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Abstract

Lymphoblastoid cell lines (LCLs) are commonly used in molecular genetics, supplying DNA for the HapMap and 1000
Genomes Projects, used to test chemotherapeutic agents, and informing the basis of a number of population genetics
studies of gene expression. The process of transforming human B cells into LCLs requires the presence of Epstein-Barr virus
(EBV), a double-stranded DNA virus which through B-cell immortalisation maintains an episomal virus genome in every cell
of an LCL at variable copy numbers. Previous studies have reported that EBV alters host-gene expression and EBV copy
number may be under host genetic control. We performed a genome-wide association study of EBV genome copy number
in LCLs and found the phenotype to be highly heritable, although no individual SNPs achieved a significant association with
EBV copy number. The expression of two host genes (CXCL16 and AGL) was positively correlated and expression of ADARB2
was negatively correlated with EBV copy number in a genotype-independent manner. This study shows an association
between EBV copy number and the gene expression profile of LCLs, and suggests that EBV copy number should be
considered as a covariate in future studies of host gene expression in LCLs.
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Introduction

Epstein-Barr virus (EBV) is a ubiquitous human gammaherpes-

virus. Following primary infection EBV establishes lifelong

persistent infection through latent infection of memory B cells

where the virus genome is transcriptionally silent [1,2]. Reactiva-

tion from latency is required for the production of infectious EBV,

with such lytic EBV replication being under the control of host

and virus factors. In particular, terminal differentiation of memory

B cells into plasma cells can lead to EBV lytic reactivation [3]. The

mechanisms of host induction of EBV lytic replication are

incompletely understood, but periodic shedding of EBV in saliva

[4] and variation in saliva virus load between people [5] suggest

host genetic variation may contribute to EBV lytic cycle induction.

Lymphoblastoid cell lines (LCLs) are human B cells immortalised

in vitro by EBV and are a useful model of latent infection of B

cells. Previous studies on LCLs have shown that when multiple

LCLs are derived from the same individual, inter-individual

variation in EBV copy number in LCLs is greater than intra-

individual variation [6]. A study of the impact of EBV copy

number on the gene expression profiles of 198 HapMap LCLs

reported that expression of 125 human genes was significantly

correlated with EBV copy number [7]. A comparison of Epstein-

Barr virus copy number in 62 adult and paediatric LCLs found

considerable inter-individual variation in EBV copy number that

correlated with expression of immediate-early viral lytic genes

BRLF1 and BZLF1, suggesting that spontaneous lytic reactivation

is the cause of high EBV genome copy numbers in a subset of

LCLs. After the addition of acyclovir, a drug which inhibits viral

reactivation, Davies et al. showed EBV genome copy numbers fall

in LCLs, and return to previous high levels after the removal of

acyclovir [8]. This suggests that spontaneous lytic reactivation may

be under the control of cell-intrinsic factors. When the viral gene

expression profiles of LCLs were compared, using RNAseq data

from multiple experiments from different laboratories, Arvey et al.
[9] reported two major EBV gene expression profiles: latency type

III and a lytic pattern of expression. There is evidence of both

BZLF1 expression and virus particle production in some LCLs

[10]. We have therefore hypothesised that high EBV copy number

in LCLs is the result of poor host cell control of the EBV latent-

lytic cycle switch, and may be under the control of host genetic

factors.
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Genome-wide association studies have been successfully used to

identify the host genes involved in the pathogenesis of infectious

disease [11,12,13,14,15]. Two genome-wide association studies of

genetic control of antibodies to herpesviruses have been

performed. A study of EBV antibody titres in ,2000 individuals

identified 15 loci exceeding genome-wide significance associated

with either the quantitative or discrete trait of antibody titre [16].

By contrast, a similarly-sized study of cytomegalovirus (CMV)

antibody response, a betaherpesvirus which also establishes

lifelong latent infection in humans, did not find any genome-wide

significant associations [17]. Other studies of host genetic response

to herpesvirus infection and lytic reactivation have been limited to

family linkage [18] and candidate gene [19] studies of herpes

simplex virus-induced disease, and small studies of susceptibility to

infection of chickens with an avian herpesvirus, Marek’s disease

virus [20,21]. As yet, there have been no attempts to characterise

common human genetic polymorphisms associated with cell-

intrinsic response to EBV infection.

