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Abstract—Reconstructing infinite-dimensional signals from a
limited amount of linear measurements is a key problem in
many applications such as medical imaging [35], single-pixel and
lensless cameras [27], fluorescence microscopy [39] etc. Efficient
techniques for such a problem include generalized sampling [6],
[23], [31], [43] and its compressed versions [5], [27], as well
as methods based on data assimilation [9], [11], [20]. All of
these methods have in common that the reconstruction quality
depends highly on the subspace angle between the sampling and
the reconstruction space. In this paper we consider the case of
binary measurements, which, after a standard subtraction trick,
can be converted to a 1 and −1 setup. These measurements are
modelled with Walsh functions, which form the kernel for the
Hadamard transform. For the reconstruction we use wavelets. We
show that the relation between the amount of data sampled and
the coefficients reconstructed has to be only linear to ensure that
the angle is bounded from below and hence the reconstruction
is accurate and stable.

I. INTRODUCTION

The theory of sampling has a wide history and is still a
highly popular research topic. In 1948 Shannon introduced
the Shannon Sampling Theorem [32], [43], [44], which is
now a classical result in sampling theory. The message of the
theorem is that for functions with a bounded bandwidth, one
can sample pointwise at a certain rate, and the function can
be represented as an infinite sum over the measurements times
the sinc functions. Although a beautiful mathematical result,
this approach is not always feasible in reality. The coefficients
usually do not decay fast, which results in slow convergence
and unpleasant artefacts [25], [40], [44].

New possibilities in sampling theory were introduced by the
systems of wavelets [37], shearlets [18], [19], [33], curvelets
[14]–[16] and contourlets [21], [41]. These systems allow
much better representation than the sinc functions or complex
exponentials. However, it is in most applications not possible
to change the measurements. For example, a Magnetic Reso-
nance Imaging (MRI) scanner does provide Fourier samples,
and cannot easily be tweaked to provide wavelet, curvelet or
shearlet coefficients.

The amount of research done in the last decades on utilising
other bases and frames in sampling theory is comprehensive.
Concepts like the finite section method [12], [29], [30], [34],
consistent sampling by Unser and Aldroubi [8], [45] as well
as the generalization by Eldar [22]–[24], [26] are now widely

known and understood. Nevertheless, they have certain draw-
backs in practice. Although these approaches may work well
in certain cases [23], [45], they may also be highly unstable
and even non-convergent for particular problems.

These drawbacks can be resolved by different approaches.
For example, generalized sampling [1], [6], [7], [31], which
allows a different amount of samples and reconstructed co-
efficients, leads to a stable and quasi-optimal reconstruction.
Another new and promising method is the data assimilation
in reduced modelling approach introduced by Binev, Cohen,
Dahmen, DeVore, Petrova and Wojtaszczyk [9], [11], [20].
These methods have in common that the subspace angle

cos(ω(U, V )) = inf
u∈U,‖u‖=1

‖PV u‖ =
1

µ(U, V )
,

ω(U, V ) ∈ [0, π/2], between the reconstruction and sampling
space U and V respectively, is crucial in the estimation of the
reconstruction error. In fact, the error and stability depends
directly on this quantity.

Both methods mentioned can take any sample and recon-
struction space, which allows substantial freedom. In the case
of Fourier measurements, which are the basis for MRI, Helium
atom scattering, radio interferometry etc., there has been quite
a lot of recent developments. It is possible to show that
the sampling rate, i.e. the amount of samples needed for a
certain amount of stable reconstructed coefficients, is linear
for Fourier measurements to wavelets [2], [4] in one and
two dimensions. In addition, there are sharp bounds for the
stable sampling rate in the case of Fourier measurements
and wavelets [3]. The two dimensional case could even be
extended to shearlets [36], which do not form a basis but
rather a frame. The stable sampling rate was also investigated
for Fourier samples and polynomial reconstruction, where one
gets a quadratic relation [31].

