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ABSTRACT: The phase-change material, Ge2Sb2Te5, is the canonical material ingredient for 

next-generation storage-class memory devices used in novel computing architectures, but funda-

mental questions remain regarding its atomic structure and physico-chemical properties. Here, we 

introduce a machine-learning (ML)-based interatomic potential that enables large-scale atomistic 

simulations of liquid, amorphous, and crystalline Ge2Sb2Te5 with an unprecedented combination 

of speed and density-functional theory (DFT) level of accuracy. Two applications exemplify the 

usefulness of such an ML-driven approach: we generate a 7,200-atom structural model, hitherto 

inaccessible with DFT simulations, that affords new insight into the medium-range structural 

order; and we create an ensemble of uncorrelated, smaller structures, for studies of their chemical 

bonding with statistical significance. Our work opens the way for new atomistic insights into the 

fascinating and chemically complex class of phase-change materials that are used in real non-

volatile memory devices.  
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Introduction 

The phase-change memory materials of interest in this work are chalcogenide alloys with a 

fast and reversible transition between a low electrical-conductivity amorphous phase and a meta-

stable, high-conductivity crystalline phase. The Ge-Sb-Te (GST) compound, Ge2Sb2Te5, along 

the GeTe – Sb2Te3 pseudo-binary compositional tie-line, has been the canonical phase-change 

material of this type, first optimized for optical-storage media and more recently used as a basis 

for non-volatile electronic memory (phase-change random access memory, PCRAM) and conse-

quent data-storage applications.1–3  

Computer modeling of this material, using first-principles (ab initio) molecular-dynamics 

(MD) simulations, has elucidated atomic details of the liquid, amorphous and crystalline phases, 

as well as of the amorphous-crystalline phase transition, and provided atomistic insight to guide 

the design of these materials for different applications.4–7 This approach, however, is computa-

tionally very demanding and suffers from finite-size effects due to the small system sizes that are 

tractable for DFT simulations. Even the largest DFT-driven MD simulations to date are restricted 

to model sizes below 1000 atoms in size, as run-times of several nanoseconds are required to ob-

serve crystallization in large models.8 For liquid and amorphous configurations, there is an added 

challenge of accumulating sufficient statistics from finite-sized models to ensure statistically re-

producible results. Overcoming these limitations, without reducing accuracy, has been an out-

standing challenge for the wider modeling community. 

For the simple, binary prototype phase-change material, GeTe, two types of interatomic po-

tentials have been reported. One is a modified Tersoff-type potential,9 empirically fitted and ap-

plied to study the time-dependent resistance drift in amorphous GeTe using parallel tempering.10 

The other is based on the artificial neural-network approach of Behler and Parrinello,11 which 

reaches near-DFT accuracy for the potential by “learning” directly from the quantum-mechanical 
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data obtained from a large number of configurations, calculated using DFT methods. This neural-

network potential by Sosso et al.12 was initially used to study the atom-dynamical and thermal 

properties of bulk amorphous GeTe in simulation cells containing up to 8,192 atoms.13–15 More 

recently, it was further augmented to describe surfaces and nanostructures.16 However, neither 

approach has been able to be extended, so far, to a ternary Ge−Sb−Te composition. 

The additional element compared to GeTe, namely Sb, can make a substantial difference to 

the structure and properties of the material. Despite the fact that Ge2Sb2Te5 has been the canoni-

cal composition for PCRAM devices, many unanswered questions remain about its structure in 

the liquid and amorphous phases. Additional structural insight from a statistically significant 

number of models could enhance our understanding of resistance drift in the amorphous phase 

leading to improved multilevel memory operation in devices. 