Here we describe a study to identify human genetic variants

associated with Epstein-Barr virus genome copy number in the

HapMap [22] and 1000 Genomes [23] LCLs, incorporating

sequencing and genotyping data from the HapMap and 1000

Genomes projects. We also investigate differences in gene

expression associated with EBV genome copy number using

publicly available gene expression data for a subset of the HapMap

3 samples [24].

Results

Relative EBV copy number in LCLs and
between-population comparisons

We determined the relative EBV genome copy number for 915

LCLs from the HapMap and 1000 Genomes populations using

quantitative PCR (qPCR). The qPCR assay had an 8 log10

dynamic range from 16109 to 16102 copies/reaction (Figure S1)

and an analytical sensitivity of 100 copies/reaction. The PCR

efficiency was 99.4%. The samples assayed included individuals

from 12 populations (Table 1); and EBV copy numbers of all

samples were within the dynamic ranged of the qPCR. Across all

populations the mean relative (to single copy host gene) EBV copy

number per LCL is 23.36 with a range of 16.07–29.02 (SD62.03),

corresponding to an absolute range of 1 copy per cell to 350 copies

per cell (Figure 1 A). We examined the trait of EBV copy number

in different populations (Figure 1 B), and found significant

differences in the mean EBV copy number between the

populations (ANOVA p,2.2610216). Interestingly, apparently

similar ethnic groups in different geographical areas have different

mean EBV genome copy numbers. The Denver Han Chinese

(CHD) and Beijing Han Chinese (CHB) populations have

statistically significantly different means (difference = 23.23, 95%

CI 24.34–22.12), p = 1.1761028), although the CHB and

Japanese from Tokyo (JPT) do not differ from one another

significantly. Some European ancestry populations also differ from

one another in their mean EBV copy number: Toscani from Italy

(TSI) differ from CEU (European ancestry in Utah, USA)

(difference = 21.63, 95% CI 22.52–20.74, p = 261027).

Association testing
Using the entire sample set we performed a genome wide

association study for common host genetic variants associated with

LCL EBV copy number. To determine if the EBV that

immortalised the LCLs was the laboratory strain B95.8 rather

than outgrowth of spontaneous LCLs with wild type EBV we

assembled the EBV genomes from 77 CEU and YRI LCLs. We

looked for the presence of the deletion specific for the B95.8

genome, which was present in every LCL studied. The frequency

of spontaneous LCLs containing wild type EBV, and/or LCLs

immortalised with B95.8 and co-infected with wild type EBV, is

therefore less than 1 in 77.

After sample-level quality control, genome-wide sequence and

genotype data were available for 899 samples from the 1000

Genomes Phase I and HapMap Phase III consensus releases.

Mixed-effects modelling [25] was used to test each variant

individually for association with EBV copy number in LCLs.

Samples without full human genome sequence data were imputed

using 1000 Genomes information [26]. Variants were taken

forward to association analysis if they were observed to vary in all

12 populations studied with a frequency of .1% and a minimum

imputation quality of 0.9. This created a set of 1.66106 SNPs in

common between the samples. The sample size of phenotyped

LCLs with genotype or whole genome sequence information

available is 899 individuals, including 798 unrelated individuals,

once offspring of 101 trios were removed. The statistical power of

Table 1. Samples used in this study.

Population code Population description* N (samples) N (trios) N (duos)