Beside the research done in the field of Fourier measure-
ments, there is also a lot of research done in the area of
dyadic analysis and the Walsh functions, which we will use to
model the binary measurements. A great overview is given by
Gauss in [28], further information can be found in [10], [13],
[38], [42]. After a change of the ordering, Walsh functions
are the kernel for the well known Hadamard transform. The
new ordering is obtained by applying the Gray transform to
the input parameter. Due to there direct relation with the
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Hadamard transform, Walsh functions are frequently used in
the context of binary measurements. As binary measurements
are the mainstay in many imaging applications such as lens-
less camera and single-pixel cameras [27] and fluorescence
microscopy [39] it is natural to ask how the stable sampling
rate behaves for reconstructions from Walsh coefficients with
wavelets, shearlets, polynomials or splines.

The main contribution of this paper is the analysis of the
subspace angle for binary measurements via Walsh functions
and wavelets, where we show that the stable sampling rate
(1) is linear. This means for a linear relation between the
amount of samples and reconstructed coefficients, the subspace
angle is bounded from below. Moreover, this result is sharp.
This might be surprising at first, because of the very different
structure of Walsh functions and wavelets. Walsh functions
provide a lot of structure and properties, i.e. smoothness, in
terms of the dyadic analysis, but not in terms of the decimal
analysis. Wavelets behave the other way around. Most wavelets
are continuous and have regularity properties in the decimal
analysis but not in the dyadic analysis. This is one of the main
differences in contrast to the Fourier-wavelet reconstruction.
In the setting of Walsh functions we are restricted to the
space L2([0, 1]d). This means that the wavelets have to be
adapted accordingly. That is the reason why we are dealing
with boundary wavelets.

II. BACKGROUND

A. Reconstruction Methods

In this paper we are dealing with the problem of reconstruct-
ing data from given measurements with linear functionals. In
particular, we consider a Hilbert spaceH and linear functionals
(mi)i∈N : H → R that can be represented by elements si ∈ H
as mi(f) = 〈f, si〉. The space of these functions is called the
sampling space and is denoted by S = span{si : i ∈ N},
meaning the closure of the span. In practice, one can only
acquire a finite amount of samples, therefore we denote by
SM = span{si : i = 1, . . . ,M}, the sampling space of the
first M elements. A suitable choice of reconstruction spaces
is widely investigated. The reconstruction space may typically
fit better the data to be recovered than the sampling space,
which is usually dictated by the physics of the sampling
device (fluorescence microscope, MRI scanner, electron micro-
scope etc.). For example, spaces spanned by X-lets (wavelets,
curvelets, shearlets) may be preferable as reconstruction spaces
in imaging applications, whereas polynomials may be useful
when considering very smooth functions to be recovered.
The reconstruction spaces are denoted by R and spanned by
reconstruction functions (ri)i∈N, i.e. R = span{ri : i ∈ N}.
As in the case of the sampling space, it is impossible to acquire
and to save an infinite amount of reconstruction coefficients.
Hence, one has to restrict to a finite reconstruction space,
which is denoted by RN = span{ri : i = 1, . . . , N}.

As mentioned above the two methods based on generalized
sampling and reduced modelling are similar reconstruction
methods that offer an alternative to the existing literature.
For the generalized sampling approach it is possible to use a

different amount of samples M and coefficients that are recon-
structed N . This leads to substantial improvements on stability
and convergence. The method can be described as follows, for
f ∈ H and N,M ∈ N, we define the reconstruction method
of generalized sampling GN,M : H → RN by

〈PSMGN,M (f), rj〉 = 〈PSM f, rj〉, rj ∈ RN ,

where PSM denotes the orthogonal projection on the subspace
SM . Note that the stability and accuracy of this method
depends on the subspace angle between the sampling and the
reconstruction space, i.e.

‖f −GN,M (f)‖ ≤ µ(RN ,SM )‖f − PRN
f‖.

Moreover, the condition number κ of GN,M is also given by
κ(GN,M ) = µ(RN ,SM ).

In the approach presented in [20] based on data assimilation
in reduced modelling the proposed algorithm calculates

FN,M (f) = argmin
u∈PSM f+S⊥M

‖u− PRN
u‖,

and it can be shown that the accuracy then depends on
subspace angle

‖f−FN,M (f)‖ ≤ µ(RN ,SM ) dist(f,RN⊕(SM∩RN )⊥).

Moreover, this is sharp in the way that the constant
µ(RN ,SM ) cannot be improved. It is clear that, in both
approaches, the key to success lies in the ability to make sure
that

µ(RN ,SM ) ≤ θ, θ ∈ R+.

