
uate the ANOVA between exponence of nouns
and verbs and the difference in perplexity between
LSTM and Char-CNN-LSTM.5 We report a weak,
although existent, correlation with value η2 = 0.07
and η2 = 0.04, respectively.

Further Discussion. Importantly, our large-
scale multilingual LM study strongly indicates
that due to diverse typological profiles, certain lan-
guages and language groups are inherently more
complex to language-model when relying on es-
tablished statistical models, even when such mod-
els are constructed as widely applicable and (ar-
guably) language-agnostic. This finding supports
preliminary results from prior work (Botha and
Blunsom, 2014; Adams et al., 2017; Cotterell et al.,
2018), and is also backed by insights from linguis-
tic theory on variance of language complexity in
general and variance of morphological complexity
in specific (McWhorter, 2001; Evans and Levin-
son, 2009). More broadly and along the same line,
earlier research in statistical machine translation
(SMT) has also shown that typological factors such
as the amount of reordering, the morphological
complexity, as well as genealogical relatedness of
languages are crucial in predicting success in SMT
(Birch et al., 2008; Paul et al., 2009; Daiber, 2018).

Our results indicate that the artificial fixed-
5Unfortunately no values are available in WALS for the

feature of flexivity besides a limited domain.



vocabulary assumption from prior work produces
overly optimistic perplexity scores, and its limita-
tion is even more pronounced in morphologically
rich languages, which inherently contain a large
number of infrequent words due to their productive
morphological systems. The typical solution to col-
lect more data (Jozefowicz et al., 2016; Kawakami
et al., 2017) mitigates this effect to a certain extent,
but stills suffers from the Zipfian hypothesis (1949),
and it cannot be guaranteed for resource-poor lan-
guages where obtaining sufficient monolingual data
is also a challenge (Adams et al., 2017).

Therefore, another solution is to resort to other
sources of information which are not purely contex-
tual/distributional. For instance, a promising line of
current and future research is to (learn to) exploit
subword-level patterns captured in an unsupervised
manner (Pinter et al., 2017; Herbelot and Baroni,
2017) or integrate existing morphological genera-
tion and inflection tools and regularities (Cotterell
et al., 2015; Vulić et al., 2017; Bergmanis et al.,
2017) into language models to reduce data sparsity,
and improve language modeling for morphologi-
cally rich languages. For instance, a recent enhance-
ment of the Char-CNN-LSTM language model that
enforces similarity between parameters of morpho-
logically related words leads to large perplexity
gains across a large number of languages, with the
most prominent gains reported for morphologically
complex languages (Gerz et al., 2018).

Given the recent success and improved perfor-
mance with LM-based pre-training methodology
(Peters et al., 2018; Howard and Ruder, 2018)
across a wide variety of syntactic and semantic
NLP tasks in English, improving language models
for other languages might have far-reaching con-
sequences for multilingual NLP in general. Typo-
logical information coded in typological databases
(Ponti et al., 2018) offer invaluable support to lan-
guage modeling (e.g., knowledge on word ordering,
morphological regularities), but such typologically-
informed LM architectures are still non-existent.

7 Conclusion

In this paper, we have run a large-scale study on
Language Modeling (LM) across several architec-
tures and a collection of 50 typologically diverse
languages. We have demonstrated that typological
properties of languages, such as their morphologi-
cal systems, have an enormous impact on the per-
formance of allegedly “language-agnostic” models.

We have found that the corpus statistics most pre-
dictive of LM performance is type-to-token ratio
(TTR), as demonstrated by their strong Pearson’s
correlation. In turn, the value of TTR is motivated
by fine-grained typological features that define the
type of morphological system within a language.
In fact, such features affect the word boundaries
and the number of morphemes per word, affecting
the word frequency distribution for each language.

We have also observed that injecting character in-
formation into word representations is always ben-
eficial because this mitigates the above-mentioned
sparsity issues. However, the extent of the gain
in perplexity partly depends on some typological
properties that regulate the ambiguity of the map-
ping between morphemes (here modeled as charac-
ter n-grams) and their meaning.

We hope that NLP/LM practitioners will find
the datasets for 50 languages put forth in this
work along with benchmarked LMs useful for fu-
ture developments in (language-agnostic as well
as typologically-informed) multilingual language
modeling. This study calls for next-generation so-
lutions that will additionally leverage typological
knowledge for improved language modeling. Code
and data are available at: http://people.ds.
cam.ac.uk/dsg40/lmmrl.html.
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