ASW People with African Ancestry in the Southwest United States 89 13 21

CEU Utah residents with ancestry from Northern and Western Europe 84 27

CHB Han Chinese in Beijing, China 44

CHD Han Chinese in Denver, Colorado 55

GIH Gujarati Indians in Houston, Texas 90 1

IBS Iberian Populations in Spain 99 1

JPT Japanese in Tokyo, Japan 44

LWK Luhya in Webuye, Kenya 5

MKK Maasai in Kinyawa, Kenya 140 21 5

MXL People with Mexican Ancestry in Los Angeles, California 92 24

TSI Toscani in Italia 67

YRI Yoruba in Ibadan, Nigeria 90 30

*Population names from 1000 Genomes [48] and HapMap [22].
doi:10.1371/journal.pone.0108384.t001
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the study to detect a variant explaining a given proportion of the

total trait variance was calculated using GWApower [27]. Our

study had an 80% power to detect a variant explaining 4.7% of the

total variance in relative EBV copy number. The overall

distribution of P values showed little evidence of genomic inflation

(l= 0.98), consistent with the null hypothesis and suggesting that

mixed-effects modelling was able to correct for high familial

relatedness and population structure (Figure 2 A and B).

We estimated the proportion of variance in EBV copy number

within the dataset explained by the set of ,1.6 million common

genetic variants using GCTA, in 677 unrelated individuals to be

0.65 (SE 60.38; p = 0.04). We also calculated the heritability of

EBV copy number in 101 trios present within the 1000 Genomes

dataset, where EBV copy number was available for all trio

members. The parental mid-point EBV copy number was

regressed against the offspring EBV copy number, giving a

heritability estimate of 34% (SE 611, p = 0.0028).

No variants passed the genome-wide significance threshold (P,

561028, Figure 2 A), although 98 SNPs achieved a genome wide

significance of ,161025 and are suggestive of a possible

association (Table S2 in File S1). Of these the top SNP,

rs10959089 (P = 1.1761026, beta = 0.52 for the minor C allele),

was located in the first intron of the gene PTPRD (protein tyrosine

phosphatase receptor delta) (Figure 2 C).

Association testing of variants implicated in EBV
infection, immune response and disease by previous
studies

48 SNPs and small structural variants have been previously

reported to influence EBV traits such as acquisition risk, antibody

response, or EBV-positive disease risk. 28 of these SNPs were

included in our association study (Table 2). Two SNPs had P

values of nominal significance (rs2516049, p = 0.01; rs1052536,

p = 0.03). It is therefore not possible to link these variants to the

phenotype of relative EBV copy number in LCLs.

Epstein-Barr virus gene copy number, host gene
expression and eQTL analysis in LCLs

Microarray gene expression data was available for 466

unrelated individuals from 8 populations [24]. A linear regression

was performed for these individuals between 21,800 gene

transcripts and EBV genome copy number. A statistically

significant positive correlation was found between EBV relative

copy number and the expression levels of two genes: CXCL16
(chemokine (C-X-C motif) ligand 16) and AGL (amylo-alpha-1, 6-

glucosidase, 4-alpha-glucanotransferase), and a statistically signif-

icant negative correlation between EBV relative copy number and

ADARB2 (adenosine deaminase, RNA-specific, B2) expression

(Figure 3; Table 3). Transcripts with suggestive P values (P.

561023) are included in Table S3 in File S1. Evidence for the

effect of EBV genome copy number on eQTL results was not

observed for any of these genes; the correlation did not occur in a

genotype-dependent manner. QTL mapping using EBV as a

phenotype did not reveal any statistically significant SNPs located

in or near these genes.

Discussion

This is the largest study to investigate the impact of host genetic

factors on Epstein-Barr virus genome copy number in lympho-

blastoid cell lines. As inhibitors of the EBV lytic cycle effectively

reduce EBV copy number in LCLs this suggests the higher copy

numbers are the result of lytic replication induction [8]. Our study

therefore also represents a proxy phenotype for the spontaneous

switch from latent to lytic EBV replication in LCLs. We identified

the EBV strain infecting a sample of the LCLs, quantified relative

EBV genome copy number in 915 LCLs from the HapMap and

1000 Genomes study, performed a genome-wide association study

of EBV genome copy number, estimated the heritability of EBV

genome copy number in parent-offspring trios, and examined the

relationship between EBV genome copy number and human gene

expression in a subset of LCLs.