Thus, we need to balance the number of samples M with
the number of reconstruction vectors N , and this lead to the
so-called stable sampling rate:

Θ(N, θ) = min {M ∈ N : µ(RN ,SM ) ≤ θ} . (1)

The methods above can only be used efficiently when the
stable sampling rate is known. Fortunately, it is possible
to obtain sharp results on describing Θ(N, θ) for popular
sampling and reconstruction spaces. In this paper we do so
for sampling with Walsh functions and reconstructing with
wavelets.

B. Wavelets and Walsh functions

The sampling space used in this paper is the space of Walsh
functions whereas the reconstruction takes place in the space
of wavelets. Due to the structure of Walsh functions, i.e. that
they only span L2([0, 1]d) we have to adjust the wavelet space
accordingly, such that S⊥ ∩ R = {0}. Hence, we restrict
the reconstruction space to boundary wavelets with compact
support in [0, 1]d.

Due to the fact that we are dealing with the d-dimensional
case, we introduce multi indices to make the notation more
readable. Let j = {j1, . . . , jd} ∈ Nd, d ∈ N be a multi
index. A natural number n is in the context with a multi
index interpreted as a multi index with the same entry,
i.e. n = {n, . . . , n}. Then we define the addition of two



multi indices for j, r ∈ Nd by the pointwise addition, i.e.
j + r = {j1 + r1, . . . , jd + rd} and the sum

∑r
j=k xj :=∑r1

j1=k1
. . .
∑rd
jd=kd

xj1,...,jd , where k, r ∈ Nd. The multipli-
cation of an multi index with a real number is understood
pointwise, as well as the division by a multi index.

With this at hand we can now give a definition of boundary
wavelets and the Walsh functions in higher dimensions. The
approach to construct wavelets on the interval was introduced
by Cohen, Daubechies and Vial [17]. It starts with the general
Daubechies wavelets of order p. These and their scaling
function have support size 2p − 1. For the construction we
start with the MRA structure at level J0 to make sure that
the scaling function intersect at that level only with the left
or the right boundary. Then one takes the interior scaling
functions and replaces those who intersect with the boundary
by linear combinations of the original scaling functions, such
that the amount of vanishing moments is preserved as well as
smoothness properties of the original function. For the right
end of the interval the original scaling function has to be
reflected. This leads to the following sampling space in one
dimension.

V bj = span { φj,k : k = 0, . . . 2j − p− 1,

φ#j,k : k = 2j − p, . . . , 2j − 1
}

where φ# is the reflected scaling function, j ≥ J0 and φj,k
denotes the standard wavelet notation, see [17] for further
details. In higher dimensions the sampling space is obtained
by the tensor product, an overview is given in [37]. We define
V b,dj = V bj ⊗ . . . ⊗ V bj (d times), which preserves the MRA
structure. The according wavelet space is denoted by W b,d

j ,
such that the reconstruction space RN , N = 2dR can be
represented by

RN = V b,dJ0
⊕W b,d

J0
⊕ . . .⊕W b,d

R−1 = V b,dR .

For the representation of elements in V b,dR we define the sets
K0 =

{
0, . . . , 2R − p− 1

}
and K1 =

{
2R − p . . . 2R − 1

}
.

Denote the original scaling function by φ0 := φ and the
reflected scaling function by φ1 := φ#. Then every element
ϕ ∈ V b,dR can be represented by

ϕ =
∑

s∈{0,1}d

∑
k∈Ks

αkφ
s
R,k, αk ∈ C,

where
φsR,k = φs1R,k1 ⊗ . . .⊗ φ

sd
R,kd

.

The Walsh functions in higher dimensions can be rep-
resented by the tensor product of one dimensional Walsh
functions.

Definition 1 (Walsh function). Let s =
∑
i∈Z si2

i−1 with
si ∈ {0, 1} be the dyadic expansion of s ∈ R+. Analogously,
let x =

∑
i∈Z xi2

i−1 with xi ∈ {0, 1}. The generalized Walsh
functions in L2([0, 1]) are given by

Wal(s, x) = (−1)
∑

i∈Z(ni+ni+1)x−i−1 .

We extend it to functions in L2([0, 1]d) by the tensor product
for s = (sk)k=1,...,d, x = (xk)k=1,...,d

Wal(s, x) =

d⊗
k=1

Wal(sk, xk).