In this paper, we describe the development, validation and application of a “machine-

learned” interatomic potential for a ternary system of practical relevance: namely, the Ge2Sb2Te5 

composition, which is used both in prototype and in commercial PCRAM devices. We employ 

the Gaussian Approximation Potential (GAP) framework17–19 to fit the DFT potential-energy sur-

faces for a range of configurations, which has been successfully validated for a number of crys-

talline systems of increasing complexity20–22 and is now becoming applicable to functional mate-

rials, such as carbonaceous electrodes for battery applications.23,24 It was recently shown that the 

GAP approach can provide realistic and accurate large-scale models of amorphous solids,25,26 but 

these previous studies have been limited to elemental systems—a limitation that is overcome in 

the present study of a ternary system for the first time. Additional information about the GAP 

potential developed here for Ge2Sb2Te5, in particular the choice of combined descriptors for 

atomic environments, is provided in the Computational Details section. 
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The GAP potential for Ge2Sb2Te5 is capable of simulating amorphous models that would be 

inaccessible to cubic-scaling DFT methods. Such large models (7,200 atoms in this paper) are 

needed to probe the medium- and extended-range order of the amorphous Ge2Sb2Te5 structure, as 

they do not suffer from significant finite-size effects and they extend beyond the estimated struc-

tural correlation length of the material. This potential is able to provide statistics for meaningful 

investigations of chemical bonding through the fast generation of a database of smaller amor-

phous models and to simulate the crystallization of one of these models to the cubic phase while 

allowing the density to change at constant pressure and temperature. 

Results and Discussion 

Local Structure. Figure 1a shows images of structural models of amorphous (“a-”) 

Ge2Sb2Te5 generated using the GAP potential and produced by quenching from the melt. The 

models contain either 315 atoms (GAP315) (comparable to the maximum model size achievable 

by DFT-based simulations) or 7,200 atoms (GAP7K), the latter illustrating the capability of the 

O(N) GAP potential to create large models of this ternary phase in long MD simulations. To vali-

date the quality of our GAP-generated structures, simulated neutron and X-ray diffraction pat-

terns were calculated from the inverse Fourier transform of the radial-distribution functions 

(RDFs) and compared with previously reported experimental results.28,29 For further validation, 

we use a previously reported DFT-MD trajectory for a 315-atom model of Ge2Sb2Te5 (which had 

been obtained using a similar computational protocol, but was not part of the fitting); structural 

data for this are taken from ref. 27 and are hereafter labeled as “DFT315”. The GAP315 and DFT315 

models agree well with each other, for both the neutron (Figure 1b) and X-ray structure factors 

(Figure S6 in the Supporting Information). Furthermore, the neutron-diffraction pattern of the 

large GAP7K model shows a hint of the first sharp diffraction peak (FSDP) at Q ~ 1.1 Å−1, and 
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hence a slightly better agreement with experiment compared to smaller models.29 A FSDP has 

been observed in a similar region in both experimental and simulation studies of other amorphous 

chalcogenides, such as GeSe2 (ref. 30) and Ge15Te85 (ref. 31). It has been argued that the FSDP is 

apparent only in the neutron-diffraction pattern due to Ge being a stronger scatterer of neutrons 

than Te (and also Sb), while the reverse is true for X-rays.31 The presence of an appreciable 

FSDP only in the neutron-scattering pattern therefore provides strong evidence for the fact that 

“cation”-centered correlations are responsible for the FSDP, in accordance with the model pro-

posed by Elliott.32 The GAP7K model shows only a modest FSDP, perhaps due to the fast quench 

rate (–15 K ps–1). However, neither the DFT315 nor the GAP315 models generated with the same 

protocol show any sign of a FSDP, which indicates the importance of using a model size larger 

than the structural correlation length of a-Ge2Sb2Te5, for the investigation of the medium-range 

order in this system. From an analysis of the long-range fluctuations in the RDF of the GAP7K 

model, the correlation length of a-Ge2Sb2Te5 is estimated to be about 20 Å (Figure S5). 

As a further means of validation of the GAP potential, energy–volume equations of state 

were computed for the stable crystal structures of all relevant elemental (Ge, Sb, Te) and binary 

(GeTe, Sb2Te3) phases, as well as for layered, trigonal Ge2Sb2Te5 in the Kooi stacking se-

quence.33 Formation energies were calculated relative to the stable elemental phases at zero pres-

sure. Correctly describing the energetics of competing phases is particularly important to avoid 

unphysical phase segregation in simulations of the ternary amorphous phase. Although the poten-

tial described herein has been developed for the technologically relevant Ge2Sb2Te5 phase, our 

tests show that it does describe the constituent crystalline phases correctly as well (Figure 1c), 

indicating that it is also transferable to configurations sufficiently similar to those included in the 

training set.  
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Figure 1.  Large-scale structural modeling of a-Ge2Sb2Te5 using the GAP machine-learning 

framework and validation of the method. (a) 315-atom and 7,200-atom GAP models of amor-

phous Ge2Sb2Te5, visualized using OVITO.34 Ge atoms are blue, Sb atoms red and Te atoms yel-

low. (b) Neutron structure factors of a-Ge2Sb2Te5 from experiment, taken from ref. 29 (green), 

and calculated for various simulated models: DFT315 (black) from ref. 27, GAP315 (red) and 