Figure 1. Distribution of relative EBV copy number in LCLs
from 12 populations. A. Relative EBV copy number in 915 LCLs from
12 populations, including 97 parent-offspring trios. Range 16.07–29.02,
mean 23.36 (SD62.03). The data are not normally distributed (Shapiro-
Wilk: W = 0.977, p-value = 2.086211). B. Box and whisker plots showing
the range (dotted lines), interquartile range (coloured boxes) and mean
relative EBV copy number (central vertical lines) for the 12 populations
included in this analysis.
doi:10.1371/journal.pone.0108384.g001
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Using high-coverage sequence data from the 1000 Genomes

Pilot project for 77 CEU and YRI LCLs, we estimate that the rate

of LCLs containing wild-type or non-B-95.8-strain EBV is less

than 1 in 77. This is consistent with the findings of Santpere and

colleagues [25], who detected unambiguous evidence of EBV co-

infection or wild-type infection in 10 out of 929 LCLs from the

1000 Genomes Project dataset. These 10 LCLs were not included

in our analysis, therefore competition between viral strains was

unlikely to be a factor influencing copy number in our study.

Our results, of relative EBV copy number varying between

individuals, and within and between populations are consistent

with previous studies [6,8] of LCLs of unreported ancestry, where

EBV genome copy number was a trait that varied more

significantly between LCLs than between different passages or

sub-cultures of the same LCL. Davies et al. [8] suggest that the

variation in EBV copy number is controlled by cell-intrinsic

factors. In our analysis, it remained unclear whether genetic or

cell-intrinsic factors caused the differences in mean EBV copy

number between the Denver Han Chinese (CHD) and Beijing

Han Chinese (CHB) populations. While it has been noted that the

CHD LCLs grow more slowly than the Asian (ASN) LCLs (which

include the CHB LCLs) [28], another study [29] found no

statistically significant relationship between LCL growth rate and

EBV copy number. We conclude that although cell intrinsic

factors are still the most plausible explanation, multiple genetic

variants, each with a small effect of EBV copy number, also likely

play a role.

The strongest association signal in the genome-wide association

study was an intronic SNP, located in gene PTPRD. PTPRD
functions in cellular signalling, is located on the cell surface, and

has been identified as a tumour suppressor. Mutations within

PTPRD have been associated with several cancers: glioblastoma

multiforme and head and neck squamous cell carcinomas [30],

and clear cell renal carcinoma [31]. The paralogous gene PTPRK
(protein tyrosine phosphatase receptor kappa) interacts with EBV.

When PTPRK is over-expressed in EBV-infected Hodgkin

lymphoma cells, survival of these cells decreases; when PTPRK
expression is knocked down by RNAi, survival increases;

suggesting a role for PTPRK in tumour suppression. The EBV

gene EBNA1 targets Smad2, a protein that regulates PTPRK
expression. By decreasing the half-life of Smad2, PTPRK is down-

regulated in turn [32]. PTPRC (protein tyrosine phosphatase

receptor C) has recently been associated with herpes simplex

encephalitis susceptibility in mice [33]. Therefore although not

genome wide significant, polymorphisms in PTPRD are in a

biologically plausible gene.

Changes in the relative EBV copy number of LCLs have an

impact on the gene expression profiles of those LCLs in a

genotype-independent manner. Our analysis of genes differentially

expressed between LCLs identified three genes whose expression

positively (CXCL16 and AGL) or negatively (ADARB2) correlated

with relative EBV copy number. CXCL16 is regulated by the

microRNA CMVmiR-M23-2 of another human herpesvirus,

CMV [34]. Reptar [35] predicts that CXCL16 is targeted by

seven EBV microRNAs (ebv-miR-BART17-5p, ebv-miR-

BART21-3p, ebv-miR-BART21-5p, ebv-miR-BART22, ebv-

miR-BART3*, ebv-miR-BART5* and ebv-miR-BART7). It is

also interesting to note that CXCL16 is a chemokine which has

recently been associated with disease activity in multiple sclerosis

[36] and mouse models of experimental autoimmune encephalo-

myelitis [37]. EBV microRNAs are also predicted to interact with

AGL and ADARB2 [35]. It is likely that in a larger sample of

LCLs, further genes would show significant correlations with

relative EBV copy number. It is therefore important to control for

the effects of EBV copy number in gene expression studies utilising

large samples of LCLs. Other studies of the impact of EBV on the

gene expression patterns of LCLs include a study by Choy et al.,
which reported that ,15% of genes to have at least 5% of their

variance correlated with EBV copy number [7].