These functions then span the sampling space, i.e. for M =
md,m ∈ N we have

SM = span {Wal(s, ·), si = 1, . . . ,m, i = 1, . . . , d} .

Moreover, Walsh functions can be extended to negative inputs
by Wal(−s, x) = Wal(s,−x) = −Wal(s, x).

With the help of the Walsh functions we can define the
continuous Walsh transform of a function φ.

φ
∧

W

(s) = 〈φ(·),Wal(s, ·)〉 =

∫
[0,1]d

φ(x) Wal(s, x)dx, s ∈ Rd.

The Walsh function have the following very useful proper-
ties. First, they obey the scaling property, i.e. Wal(2js, x) =
Wal(s, 2jx) for all j ∈ N and s, x ∈ R. Second, the mul-
tiplicative identity holds, this means Wal(s, x) Wal(s, y) =
Wal(s, x⊕y), where ⊕ is the dyadic addition. These properties
are also easily transferred to the Walsh transform.

III. MAIN RESULT

The main result of this paper is that the stable sampling rate,
when considering Walsh samples and wavelet reconstruction,
is linear. This means that when using the methods discussed
above, one obtains results that are, up to a constant, as good
as if one could access the wavelet coefficients directly.

Theorem 1. Let S and R be the sampling and reconstruc-
tion spaces of Walsh functions and boundary wavelets in
L2([0, 1]d). If N = 2dR where R ∈ N, then for every
θ ∈ (1,∞) there exist a constant Sθ depending on θ such
that Θ(N, θ) ≤ SθN = O(N) for any θ ∈ (1,∞), i.e. the
stable sampling rate is linear.

Before showing a sketch of the proof, we will state three
Lemmas which are essential. The first one gives a relation
between the discrete Walsh transform and the original signal,
where the normalization is used slightly different to the
common literature to enable the use for Lemma 2.

Lemma 1. Let N = {Ni}i=1,...,d , Ni = 2ni , ni ∈ N, i =
1, . . . , d and x = {xk}, where xk ∈ R, k = {ki}i=1,...,d , ki =

0, . . . , Ni−1 and x ∈ RN1×...×Nd , be a discrete d-dimensional
signal. The discrete d-dimensional Walsh transform is given by
X = {Xj}, where Xj ∈ R, j = {ji}i=1,...,d , ji = 0, . . . , Ni−
1 and X ∈ RN1×...×Nd , with

Xj =
1∏d

i=1Ni

N−1∑
k=0

xk Wal(j,
k

N
).

Then,
N−1∑
j=0

|Xj |2 =
1∏d

i=1Ni

N−1∑
k=0

|xk|2



holds.

In the proof of the theorem we achieve a bound by the
scaling function under the Walsh transform and the sum over
the Walsh polynomial. The following lemma helps to estimate
the value of the Walsh polynomial and is related to a similar
result for trigonometric polynomials.

Lemma 2. Let A,B ∈ Zd such that Ai ≤ Bi, i = 1, . . . , d and
consider the Walsh polynomial Φ(z) =

∑B
j=A αj Wal(j, z). If

L = {L1, . . . , Ld} with Li = 2ni , ni ∈ N, i = 1, . . . , d such
that 2Li ≥ Bi −Ai + 1, then

2L−1∑
j=0

1∏d
i=1 2Li

∣∣∣∣Φ(
j

2L
)

∣∣∣∣2 =

B∑
j=A

|αj |2.

To be able to use the scaling property for wavelets, we have
to adjust their support. In detail this means, that we represent
the scaling function as a sum of functions that are supported
in [0, 1], i.e.

φ(x) =

p∑
i=−p+2

φi(x−i+1) with φi(x) = φ(x+i−1)X[0,1](x)

and

φR,l = 2R/2
p∑

i=−p+2

φi(2
Rx− i+ 1− l).

This can also be done accordingly for the reflected function
φ#. In the higher dimensional case we have

φ(x) = (φ1 ⊗ . . .⊗ φd)(x1, . . . , xd)

=

p∑
i=−p+2

φi1(x1 − i1 + 1) · . . . · φid(xd − i2 + 1)

=

p∑
i=−p+2

φi(x− i+ 1).

and φij defined as above. This way the multiplicative identity
holds also for the decimal time shift of the wavelets.