GAP7K (blue). The first sharp diffraction peak (FSDP) is highlighted by arrows; it is absent in the 

small GAP315 and DFT315 models. The experimental structure factor is shifted up by 1.0, and the 

GAP7K structure factor is shifted up by 0.5, for clarity. (c) Equations of state for the crystalline 

elemental and binary constituents (in their respective ground-state structures) and for crystalline 

Ge2Se2Te5 (Kooi stacking sequence). DFT reference data are shown as points, GAP results as red 

lines; formation energies are given relative to the respective DFT energies of the stable elemental 

phases at zero pressure. 
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Figure 2.  Total radial distribution functions (RDFs) and average coordination-number histo-

grams (inset, calculated with a cut-off of 3.2 Å) for: (a) liquid; and (b) amorphous Ge2Sb2Te5 

models. Total angle-distribution functions (ADFs) and plots of the tetrahedral angular order-

parameter, q4, shown as insets for: (c) liquid; and (d) amorphous Ge2Sb2Te5 models. The different 

simulated models are DFT (black) from ref. 27, GAP315 (red) and GAP7K (blue). In the liquid 

phase, the GAP models are close to the DFT reference, while in the amorphous phase, the GAP 

models appear to be somewhat over-structured and have a slightly reduced fraction of tetrahedra. 

The local structures of the liquid and amorphous phases were analyzed for the GAP315 and 

GAP7K models. Total RDFs, coordination numbers calculated with a geometric bonding cut-off 

of 3.2 Å, and total angle-distribution functions (ADFs) are shown in Figure 2. Moreover, the dis-

tribution of the tetrahedral angular order parameter (q4),
35 calculated in the manner of ref. 36, was 

used to estimate the fraction of tetrahedral-like environments in the different models (insets to 

Figures 2c and 2d). 
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An excellent agreement is observed for the liquid phase at 1200 K of Ge2Sb2Te5 between the 

GAP models and DFT (Figures 2a and 2c). Broad and similar traces are observed for the total 

RDF and ADF of all simulated models with almost identical coordination numbers (inset of Fig-

ure 2a). The most probable coordination is 3-fold, and defective octahedral environments domi-

nate, as evidenced by the broad peak at 90° in the ADF in Figure 2c. Very similar distributions 

are obtained also for the q4 parameter of all the models (inset of Figure 2c). The proportion of 

tetrahedral-like environments in the liquid at 1200 K, as estimated from the integral of q4 be-

tween 0.8 and 1.0 for the Ge- and Sb-centered environments,37 is less than 1% for all models. 

The short-range order of the amorphous phase for the GAP models at 300 K is analyzed in 

Figures 2b and 2d. The total RDFs exhibit a very good agreement with the DFT reference. A 

preference for 3-fold coordination is observed, as in the liquid, but with fewer 2-fold and almost 

no singly-coordinated atoms. The coordination numbers given in the inset of Figure 2b have a 

reduced proportion of 2- and 3-fold coordinated atoms and an increased proportion of 4- and 5-

fold coordinated atoms for the GAP models compared to the DFT reference. There is again a 

peak in the ADF at 90°, now sharper than in the liquid. The GAP models also have a sharper 

ADF than the DFT reference, with a reduced density in the region corresponding to tetrahedral 

coordination. This suggests that the additional, relative to the DFT reference, 4- and 5-fold coor-

dinated atoms present in the GAP models are part of defective octahedra. The q4 trace given in 

the inset of Figure 2d is shifted to the right compared to the liquid for all models, revealing an 

increase of tetrahedral-like environments in the amorphous phase at 300 K compared to the liquid 

at 1200 K. The proportion of tetrahedral-like environments is smaller for the GAP315 (6–11 %) 

and GAP7K (5 %) models compared to the DFT model (22 %). However, the question is far from 

fully resolved: other DFT models estimate the fraction of tetrahedral-like atoms in amorphous 