In a study of semi-quantitative antibody response to EBV gene

EBNA1, Rubicz et al. [38] were able to identify 15 SNPs which

were associated with EBV antibody response at genome-wide

significant level. In contrast, Kuparinen et al. [17] performed a

GWAS for CMV antibody response and did not identify any

genome-wide significant SNPs. It is possible that a different genetic

architecture underlies the host response to control of EBV copy

number in LCLs than that of EBV antibody response. Additionally

Figure 2. Manhattan plots of the association between EBV copy
number and human genetic variants in LCLs. A. Results of the
stage 2 GWAS of relative EBV copy number in 899 LCLs, derived from 12
populations. In total, ,1.6 M SNPs, polymorphic in every population
studied, were analysed using FaST-LMM. Each point represents a SNP.
There were no SNPs with genome-wide significant p-values after
correction for multiple testing. B. QQ plot showing the distribution of
observed test statistics plotted against the expected (null) distribution
(red line). The SNPs which fall below the red line suggest that the GWAS
may be losing power to detect SNPs associated with EBV copy number.
C. The strongest signal is located within an intron of protein tyrosine
phosphatase receptor delta (PTPRD), SNP rs10959089 (p = 1.17610-6).
Plot C made with LocusZoom [56].
doi:10.1371/journal.pone.0108384.g002
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all of the genes associated with the EBV antibody response were

within the HLA system, a region of the genome this study was not

well-powered to interrogate given the differences in HLA allele

frequencies between populations and our criteria that a variant

must be present in all 12 populations studied for SNP inclusion.

Our finding that the 1.6 M SNPs studied in this GWAS could

collectively explain 65% (se = 38%) of the variance in relative EBV

copy number, while no single SNP reached genome-wide

significance, suggests that many variants of small effect play a

collective role within LCLs. Similarly, GWAS of genetic resistance

to HIV-1 infection [15] could not find any common variants (with

the exception of CCR5-delta 32) which were protective, while

GWAS of host control of HIV-1 viral load found a number of

genome-wide significant loci associated with lower HIV-1 viral

load set points and slower progression to AIDS [12,39]. The

power to identify host genetic variation of virus infection traits may

greatly depend on the trait under study and the sample sizes.

We estimated the heritability of relative EBV copy number,

based on data from 101 parent-child trios to be 34% (se 611%,

p = 0.003). Other studies have found EBV anti-EBNA1 antibody

response to be 68% heritable when considered as a discrete trait

(seropositive versus seronegative) [38] and discrete anti-VCA IgG

antibody response to be 32–48% heritable [40]. Infectious

mononucleosis concordance rates in twins were estimated to be

12% between monozygotic twins and 6% between dizygotic twins

[41]. Therefore, host genetic factors appear to play a variable but

significant role in symptomatic response to primary EBV infection,

the adaptive immune response to EBV latency, and the cell-

intrinsic control of EBV latency although none of the variants

previously identified were significantly associated with EBV copy

number in our analysis.

This study has established that relative EBV copy number

within LCLs is very much a complex trait, which has a significant

heritable component. Our results suggest that many genetic

variants of effect size less than 4.7% of variance in relative EBV

copy number exist, but which this study was not statistically

powered to detect. This study also focused on 1.6 million single

nucleotide polymorphisms which were common to every popula-

tion studied. Because SNPs which did not vary in all 12

populations studied were excluded from this analysis due to

potential population stratification, we cannot rule out the effect on

relative EBV copy number of SNPs which were only variable in a

subset of the populations studied. We also cannot exclude the

effects of rare variants of large effect on relative EBV copy number

in LCLs, as these were not studied here. It is also possible that

structural variants which are poorly tagged by common SNPs may

play a role. To identify the genetic factors that underpin EBV copy

number, a significant increase in sample size is necessary that will

become possible within on-going large-scale sequencing and

genotyping projects. However, we do find that even in a relatively

modest sample size, EBV copy number is correlated with LCL

host-gene expression patterns, in a host genotype-independent

manner. Studies using larger samples of LCLs to study host gene

expression profiles may find EBV-associated changes in LCLs

Figure 3. Association between EBV copy number and human gene expression in LCLs. Manhattan plot showing the correlation between
expression levels of 21,800 individual gene transcripts from microarray data and EBV copy number.
doi:10.1371/journal.pone.0108384.g003

Table 3. Gene transcripts associated with relative EBV copy number with P,361025.