Next, we present the decay rate of continuous wavelets
under the Walsh transform. This is not straightforward as
the Walsh transform is analysing smoothness in the dyadic
analysis which is very different from smoothness in the
decimal analysis. Nevertheless, a large class of wavelets fulfil
this property as well.

Lemma 3. Let φ be a Daubechies scaling function of p
vanishing moments p > 1 and φi be the scaling function
multiplied by the cut off function. Then

|φi
∧

W

(k)| ≤ A∏d
i=1(1 + |ki|)

k ∈ Rd+, i = −p+2, . . . , p

for some A ∈ R+.

With this information together we can give an overview of
the proof.

Sketch of the proof. For the proof we try to bound the value
CN,M = cos(ω(RN ,SM )) = inff∈RN ,||f ||=1 ||PSM f || ≥

1− ||P⊥SMϕ||, where PSM is the orthogonal projection on the
subspace SM . Then we use the assumptions on the wavelets
to represent ϕ ∈ RN with ||ϕ|| = 1 by

ϕ =
∑

s∈{0,1}d

∑
k∈Ks

αkφ
s
R,k.

Due to the orthogonal projection we need to handle the values
〈φR,n,Wal(l, ·)〉. For this purpose we use the functions φi
defined as before. As this enables us to transfer the scaling and
shift from the wavelet over to the Walsh function. Moreover,
let l = {l1, . . . , ld} ∈ Zd and define pR : Zd → Nd with
{zi}i=1,...,d = z 7→ pR(z) = {pR(z)i}i=1,...,d and pR(z)i
be the smallest integer such that pR(z)i2

R − zi > 0 for i =
1, . . . , d. Then

〈φsi,R,n,Wal(l, ·)〉

= Wal(n+ i− 1 + 2RpR(n+ i− 1),
l

2R
)φsi

∧
W

(
l

2R
).

Define now

Φsi (z) =
∑
n∈Ks

αn Wal(n+ i− 1 + 2RpR(n+ i− 1),
z

2R
)

Then, one can estimate the parts of the orthogonal projection
by ∑
n∈Ks

αn〈φsi,R,n,Wal(l, ·)〉 = (2−R/2)dΦsi (
l

2R
)φsi

∧
W

(
l

2R
)

With M = {M1, . . . ,Md} and the set IM ={
l ∈ Nd, li ≤Mi

}
this allows to see

||P⊥SMϕ|| ≤
p∑

i=−p+2

√√√√√∑
l/∈IM

2−dR

∣∣∣∣∣∣
∑

s∈{0,1}d
Φsi (

l

2R
)φsi

∧
W

(
l

2R
)

∣∣∣∣∣∣
2

.

Now, let S ∈ N be given, such that the amount of samples
M = {M1, . . . ,Md} ∈ Nd is Mk = S2R. Then, if
l = {l1, . . . , ld} /∈ IM at least one lk > Mk. The sum is the
largest, if only one lk is fulfils this estimate. Hence, without
loss of generality let l1 > M1 and lk ≤Mk for k = 2, . . . , d.
Let now lk = jk+S2R. Then for some constant C the sumands
over s ∈ {0, 1}d can be estimated by the periodicity of the
Walsh functions and Lemma 3 by∑

l1>M1

∑
l2≤M2

. . .
∑
ld≤Md

2−dR
∣∣∣∣Φsi ( l

2R
)φsi

∧
W

(
l

2R
)

∣∣∣∣2

≤ Cd−1

(2α− 1)S2α−1

2R−1∑
j=0

1

2dR

∣∣∣∣Φsi ( j2R )

∣∣∣∣2
The last sumand can be controlled with Lemma 2 and the fact,
that ||ϕ|| = 1

2R−1∑
j=0

1

2dR

∣∣∣∣Φi( j2R )

∣∣∣∣2 ≤ 1.



All together allows to estimate

CN,M ≤ θ

for all M ≥ SN for S large enough independent of N
dependent on θ.

IV. CONCLUSION

We were able to investigate a very important part of the
error estimate for different reconstruction methods. Moreover,
we showed that binary measurements modelled by Walsh
functions are well suited to reconstruct images with wavelets.
This gives together with the results in [2], [4] provide a broad
knowledge about the accuracy and stability for two major
applications of sampling theory, i.e. systems with Fourier
samples and those with binary measurements.
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