Ge2Sb2Te5 or GeTe to be in the range 15–35 % (refs 12,37–39); furthermore, the inclusion of 
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dispersion interactions may increase the tetrahedral Ge fraction and percentage of “wrong” 

bonds,40,41 as may the use of different pseudopotential constructions.42 We stress that the GAP 

models generated in this work aim to reproduce the reference DFT structures generated at the 

same computational level,27 and appear to be only slightly over-structured compared to the latter.  

The reduced percentage of tetrahedral-like local environments can be possibly linked to a 

lack of so-called “wrong” bonds, more precisely bonds that are not present in the ideal cubic 

(rocksalt) crystal structure. These are: Ge−Ge, Ge−Sb, Sb−Sb and Te−Te bonds.43 The statistical 

scarcity of these bonds may be inferred from the reduced intensity in the first peak of the partial 

RDFs for these atom pairs in the GAP models (Figures S3–S4). In particular, the homopolar 

Ge−Ge bond is known to stabilize tetrahedral environments but not octahedral ones.44 Bonding 

defects, such as the “wrong” bonds and tetrahedral environments, were under-sampled in the 

training set, which consists of predominantly high-temperature liquid, and annealed amorphous, 

structures. Therefore, the forces that drive configurations away from the thermally unfavorable 

arrangements containing tetrahedra and “wrong” bonds could be overestimated by this GAP 

model during the MD trajectory of the non-equilibrium quench. Additional training data, such as 

an alchemical sampling of antisite configurations,45 samples from lower temperatures or higher 

pressures, as well as samples with different compositions in the ternary phase diagram, could 

further improve the potential. This will be the topic of future work. 

Medium-range order. The medium-range order of the GAP models was characterized by 

calculating the statistics of shortest-path rings, consisting of up to 27 atoms, using the Franzblau 

algorithm.46 A uniform geometric cut-off of 3.2 Å was used to define bonded pairs, and the re-

sulting network of atoms has a graph diameter (longest node-to-node path in the atomic-network 

graph) of ∼18 in the case of 315-atom models and ∼36 for the 7,200-atom models. The statistics 
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of shortest-path rings in the GAP models agree with the DFT models, as shown in Figure 3a (liq-

uid phase) and Figure 3c (amorphous phase). 

 

 

Figure 3.  (a–c) Medium-range order in Ge2Sb2Te5 as analyzed through ring statistics. The distri-

bution of shortest-path rings in liquid (panel a) and amorphous (panel c) Ge2Sb2Te5 models is 

shown for DFT (black) from ref. 27, GAP315 (red) and GAP7K (blue). Panel (b) shows a cluster of 

interconnected shortest-path rings from the GAP7K model of a-Ge2Sb2Te5, revealing the presence 

of significant alternation of A (Ge (blue), Sb (red)) and B (Te (yellow)) atoms; the shaded area 

below shows examples of shortest-path rings from the amorphous structure. (d–f) Voids in 

Ge2Sb2Te5. Distributions of void radii are shown for different liquid (panel d) and amorphous 

(panel f) Ge2Sb2Te5 models; solid lines are kernel-density estimates47,48 of the void-radius proba-

bility distributions using a Gaussian kernel, shown as an inset. Panel (e) shows the amorphous 

GAP7K model, where voids are highlighted as pink spheres of largest radius. 

In the liquid at 1200 K, very similar distributions of shortest-path rings can be observed for 

the different models. Small rings, 3−6 fold, are entropically favored and have the largest relative 
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probabilities in the equilibrium liquid phase. Rings of intermediate size, 7−12 fold, have an al-

most uniform distribution. Beyond that, for the GAP7K model, the distribution decays relatively 

slowly with ring size, revealing the existence of rings consisting of up to 27 atoms that cannot be 

observed in the smaller models but which are below the calculated graph diameter (Figure S7). 