Gene Array_tag Chr Beta SE P value

CXCL16 ILMN_1672278 17 0.114 0.019 2.461029

AGL ILMN_1680343 1 0.039 0.007 9.361028

ADARB2 ILMN_1749493 10 20.042 0.009 2.361026

doi:10.1371/journal.pone.0108384.t003
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generate false-positive results, unless EBV copy number is

controlled for.

Methods

Ethics
No primary human tissue was used in this study. Details of this

project were sent to the Coriell Cell Repository to be passed on the

relevant Community Advisory Groups for HapMap participants.

Samples
Separated from peripheral blood as part of the HapMap and

1000 Genomes Projects, LCLs and LCL-derived DNA were

provided to Wellcome Trust Sanger Institute by the Coriell Cell

Repository. DNA from 915 HapMap lymphoblastoid cell lines was

obtained from Coriell Institute for Medical Research, representing

12 populations. A summary of the composition of the sample

group that provided the LCLs is provided in Table 1. Cell line

BCBL-1 was used as a calibrator for quantitative PCR. It is a

Kaposi Sarcoma Herpesvirus-positive, EBV-negative body cavity-

derived primary effusion lymphoma cell line, of B cell origin [42].

Quantification of relative EBV copy number per cell
Quantification of relative EBV copy number was performed

using quantitative PCR (qPCR). An artificial gene (GeneArt, Life

Technologies) was designed based on the EBV BALF5 sequence

for use as a positive control in qPCR, but containing an artificially

inserted sequence to distinguish it from wild-type BALF5, with the

sequence: CCCTGTTTATCCGATGGAATGACGGCGCATTTC-
TCGTGCGTGTACACCGTCTCGAGTATGACTGGTTCCAATT-
GACAAGCTGGGTCGTAGACATGGAAGTCCAGAGGGCTTC-
CG. Quantitative PCR was performed on an Agilent MxPro 3005

machine using the QuantiTect Multiplex PCR NoROX Kit

(Qiagen). The PCR reagents were: 2.5 ml nuclease-free water

(Qiagen), 12.5 ml QuantiTect Multiplex PCR No ROX mastermix

(Qiagen), 2 ml BALF5 primer mix (10 pmol/ml of each primer and

0.75 pmol/ml probe [43]), 2 ml GAPDH primer mix (2.5 pmol/ml

of each primer and 2 pmol/ml probe [44]), 1 ml ROX (diluted 1:10

in 10 mM Tris-HCL (Life Technologies)), and 5 ml template DNA

or positive control. EBV qPCR primer and probe sequences were

from Kimura, 1999 [43]. GAPDH primer and probe sequences

were from Pardieu, 2010 [44]. PCR conditions were as follows:

95uC for 15 minutes, followed by 45 cycles of 94uC for 60 seconds,

57uC for 30 seconds and 72uC for 30 seconds. Fluorescence data

was collected during the annealing step.

The 22DDCT method [45] was used for relative quantification

of target gene abundance (target gene BALF5, endogenous control

gene GAPDH). Gene copy numbers in LCLs were normalised

against the BCBL-1 cell line [46]. Data analysis was performed

using MXPro v4.10 qPCR software (Agilent Technologies).

Heritability analysis
Within the individuals with relative EBV copy number data

available, there were 101 trios with EBV copy number informa-

tion available for mother, father and offspring. The family

structure was taken from the 1000 Genomes pedigree files. They

were drawn from four populations - CEU, IBS, MXL and YRI.

The mid-parental average for the phenotype (relative EBV copy

number) was calculated and the child’s phenotype regressed

against the mid-parental phenotype. The regression gives an

estimate of narrow sense heritability of the trait and its associated P

value.