In the amorphous phase, the GAP models capture the previously reported pattern of an in-

creased probability of even-membered rings over odd-membered rings.38,39 A cluster of intercon-

nected rings from the GAP7K model, which contains the atom present in the most rings, is shown 

in Figure 3b. There is a visible quasi-binary alternation of A (Ge, Sb) and B (Te) atoms in the 

amorphous phase, resulting from a significant statistical preference for so-called “correct”-bonds, 

namely A−B heteropolar bonds which form the ideal crystalline cubic phase, viz. Ge−Te and 

Sb−Te bonds.28,38,39 Even-membered rings can have perfect A−B alternation while odd rings 

must have at least one “wrong”-bond in their structure (either A−A or B−B). The enthalpic penal-

ty for having a “wrong”-bond is most important for the 3-fold rings and results in a drastically 

reduced population of this ring size in the amorphous phase at 300 K compared to the liquid 

phase at 1200 K. The four-fold ring is the most probable motif in the amorphous phase and is a 

building block for crystallization to the metastable cubic phase, where four-fold square rings are 

the characteristic topological unit.4,38 A reduced population of five-fold rings is observed in the 

GAP models compared to the reference DFT model which does not have a perfect odd/even ring 

alternation. However, other experimental data and some of the best available simulation work, 

including models that are larger than our current DFT reference, suggest that the probability of 

five-fold rings in the amorphous phase could be lower than the corresponding probability of both 

four- and six-fold rings and that shortest-path ring odd-even alternation is likely to be pronounced 

in a-Ge2Sb2Te5.
28,38  
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Vacancies in the crystal, and correspondingly voids in the amorphous phase, are a common 

occurrence in Ge2Sb2Te5 and play an important role in its structure, dynamics and electronic 

properties.49–52 The interplay between voids, rings and lone pairs influences the dynamics of crys-

tallization.51 In this work, voids are defined on a fine mesh with a maximal spacing of 0.3 Å using 

the Voronoi construction with a cut-off of 2.8 Å, such that there are no interstitial voids in the 

ideal cubic crystal.51 The distributions of the radii of largest spheres inside these voids for liquid 

and amorphous Ge2Sb2Te5 are shown in Figures 3d and 3f, and a snapshot of such spheres within 

the GAP7K model is presented in Figure 3e. 

Chemical Bonding. A crucial question is whether the GAP developed in this work is able to 

reproduce the complex distribution of local environments present in a-Ge2Sb2Te5.
53 Previous 

work has shown that the “fluxional” (rapidly interconverting at elevated temperature) local envi-

ronments in Ge2Sb2Te5 are intimately connected with the lone pairs present on many of the atoms 

in the system and the establishment of a bonding-energy hierarchy.27,54,55 To distinguish local 

environments, the typical geometric approach based on a bond-distance cut-off is insufficient, as 

there is no satisfactory choice that does not leave too many weak bonds outside of the coordina-

tion sphere or otherwise introduces non-bonded atoms into it. An optimal geometric cut-off, that 

minimizes the number of errors, can be inferred from charge-density information, as obtained 

from an electronic-structure calculation in several different ways.31,44 A value for this cut-off be-

tween 3.0 and 3.2 Å is typically chosen for this material. Nevertheless, whenever resources allow, 

identifying bonds directly from the charge-density information is preferable.27 

The electron-localization function (ELF) was introduced to DFT by Savin et al.56 Through 

topological analysis of the attractors in the ELF scalar field, evidence can be gathered about the 

existence of covalent bonds and lone pairs.57 The local environments revealed by this analysis are 

in agreement with valence-shell electron-pair repulsion (VSEPR) theory. DFT investigations of 

Page 13 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
14 

 

the ELF in amorphous or liquid models of materials such as Ge2Sb2Te5 require statistical averag-

ing over many configurations to adequately describe the system, which is not easily possible to 

achieve with DFT. By using the GAP first to generate and sample numerous independent liquid 

and amorphous structures at a much reduced computational cost, and then feeding these into DFT 

electronic-structure calculations, these investigations, indeed any DFT investigation that requires 

accurate structural input of this sort, can be enhanced and made more reproducible.24 Here, the 

GAP was used to generate five uncorrelated a-Ge2Sb2Te5 315-atom structural models, which is 

easily possible as simulation with the GAP is two orders of magnitude faster than for DFT for an 

equivalent MD protocol at this system size. Amorphous GAP models were cooled down to 0 K 

and had their geometry optimized with the GAP before they were fed into DFT calculations for 

subsequent ELF analysis and comparison with previous results from DFT-sampled structures.27 

Figure 4a reports the coordination numbers obtained by imposing a cut-off for the minimum ELF 

value in a basin between two atoms (minr η(r) < ηcut). Coordination numbers for the GAP mod-

els, as obtained from the ELF analysis, correspond well with those of the reference DFT model: 

three- or four-fold coordination is the favorable arrangement for Ge local environments, while 

three-fold coordinated environments are the most probable for Sb and Te atoms. Compared to the 

typical bond-length cut-off analysis, the ELF discrimination removes unphysical local environ-

ments. Figure 4b shows the observed majority of bonding geometries for Ge in the GAP models, 

which agree very well with the reported structural units from DFT calculations.28,29,37,38 In partic-

ular, 4-fold coordinated environments, such as the tetrahedral and see-saw structures, can be dis-

tinguished in the amorphous structure of Ge2Sb2Te5. The latter defective-octahedral geometry 

involves two long axial and two short equatorial bonds, whose characteristics are successfully 

reproduced by the GAP models; for instance, the bond lengths for axial and equatorial bonds are 
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2.94−3.04 Å and 2.80−2.82 Å, respectively. Compared to these, the tetrahedral bond length is 

much shorter, at 2.62−2.67 Å, again in agreement with the DFT study.27  

 

 

Figure 4.  (a) Coordination-number histograms obtained from an ELF analysis for Ge, Sb and Te 

atoms. Shown in black are results from DFT simulation, from ref. 27, and in red are the averaged 

results from five different 315-atom fully quenched amorphous models generated with GAP; er-

ror bars reveal a small model-to-model variation. Representative local environments of Ge (in 

blue) surrounded by Te atoms (in yellow) are given in (b); these are present in both the DFT 

model as well as in the five different GAP models of amorphous Ge2Sb2Te5. To highlight the 

presence of lone pairs, an ELF isosurface (mauve) with values in the range 0.85−0.9 is shown for 

appropriate configurations. 

Crystallization. Equally important is the ability of the potential to capture the fast transition 

of a-Ge2Sb2Te5 to the metastable cubic phase during annealing. In order to investigate this, one of 

the 315-atom GAP models of a-Ge2Sb2Te5, generated for the ELF analysis, was slowly heated 

(15 K ps-1) and then annealed at 600 K, at constant zero pressure, for up to 800 ps to study crys-

tallization to the metastable cubic phase. The transformation was monitored by a Fourier analysis 

of the density fluctuations.4 Furthermore, to quantify the increase in chemical and topological 

order, the number of 4-fold shortest-path rings with quasi-binary AB alternation was calculated 

during the trajectory and normalized against the expected number of rings in an ideal crystal. 

Results are summarized in Figure 5 and reveal the capability of the GAP to capture the crystalli-
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zation of a-Ge2Sb2Te5. By allowing the volume to change during the simulation, finite-size ef-

fects are partially mitigated. Details of the resulting density changes during the crystallization 

anneal are provided in the SI (Figure S9). The crystallization of additional models including larg-

er ones needs to be carried out in order to compare quantitatively with experiment and this will be 

the focus of future work. 

 

 

Figure 5.  Evolution during a 600 K constant-pressure anneal of one of the GAP 315-atom a-

Ge2Sb2Te5 models. (a) The second largest component of the 3D Fourier transform of the atomic 

density is shown in black (y-axis on the left), while the ratio of the number of shortest-path four-

fold rings with AB alternation, NAB, over the number in the ideal cubic crystal is shown in red (y-

axis on the right). The structures with the minimal and maximal four-fold ring order are marked 

with red circles on the corresponding order-parameter line and images of these structures are dis-

played as insets. (b) Potential energy predicted by the GAP. The structure becomes more chemi-

cally and topologically ordered during the anneal, while the energy decreases. Solid lines are lo-

cally weighted smoothing traces,58 while the raw data are shown with a slight transparency. 
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Conclusions 

The GAP machine-learning framework has been used to fit, for the first time, the potential-

energy surface of the ternary Ge2Sb2Te5 phase-change memory material. This is a significant 

milestone toward the routine and realistic modeling of chemically complex functional materials. 