Genotyping
899 samples have been sequenced or genotyped using three

different platforms. For 355 samples, sequencing data was

available from the 1000 Genomes Project Phase 1 release

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results

/integrated_call_sets/); for 313 samples, genotypes was available

from the 1000 Genomes Project Illumina HumanOmni2.5–Quad

v1-0 B_SNP data release (ftp://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/technical/working/20120131_omni_genotypes_and_intensities/

); and for 231 samples, genotypes were available from the HapMap

Phase III consensus release (ftp://ftp.ncbi.nlm.nih.gov/hapmap/

genotypes/2009-01_phaseIII/plink_format/). Where multiple sourc-

es of genotyping or sequencing data were available for a sample, 1000

Genomes Phase I sequence data was used in preference to other

sources, followed by Illumina 2.5 M Omni genotypes, and finally

HapMap Phase III genotypes. Briefly, quality control for SNP and

sample inclusion was as follows: Hardy-Weinberg equilibrium P
value of .161026; minor allele frequency of .1%; SNP call rate of

.95%; and a sample call rate of .95%. Monomorphic SNPs were

excluded. All quality control was performed using PLINK [47].

Imputation and association testing
The statistical power to identify a genetic variant was calculated

using GWApower [27]. Imputation of genotyped samples to 1000

Genomes Phase 1 was performed using IMPUTE2 [26]. This

increased the number of SNPs in common between the samples

from 600,000 to 37 million. These imputed variants were then

subjected to quality control in PLINK [47], namely removing:

SNPs where Hardy-Weinburg equilibrium was P,161025 in at

least one of the 1000 Genomes populations (n = 8,754,733); SNPs

which were monomorphic among phenotyped samples

(n = 8,689,910); SNP with a missingness .0.01 (n = 9,808,778)

and all SNPs with MAF ,0.01 (n = 16,881,983). SNPs which were

called discordantly in samples where sequencing and genotyping

information were both available were excluded from further

analysis. As EBV copy number varies significantly between

different populations, we performed additional QC in order to

account for potential stratification in the association analysis:

removing any SNP if HWE P,0.01 in two or more populations,

and removing any SNP that was monomorphic in at least one of

the populations. This left a final set of 1,595,489 SNPs which were

polymorphic in every population studied. Association analysis was

performed using a linear mixed model implemented in FaST-

LMM-Select [25].

Transcriptional profiles
Microarray expression data from Stranger et al. [24] (‘‘RE-

DUCED’’ dataset) was obtained for 466 unrelated individuals with

relative EBV copy numbers. Expression data is available on

http://www.ebi.ac.uk/arrayexpress/(Series Accession Number E-

MTAB-264 and E-MTAB-198.processed.1). For each individual,

correlation between expression levels of individual gene transcripts

and EBV copy number was determined via linear regression. P-

values of correlation with EBV copy number were obtained for

each gene transcript (21,800 in total). Transcripts with p-value

lower than 561026 were considered significantly correlated with

EBV copy number. Transcripts were mapped back to the genes

they correspond to according to the array design file (‘‘A-MEXP-

930.adf.txt’’) available on http://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-264/
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eQTL analysis
Effect of EBV relative copy number on the identification of

expression quantitative loci (eQTLs) was tested in PLINK via

linear association model with or without EBV copy number used

as a covariate. Expression data included normalized log2

quantitative gene expression measurements for the 21,800 probes

(18,226 unique autosomal genes) from 466 unrelated individuals of

HapMap Phase III assayed on the Illumina Sentrix Human-6

Expression BeadChip [24]. SNP genotypes were as described for

the QTL analysis. SNPs within a 2 Mb window around a gene

locus were defined as eQTLs. Correction for population structure

was performed using principal component analysis (PCA).

Difference in effect sizes of eQTLs identified in the two association

studies (with or without EBV copy number as a covariate) was

determined via paired t-test across all tested SNPs (1.6 million).

Resulting p-values of the difference in effect sizes were plotted for

each transcript across all 22 non-sex chromosomes.
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