Structural models of liquid and amorphous Ge2Sb2Te5 obtained from GAP-MD agree well with 

DFT-MD simulations and with experimental diffraction data. The GAP model with 7,200 atoms 

begins to capture the first-sharp diffraction peak in the neutron-diffraction pattern, which is not 

visible in the simulated patterns for smaller models. This reveals the necessity for generating 

large-scale structures to investigate the medium- and extended-range order of amorphous 

Ge2Sb2Te5—which are currently out of reach for DFT, but readily within reach for GAP. We also 

generated several uncorrelated, 315-atom models of a-Ge2Sb2Te5 and analyzed their bonding 

nature. By such studies, GAP can be used to enhance statistical reproducibility by rapidly gener-

ating databases of small structural models that can then be used for advanced electronic-structure 

calculations. Finally, GAP-MD captures the crystallization of the amorphous phase, including the 

change in density. Future directions of this work include the study of dynamical and thermal 

properties of the supercooled liquid and amorphous phases of Ge2Sb2Te5, surfaces and superlat-

tices (through suitable extensions of the “training” database), and the application of the concepts 

developed here to GST phase-change materials with different chemical compositions. 

Computational Details 

Sampling and Evaluation. The GAP interatomic potential for Ge2Sb2Te5 is fitted to a refer-

ence database of DFT data, for which appropriate sampling of structures and local atomic envi-

ronments is crucial. The most important part of the reference structures was collected from DFT-

MD trajectories for Ge2Sb2Te5 in the liquid, amorphous and partially crystallized states (Support-

ing Information); for this task, we used the projector augmented-wave method59 as implemented 
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in VASP60,61 with settings as in ref. 27. Additionally, reference structures were added from sever-

al iterations of Monte Carlo sampling for the primitive unit cells of six stable compositions in the 

ternary phase diagram (cf. Figure 1c), so as to correct the chemical-potential dependence and to 

prevent non-physical phase separation (or demixing) at low temperatures.  

Single-point energy, force, and virial stress data were then calculated for representative 

structures in the database, again using VASP,60,61 but employing much more stringent and well-

converged settings (e.g. a plane-wave cutoff of 600 eV and a k-point density of 0.016 Å–1) than 

what would, or could, be used in a typical DFT-MD simulation (often, these use a < 300 eV cut-

off, and only a single k-point). We found such high accuracy to be important to minimize noise in 

the training input and to ensure accurate forces and stresses.  

Training. The interatomic potential was generated using the GAP ML framework17,18 as im-

plemented in QUIP (http://www.libatoms.org); the general approach has been reviewed in ref. 19. 

To prevent non-physical clustering of atoms at a high temperature, we use, akin to ref. 62, a line-

ar combination of two descriptors for the atomic structure: a non-parametric two-body term and 

the Smooth Overlap of Atomic Positions (SOAP).18 The Supporting Information provides further 

details on the composition of the reference database and the specific program input used for the 

fit. 

GAP-Driven MD. Once the GAP was finalized, it was used for model-generation simula-

tions as follows. GAP-MD simulations were carried out with the LAMMPS code,63 which is di-

rectly interfaced to QUIP and freely available at http://lammps.sandia.gov. The melt-and-quench 

protocol, used both for DFT-MD and GAP-MD, is illustrated in Figure S1; canonical ensemble 

(NVT) MD simulations were performed in a cubic box with periodic boundary conditions at the 

experimental amorphous density of 5.88 g cm–3 (refs. 64, 65). This protocol is consistent with the 

one used for the DFT reference data from our previous work.27 The timestep was 1 fs. Further-

more, GAP-MD annealing simulations of crystallization (cf. Figure 5) were carried out in an iso-

baric-isothermal (NPT) ensemble to allow the volume to change naturally during crystallization. 

The density increased from 5.88 g cm−3 at the start of the anneal to around 6.15 g cm−3 for the 

configuration with the maximum crystallinity (FFT) order parameter. This is in reasonable 

agreement with the experimental density of the metastable cubic crystal phase of about 6.3 g 

cm−3.64,65  
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